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The main result of this paper is that prespectral operator of class 1 has
a unique resolution of the identity of class F, and a unique Jordan decomposi-
tion for resolutions of the identity of all classes. The proof of this proceeds
by way of commutativity theorem for prespectral operators. This last
result is weaker in form than the commutativity theorem for spectral opera-
tors. We observe that, although Theorem 5 of [4; p. 329] is valid for spectral
operators, it is not true in general for prespectral operators. (See 6.2 of
[2; p. 309].) Consequently, the arguments of Theorem 6 of [4; p. 333-4]
cannot be applied in the situation considered here.
Theorems 1 and 2 have recently been proved for scalar-type prespectral

operators [3]. In [2], a weaker version of Theorem 2 has been shown to hold
in the following special cases"

(a) prespectral operators with totally disconnected spectra
(b) ad]oints of spectral operators
(c) prespectral operators whose adjoints are spectral operators.

Theorems 4 and 5 are also known in these cases [2].
The reader is referred to [2] for the definition and properties of prespectral

operators. Throughout the paper, X is a complex Banach space with dual
space X*. We write (x, y) for the value of the functional y n X* at the point
x of X. For brevity, the term "operator" is used to mean "bounded linear
operator". The spectrum and resolvent set of an operator T are denoted by
(T) nd p(T) respectively. The Banach algebra of operators on X is
denoted by L(X). The complex plane is denoted by C, and 2 denotes the
C-algebra of Borel subsets of C. If r c C, and z e C, then x(r, z) denotes the
characteristic function of the set r evaluated at z. Let. K be a compact Hus-
dorf space. C(K) denotes the Banach algebra of complex functions con-
tinuous on K under the supremum norm. R denotes the real line.
We require a preliminary result.

LEMMA. Let T be a prespectral operator on X with a resolution of the identiy
E(.). Le$ A, in L(X), satisfy AT TA.

(i) /f __c C is closed, then AE() E()AE().
(ii) /f r __c C is open, then E(
(iii) f c__Cisclosed, - e and n , then E()AE(r) O.

Proof. If is a closed set, then by Theorem 4 of [4; p. 328]

E()X {xX" (x)

_
}.
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(For a discussion of the single-valued extension property and the notation
used in this proof, the reader is referred to 2.2 of [2; p. 292-3].) Now if x e X

(I-- T)Ax() A(I- T)x() Ax (p(x)),

since AT TA. Also the map -+ Ax() is analytic in p(x), and so we obtain
successively

p(Ax)

_
p(x) ,r(Ax)

_
’(x)

Hence if x e E()X, then also Axe E()X. Therefore AE() E()AE().
This proves (i). If now r is open, then C\r is closed and

A(I- E(-)) (I- E(r))A(I- E(r)).

Consequently E(r)A E(r)AE(v), proving (ii). Finally, to see (iii)
observe that by (i) and hypothesis

E(8)AE() E()E()AE() O.

Now, post-multiplying both sides of the equation E(8)AE() 0 by E(r)
gives the desired result.

Taog,M 1. Let T be a prespectral operator on X, with a resolution of the
identity E(.) of class ]?. ZetA, inL(X), satisfy AT TA. Define

f Re XE(dX).R
()

Then AR RA.

Proof. By Theorem 3.10 of [2; p. 298], T* is a prespectral operator on X*
with a resolution of the identity F(. of class X such that

f(),)E(d,) f(,)f(dh) (f e C(a(T))).
Ca’) Ca.)

Using this in conjunction wih Theorem 3.1 of [2; p. 294], we see tha R* is
a sealar4ype prespeeral operator on X* with a resolution of the identity G(.
of class X such that

R* f ,G(dX), G(C\R) 0
(n)

and for every real number $,

(1) G( {} ) F(L),

where L is the line parallel to the imaginary axis through the point . Let
x X, y X*. Define

g(X) (Ax, G((- oo, X])y) (X eR),

h(h) (x, G((- , X])A*y) (), e R).

Now (Ax, G(. )y) and (x, G(. )A’y) may be regarded as complex Betel meas-
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ures on R. Hence g and h are right-continuous complex functions of bounded
variation on R. Therefore the set D of points of 1 at which either g or h is
discontinuous is countable. If e R\D we have

(Ax, G( {} )y} (x, G( {} )A’y) O.

Hence, using (1) we obtain

(2) (x, A*F(L)y) (x, E(i)A*y} 0 ( eR\D).

Now, a(T) is compact, and so there is a positive real number K such that

(3) a(T) ___{zC :-K <Rez < +K}.

Let 12 denote the set on the right-hand side of (3). Observe that

(4) F(C\ft) F(C\fi) 0.

Next, we construct a suitable sequence of functions converging uniformly to
Re z on 2. Let n be a positive integer. Since D is countable, R\D is dense
in 1 and so we may choose points {$ m 0, 1, ,2n 1} in I\D such
that the following two conditions hold"

(5) -K 0 < 1 < < 2.-1 -t-K;

(6) ]+--2K/(2n+l) <2K/(2n-I-1) (m--0,1,..-,2n).

We obtain immediately from (6)

(7) .+- .< Kin (m O, 1, ...,2n).

For m 0, 1, ..., 2n W 1, let L be the line parallel to the imaginary axis
through the point . Define

(8) {zC:_ < Re z <: } (m 1,...,2n-l- 1);

={zC: (_-t-)/2 <Rez<:} (m 1,...,2n4-1);
(9)

A(z) z) + z) (z

Observe that by (7), f(z) converges to Re z uniformly on 12 and so as n -(10) f$,,(),)F(d,) fRe ,F(d) Re F(d),) R,*.

(The first equality follows from (3).) This leads us to consider the expres-
sion defined by

(x, _0 +(A*f(r+) F(r:,+)A*)y)
(11)

-t- (x, ,., ,,,,(A*F(’,,,) F(’)A*)y).
Now, by (8),

/ rL_L (m 1, ...,2n-t- 1)

and the sets on the right-hand side of this equation are pairwise disjoint.
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Therefore

(12) F( +,) F( r,) + F(L=_) + F(Ln)

However by (2)

(x, A*F(L,n)y} (x, F(L,)A*y} 0

and so (11) becomes

(m 1, ..., 2n -+- 1).

(m 1, ..., 2n -4- 1),

(13) .,= ,(A*F(’,) F(’,,)A*)y).
Observe that A’T* T’A* and so by Lemma 1

A*F(+) F(/)A*F() (m 1, ...,2n-t- 1).

Combining this with (12) gives for n 1, ., 2n W 1,

A*(F(-,) -[- F(L,) + F(L,_))

(F(-r) -t-F(L,) + F(L,_))A*(F(r) + F(L,) + F(L,_I)).

This may be rewritten as

(14) A*F(..) F(v,)A* E(L,_.)A*F(.r) + F(L,)A*F(r,)
by virtue of the equations

F(-)A* F(r,)A*F(-,), A*F(L,) F(Ln) A*F(L),
A*F(L,n_) F(L,_)A*F(L,_),

F(rm)A*F(L.) F(’.)F(L.)A*F(L.) O,

F(r.)A*F(L._1) F(’m)F(L._I)A*F(L._I) O,

F(L)A*F(Lm_I) F(Lm) F(L._)A*F(L._) O,

F(L._I)A*F(L.) F(Lm_)F(L.)A*F(Lm) O,

all of which follow from the lemma. From (13) and (14) we obtain

(15) z_.,,= ,(F(L,_)A*F(-) - F(L,)A*F(’,) )y).

We require two more formulae for v. To obtain the first of these, observe that
by (3) and (5) we hve F(L0) E(L:,+) O. By (2) and the lemma,

(x, F(L,)A*F(L,)y) (x, A*F(Ln)y) O,

F(L,)A*E(C\(-, t -.,+ t L,,)) O.

It follows from the last two equations and (2) that

(x, F(L,)A*F(.,)y) -t- (x, F(L,)A*F(’,+I)y) (x, F(L.)A*y) O.

From these facts, we may rewrite equation (15) as follows.

(16) v (x, _, (,- m+)F(L,)A*F(r,)y).



A COMMUTATIVITY THEOREM FOR PRESPECTRAL OPERATORS 529

Again by the lemma, F(L,)A*F(-,\,) 0. Therefore, (16) my be
rewritten

2n(17) (x, =(- ,+)F(Ln)A*F(,,)y}.
Now, if m r, L. 0, and so by the lemma we have F(L)A*F(r) O.
Also, ifm r, tii 0andLL 0. Hence

where
2nm (x, (2K/(2n -t- 1)) ’.,= (F(L,)A*F(,))y5

(x, (2K/(2n
2n, (x, = (+1- - 2K/(2n + 1))F(L)A*F()y}.

Now leti sup F(r) r eZ. ThcnM < ,and

using (6). Hence

From {7) we obtain

(19) sup,a IRe z E:=o 2m+l X(T2m+I Z) E:=I 2m X(2m; Z) Kin.
Now, if f is any bounded Borel measurable function on z(T), Xo e X and
y0 e X*, then we have

(20) (x’ f f()F(d)yo Xo ,.., yo sup(r)]f(),.
(’)

Take xo Ax, yo y and

f(z) Re =o am+ x(+ z) =a x( ) (z ( T) ).

We get from (7) and (20)

(x, (A’R*-- :=o+A*F(r+)- :=:A*F())y}

Next, in (20) take xo x nd yo A*y. Then, we obtain

(x, (R’A* :o+F(r+)A* =F(-r)A*)y}

From the last two inequMities and (11) we obtain

(21)
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From (18) and (21) we get

(x, (A’R* R*A*)y)I <_ (2ME A[I x II Y Illn) (M + 4.)

Now n, x and y are arbitrary. Hence A’R* R’A* and so AR RA.
This completes the proof of the theorem.

TEOaEM 2. Let T be a prespectral operator on X, with a resolution of the
identity E(. of class F. Let A, in L(X), satisfy AT TA. Then

f f(X)E(dX) f f()E(dX)A (feC(a(T))).(i) A

(ii) If F(. ) is any resolution of the identity of T

f, f(X)E(dX)=f f(X)F(dX) (fC((;(T))).
(T) (T)

T has a unique resolution of the identity of class F.
T has a unique Jordan decomposition for resolutions of the identity of

(iii)
(iv)

all classes.

Proof. Define

R [ Re E(d)), J [ Im E(d,).
(T) de(T)

By Theorem I, AR RA. Similarly AJ JA. Hence

(T) da (T)

for any polynomial p in ), and X. Therefore by the Stone-Weierstrass theorem

A f f(X)E(dX) f f(X)E(dX)A (fC((T))),
(T) (T)

and this proves (i). Next, define

f Re}, F(dk), Jo f ImX F(d), ).
T) ,] T)

Then by (i), RRo Ro R, RJo Jo R, JRo Ro J and JJo Jo J, since Ro
and J0 commute with T. Since each of R, R0, J, J0 can be made hermitian
by equivalent renorming of X [1; Theorem 2.5], and since these operators
commute, it follows from Corollary 7 of [5; p. 78] that after some appropriate
equivalent renorming of X they are simultaneously hermitian. We assume
that this renorming has been carried out. Let S + N and So + No be re-
spectively the Jordan decompositions of T with respect to E(.) and F(.).
Then

T S+N S0+N0 and SSo SoS.



A COMMUTATIVITY THEOREM FOR PRESPECTRAL OPERATORS 531

Hence NNo No N. Consider the equations

(22) No-N (R- R0) -t-i(J- Jo),

(23) i(N0-N) (j0- J) +i(R-R0).

The difference of two hermitian operators is hermitian. Also N No, being
the sum of two commuting quasinilpotents, is also quasinilpotent. By apply-
ing Lemma 15 of [5; p. 82] to (22) and (23) we obtain

R Ro, J J0 and N No.
The last equation suffices to prove (iv). Now, by the standard properties
of the integral with respect to a spectral measure

f p(), )E(dh) f(T) (T)
p(h, )F(dh)

for any polynomial p in ), and . Therefore by the Stone-Weierstrass theorem

f f(h)E(dh) f f(,)F(d,) (f e C((T))).
(T) (T)

This proves (ii). Finally, if E(.) and F(.) are both of class r, then the
conclusion E(.) F(.) follows at once from (ii) and Lemma 3.2 of [2; p.
295]. This completes the proof of the theorem.
We observe that it was shown in 6.3 of [2; p. 309] that the sum of a scalar-

type prespectral operator and a commuting quasinilpotent need not be pre-
spectral of any class. However, we do have the following three results per-
taining to such operators. In the statement of the first theorem, the opera-
tors S, N, So and No act on X.

THEOREM 3. Let S be a scalar-type prespectral operator and N a quasinil-
potent operator with SN NS. Suppose that A, in L(X), commutes with
S + N. Then A commutes with each of S and N. Moreover, if S q- N
So -q- No, where So is a scalar-type prespectral operator, No is a quasinilpotent
operator and So No No So, then S So and N No.

Proof. Let E(. be a resolution of the identity for S.
2 (i) and the hypothesis NS SN we obtain

Then, by Theorem

N f(s)f())E(dX) f(s, f(),)E(dX)N

By Theorem 3.7 of [2; p. 297], (S + N) * is prespectral on X* of class X, with
a Jordan decomposition S* -5 N*. Similarly S -5 N is a Jordan decomposi-
tion for (S0 -5 No) * (S -t- N) *, and so the second statement of the theorem
follows from Theorem 2 (iv). Since A* commutes with the prespectral
operator (S -5 N)*, the first statement of the theorem follows readily from
Theorem 2 (i).
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THEOREM 4. Let S, in L(X), be a scalar-type prespectral operator. Let N,
in L(X), be a quasinilpotent operator with SN NS. Then if T S - N is
prespectral, every resolution of the identity for T is also a resolution o.f the identity
for S. Also, T S N is the unique Jordan decomposition for T. More-
over, N commutes with every resolution of the identity for T.

Proof. Let So -{- No be the Jordan decomposition for the prespectral
operator T. Then from the definition of Jordan decomposition [2; p. 297],
and Theorem 3 we obtain S So, N No. The other statements of the
theorem now follow from Theorem 3.5 of [2; p. 296].

THEOREM 5. Let S be a scalar-type prespectral operator with resolution of
the identity E( of class F. Let N be a quasinilpotent operator with SN NS.
Then S - N is prespectral of class F if and only if

NE(r) E(r)N (re2).

Proof. The sufficiency of the condition follows from Theorem 3.5 of [2;
p. 296]. Now let S -t- N be prespectral with resolution of the identity F(-)
of class F. By the previous theorem, F(. is a resolution of the identity of
class F for S, nd

NF(r) F(r)N (re Y_,).

By Theorem 2 (iii), S hs a unique resolution of the identity E(. of class
F. HenceF(.) E(.) and

NE(r) E(’)N (re ).
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