A COMMUTATIVITY THEOREM FOR PRESPECTRAL OPERATORS

BY
H. R. Dowson

The main result of this paper is that a prespectral operator of class Γ has a unique resolution of the identity of class Γ, and a unique Jordan decomposition for resolutions of the identity of all classes. The proof of this proceeds by way of a commutativity theorem for prespectral operators. This last result is weaker in form than the commutativity theorem for spectral operators. We observe that, although Theorem 5 of [4; p. 329] is valid for spectral operators, it is not true in general for prespectral operators. (See §6.2 of [2; p. 309].) Consequently, the arguments of Theorem 6 of [4; p.333-4] cannot be applied in the situation considered here.

Theorems 1 and 2 have recently been proved for scalar-type prespectral operators [3]. In [2], a weaker version of Theorem 2 has been shown to hold in the following special cases:
(a) prespectral operators with totally disconnected spectra
(b) adjoints of spectral operators
(c) prespectral operators whose adjoints are spectral operators.

Theorems 4 and 5 are also known in these cases [2].
The reader is referred to [2] for the definition and properties of prespectral operators. Throughout the paper, X is a complex Banach space with dual space X^{*}. We write $\langle x, y\rangle$ for the value of the functional y in X^{*} at the point x of X. For brevity, the term "operator" is used to mean "bounded linear operator". The spectrum and resolvent set of an operator T are denoted by $\sigma(T)$ and $\rho(T)$ respectively. The Banach algebra of operators on X is denoted by $L(X)$. The complex plane is denoted by \mathbf{C}, and Σ denotes the σ-algebra of Borel subsets of \mathbf{C}. If $\tau \subseteq \mathbf{C}$, and $z \epsilon \mathbf{C}$, then $\chi(\tau, z)$ denotes the characteristic function of the set τ evaluated at z. Let K be a compact Hausdorff space. $C(K)$ denotes the Banach algebra of complex functions continuous on K under the supremum norm. R denotes the real line.

We require a preliminary result.
Lemma. Let T be a prespectral operator on X with a resolution of the identity $E(\cdot)$. Let A, in $L(X)$, satisfy $A T=T A$.
(i) If $\delta \subseteq \mathbf{C}$ is closed, then $A E(\delta)=E(\delta) A E(\delta)$.
(ii) If $\tau \subseteq \mathbf{C}$ is open, then $E(\tau) A=E(\tau) A E(\tau)$.
(iii) If $\delta \subseteq \mathbf{C}$ is closed, $\tau \in \Sigma$ and $\bar{\tau} \cap \delta=\emptyset$, then $E(\delta) A E(\tau)=0$.

Proof. If δ is a closed set, then by Theorem 4 of [4; p. 328]

$$
E(\delta) X=\{x \in X: \sigma(x) \subseteq \delta\}
$$

Received October 29, 1971.
(For a discussion of the single-valued extension property and the notation used in this proof, the reader is referred to §2.2 of [2; p. 292-3].) Now if $x \in X$

$$
(\zeta I-T) A x(\zeta)=A(\zeta I-T) x(\zeta)=A x \quad(\zeta \in \rho(x))
$$

since $A T=T A$. Also the $\operatorname{map} \xi \rightarrow A x(\xi)$ is analytic in $\rho(x)$, and so we obtain successively

$$
\rho(A x) \supseteq \rho(x) ; \quad \sigma(A x) \subseteq \sigma(x)
$$

Hence if $x \in E(\delta) X$, then also $A x \in E(\delta) X$. Therefore $A E(\delta)=E(\delta) A E(\delta)$. This proves (i). If now τ is open, then $\mathbf{C} \backslash \tau$ is closed and

$$
A(I-E(\tau))=(I-E(\tau)) A(I-E(\tau))
$$

Consequently $E(\tau) A=E(\tau) A E(\tau)$, proving (ii). Finally, to see (iii) observe that by (i) and hypothesis

$$
E(\delta) A E(\bar{\tau})=E(\delta) E(\bar{\tau}) A E(\bar{\tau})=0
$$

Now, post-multiplying both sides of the equation $E(\delta) A E(\bar{\tau})=0$ by $E(\tau)$ gives the desired result.

Theorem 1. Let T be a prespectral operator on X, with a resolution of the identity $E(\cdot)$ of class Γ. Let A, in $L(X)$, satisfy $A T=T A$. Define

$$
R=\int_{\sigma(T)} \operatorname{Re} \lambda E(d \lambda)
$$

Then $A R=R A$.
Proof. By Theorem 3.10 of [2; p. 298], T^{*} is a prespectral operator on X^{*} with a resolution of the identity $F(\cdot)$ of class X such that

$$
\left(\int_{\sigma(T)} f(\lambda) E(d \lambda)\right)^{*}=\int_{\sigma(T)} f(\lambda) F(d \lambda) \quad(f \in C(\sigma(T)))
$$

Using this in conjunction with Theorem 3.1 of [2; p. 294], we see that R^{*} is a scalar-type prespectral operator on X^{*} with a resolution of the identity $G(\cdot)$ of class X such that

$$
R^{*}=\int_{\sigma(R)} \lambda G(d \lambda), \quad G(\mathbf{C} \backslash \mathbf{R})=0
$$

and for every real number ξ,

$$
\begin{equation*}
G(\{\xi\})=F\left(L_{\xi}\right) \tag{1}
\end{equation*}
$$

where L_{ξ} is the line parallel to the imaginary axis through the point ξ. Let $x \epsilon X, y \in X^{*}$. Define

$$
\begin{array}{ll}
g(\lambda)=\langle A x, G((-\infty, \lambda]) y\rangle & (\lambda \in \mathbf{R}) \\
h(\lambda)=\left\langle x, G((-\infty, \lambda]) A^{*} y\right\rangle & (\lambda \in \mathbf{R})
\end{array}
$$

Now $\langle A x, G(\cdot) y\rangle$ and $\left\langle x, G(\cdot) A^{*} y\right\rangle$ may be regarded as complex Borel meas-
ures on R. Hence g and h are right-continuous complex functions of bounded variation on \mathbf{R}. Therefore the set D of points of \mathbf{R} at which either g or h is discontinuous is countable. If $\xi \in \mathrm{R} \backslash D$ we have

$$
\langle A x, G(\{\xi\}) y\rangle=\left\langle x, G(\{\xi\}) A^{*} y\right\rangle=0 .
$$

Hence, using (1) we obtain

$$
\begin{equation*}
\left\langle x, A^{*} F\left(L_{\xi}\right) y\right\rangle=\left\langle x, F\left(L_{\xi}\right) A^{*} y\right\rangle=0 \quad(\xi \in \mathbf{R} \backslash D) . \tag{2}
\end{equation*}
$$

Now, $\sigma(T)$ is compact, and so there is a positive real number K such that

$$
\begin{equation*}
\sigma(T) \subseteq\{z \in \mathbf{C}:-K<\operatorname{Re} z<+K\} \tag{3}
\end{equation*}
$$

Let Ω denote the set on the right-hand side of (3). Observe that

$$
\begin{equation*}
F(\mathbf{C} \backslash \Omega)=F(\mathbf{C} \backslash \bar{\Omega})=\mathbf{0} \tag{4}
\end{equation*}
$$

Next, we construct a suitable sequence of functions converging uniformly to $\operatorname{Re} z$ on Ω. Let n be a positive integer. Since D is countable, $R \backslash D$ is dense in R and so we may choose points $\left\{\xi_{m}: m=0,1, \cdots, 2 n+1\right\}$ in $\mathrm{R} \backslash D$ such that the following two conditions hold:

$$
\begin{equation*}
-K=\xi_{0}<\xi_{1}<\cdots<\xi_{2 n+1}=+K \tag{5}
\end{equation*}
$$

(6) $\left|\xi_{m+1}-\xi_{m}-2 K /(2 n+1)\right|<2 K /(2 n+1)^{2} \quad(m=0,1, \cdots, 2 n)$.

We obtain immediately from (6)

$$
\begin{equation*}
\xi_{m+1}-\xi_{m}<K / n \quad(m=0,1, \cdots, 2 n) \tag{7}
\end{equation*}
$$

For $m=0,1, \cdots, 2 n+1$, let L_{m} be the line parallel to the imaginary axis through the point ξ_{m}. Define

$$
\begin{gather*}
\tau_{m}=\left\{z \epsilon \mathbf{C}: \xi_{m-1}<\operatorname{Re} z<\xi_{m}\right\} \quad(m=1, \cdots, 2 n+1) ; \tag{8}\\
\delta_{m}=\left\{z \in \mathbf{C}:\left(\xi_{m-1}+\xi_{m}\right) / 2<\operatorname{Re} z<\xi_{m}\right\} \quad(m=1, \cdots, 2 n+1) ; \\
f_{n}(z)=\sum_{m=0}^{n} \xi_{2 m+1} \chi\left(\tau_{2 m+1}, z\right)+\sum_{m=1}^{n} \xi_{2 m} \chi\left(\bar{\tau}_{2 m}, z\right) \quad(z \in \bar{\Omega}) . \tag{9}
\end{gather*}
$$

Observe that by (7), $f_{n}(z)$ converges to $\operatorname{Re} z$ uniformly on Ω and so as $n \rightarrow \infty$

$$
\begin{equation*}
\int_{\Omega} f_{n}(\lambda) F(d \lambda) \rightarrow \int_{\Omega} \operatorname{Re} \lambda F(d \lambda)=\int_{\sigma(T)} \operatorname{Re} \lambda F(d \lambda)=R^{*} \tag{10}
\end{equation*}
$$

(The first equality follows from (3).) This leads us to consider the expression η defined by

$$
\begin{align*}
& \eta=\left\langle x, \sum_{m=0}^{n} \xi_{2 m+1}\left(A^{*} F\left(\tau_{2 m+1}\right)-F\left(\tau_{2 m+1}\right) A^{*}\right) y\right\rangle \\
&+\left\langle x, \sum_{m=1}^{n} \xi_{2 m}\left(A^{*} F\left(\bar{\tau}_{2 m}\right)-F\left(\bar{\tau}_{2 m}\right) A^{*}\right) y\right\rangle \tag{11}
\end{align*}
$$

Now, by (8),

$$
\bar{\tau}_{m}=\tau_{m} \cup L_{m-1} \cup L_{m} \quad(m=1, \cdots, 2 n+1)
$$

and the sets on the right-hand side of this equation are pairwise disjoint.

Therefore

$$
\begin{equation*}
F\left(\bar{\tau}_{m}\right)=F\left(\tau_{m}\right)+F\left(L_{m-1}\right)+F\left(L_{m}\right) \quad(m=1, \cdots, 2 n+1) \tag{12}
\end{equation*}
$$

However by (2)

$$
\left\langle x, A^{*} F\left(L_{m}\right) y\right\rangle=\left\langle x, F\left(L_{m}\right) A^{*} y\right\rangle=0 \quad(m=1, \cdots, 2 n+1)
$$

and so (11) becomes

$$
\begin{equation*}
\eta=\left\langle x, \sum_{m=1}^{2 n+1} \xi_{m}\left(A^{*} F\left(\tau_{m}\right)-F\left(\tau_{m}\right) A^{*}\right) y\right\rangle . \tag{13}
\end{equation*}
$$

Observe that $A^{*} T^{*}=T^{*} A^{*}$, and so by Lemma 1,

$$
A^{*} F\left(\bar{\tau}_{m}\right)=F\left(\bar{\tau}_{m}\right) A^{*} F\left(\bar{\tau}_{m}\right) \quad(m=1, \cdots, 2 n+1)
$$

Combining this with (12) gives for $m=1, \cdots, 2 n+1$,

$$
\begin{aligned}
A^{*}\left(F\left(\tau_{m}\right)\right. & \left.+F\left(L_{m}\right)+F\left(L_{m-1}\right)\right) \\
= & \left(F\left(\tau_{m}\right)+F\left(L_{m}\right)+F\left(L_{m-1}\right)\right) A^{*}\left(F\left(\tau_{m}\right)+F\left(L_{m}\right)+F\left(L_{m-1}\right)\right)
\end{aligned}
$$

This may be rewritten as

$$
\begin{equation*}
A^{*} F\left(\tau_{m}\right)-F\left(\tau_{m}\right) A^{*}=F\left(L_{m-1}\right) A^{*} F\left(\tau_{m}\right)+F\left(L_{m}\right) A^{*} F\left(\tau_{m}\right) \tag{14}
\end{equation*}
$$

by virtue of the equations

$$
\begin{gathered}
F\left(\tau_{m}\right) A^{*}=F\left(\tau_{m}\right) A^{*} F\left(\tau_{m}\right), \quad A^{*} F\left(L_{m}\right)=F\left(L_{m}\right) A^{*} F\left(L_{m}\right), \\
A^{*} F\left(L_{m-1}\right)=F\left(L_{m-1}\right) A^{*} F\left(L_{m-1}\right), \\
F\left(\tau_{m}\right) A^{*} F\left(L_{m}\right)=F\left(\tau_{m}\right) F\left(L_{m}\right) A^{*} F\left(L_{m}\right)=0, \\
F\left(\tau_{m}\right) A^{*} F\left(L_{m-1}\right)=F\left(\tau_{m}\right) F\left(L_{m-1}\right) A^{*} F\left(L_{m-1}\right)=0, \\
F\left(L_{m}\right) A^{*} F\left(L_{m-1}\right)=F\left(L_{m}\right) F\left(L_{m-1}\right) A^{*} F\left(L_{m-1}\right)=0, \\
F\left(L_{m-1}\right) A^{*} F\left(L_{m}\right)=F\left(L_{m-1}\right) F\left(L_{m}\right) A^{*} F\left(L_{m}\right)=0,
\end{gathered}
$$

all of which follow from the lemma. From (13) and (14) we obtain

$$
\begin{equation*}
\eta=\left\langle x, \sum_{m=1}^{2 n+1} \xi_{m}\left(F\left(L_{m-1}\right) A^{*} F\left(\tau_{m}\right)+F\left(L_{m}\right) A^{*} F\left(\tau_{m}\right)\right) y\right\rangle \tag{15}
\end{equation*}
$$

We require two more formulae for η. To obtain the first of these, observe that by (3) and (5) we have $F\left(L_{0}\right)=F\left(L_{2 n+1}\right)=0 . \quad$ By (2) and the lemma,

$$
\begin{gathered}
\left\langle x, F\left(L_{m}\right) A^{*} F\left(L_{m}\right) y\right\rangle=\left\langle x, A^{*} F\left(L_{m}\right) y\right\rangle=0, \\
F\left(L_{m}\right) A^{*} F\left(\mathbf{C} \backslash\left(\tau_{m} \cup \tau_{m+1} \cup L_{m}\right)\right)=0
\end{gathered}
$$

It follows from the last two equations and (2) that

$$
\left\langle x, F\left(L_{m}\right) A^{*} F\left(\tau_{m}\right) y\right\rangle+\left\langle x, F\left(L_{m}\right) A^{*} F\left(\tau_{m+1}\right) y\right\rangle=\left\langle x, F\left(L_{m}\right) A^{*} y\right\rangle=0 .
$$

From these facts, we may rewrite equation (15) as follows.

$$
\begin{equation*}
\eta=\left\langle x, \sum_{m=1}^{2 n}\left(\xi_{m}-\xi_{m+1}\right) F\left(L_{m}\right) A^{*} F\left(\tau_{m}\right) y\right\rangle \tag{16}
\end{equation*}
$$

Again by the lemma, $F\left(L_{m}\right) A^{*} F\left(\tau_{m} \backslash \delta_{m}\right)=0$. Therefore, (16) may be rewritten

$$
\begin{equation*}
\eta=\left\langle x, \sum_{m=1}^{2 n}\left(\xi_{m}-\xi_{m+1}\right) F\left(L_{m}\right) A^{*} F\left(\delta_{m}\right) y\right\rangle \tag{17}
\end{equation*}
$$

Now, if $m \neq r, \bar{\delta}_{m} \cap L_{r}=\emptyset$, and so by the lemma we have $F\left(L_{m}\right) A^{*} F\left(\delta_{r}\right)=0$. Also, if $m \neq r, \delta_{m} \cap \delta_{r}=\emptyset$ and $L_{m} \cap L_{r}=\emptyset$. Hence

$$
-\eta=\eta_{1}+\eta_{2}
$$

where

$$
\begin{aligned}
& \eta_{1}=\left\langle x,(2 K /(2 n+1)) \sum_{m=1}^{2 n}\left(F\left(L_{m}\right) A^{*} F\left(\delta_{m}\right)\right) y\right\rangle \\
&=\left\langle x,(2 K /(2 n+1))\left(F\left(\mathrm{U}_{m=1}^{2 n} L_{m}\right) A^{*} F\left(\mathrm{U}_{m=1}^{2 n} \delta_{m}\right)\right) y\right\rangle \\
& \eta_{2}=\left\langle x, \sum_{m=1}^{2 n}\left(\xi_{m+1}-\xi_{m}-2 K /(2 n+1)\right) F\left(L_{m}\right) A^{*} F\left(\delta_{m}\right) y\right\rangle .
\end{aligned}
$$

Now let $M=\sup \{\|F(\tau)\|: \tau \in \Sigma\}$. Then $M<\infty$, and

$$
\begin{aligned}
& \left|\eta_{1}\right| \leq(2 K /(2 n+1))\|A\| M^{2}\|x\|\|y\| \\
& \left|\eta_{2}\right| \leq\left(4 n K /(2 n+1)^{2}\right)\|A\| M^{2}\|x\|\|y\|
\end{aligned}
$$

using (6). Hence

$$
\begin{align*}
|\eta| \leq(4 K /(2 n+1)) M^{2}\|A\|\|x\|\|y\| & \\
& \leq\left(2 K M^{2} / n\right)\|A\|\|x\|\|y\| \tag{18}
\end{align*}
$$

From (7) we obtain

$$
\begin{equation*}
\sup _{z \epsilon \Omega}\left|\operatorname{Re} z-\sum_{m=0}^{n} \xi_{2 m+1} \chi\left(\tau_{2 m+1} ; z\right)-\sum_{m=1}^{n} \xi_{2 m} \chi\left(\bar{\tau}_{2 m} ; z\right)\right| \leq K / n \tag{19}
\end{equation*}
$$

Now, if f is any bounded Borel measurable function on $\sigma(T), x_{0} \in X$ and $y_{0} \in X^{*}$, then we have

$$
\begin{equation*}
\left|\left\langle x_{0}, \int_{\sigma(T)} f(\lambda) F(d \lambda) y_{0}\right\rangle\right| \leq 4 M\left\|x_{0}\right\|\left\|y_{0}\right\| \sup _{\lambda \epsilon \sigma(T)}|f(\lambda)| \tag{20}
\end{equation*}
$$

Take $x_{0}=A x, y_{0}=y$ and

$$
f(z)=\operatorname{Re} z-\sum_{m=0}^{n} \xi_{2 m+1} \chi\left(\tau_{2 m+1}, z\right)-\sum_{m=1}^{n} \xi_{2 m} \chi\left(\bar{\tau}_{2 m}, z\right) \quad(z \in \sigma(T))
$$

We get from (7) and (20)

$$
\begin{aligned}
&\left\langle x,\left(A^{*} R^{*}-\sum_{m=0}^{n} \xi_{2 m+1} A^{*} F\left(\tau_{2 m+1}\right)-\sum_{m=1}^{n} \xi_{2 m} A^{*} F\left(\bar{\tau}_{2 m}\right)\right) y\right\rangle \\
& \leq(4 M K / n)\|A\|\|x\|\|y\|
\end{aligned}
$$

Next, in (20) take $x_{0}=x$ and $y_{0}=A^{*} y$. Then, we obtain

$$
\begin{aligned}
&\left\langle x,\left(R^{*} A^{*}-\sum_{m=0}^{n} \xi_{2 m+1} F\left(\tau_{2 m+1}\right) A^{*}-\sum_{m=1}^{n} \xi_{2 m} F\left(\bar{\tau}_{2 m}\right) A^{*}\right) y\right\rangle \\
& \leq(4 M K / n)\|A\|\|x\|\|y\|
\end{aligned}
$$

From the last two inequalities and (11) we obtain

$$
\begin{equation*}
\left|\left\langle x,\left(A^{*} R^{*}-R^{*} A^{*}\right) y\right\rangle-\eta\right| \leq(8 M K / n)\|A\|\|x\|\|y\| \tag{21}
\end{equation*}
$$

From (18) and (21) we get

$$
\left|\left\langle x,\left(A^{*} R^{*}-R^{*} A^{*}\right) y\right\rangle\right| \leq(2 M K\|A\|\|x\|\|y\| / n)(M+4 .)
$$

Now n, x and y are arbitrary. Hence $A^{*} R^{*}=R^{*} A^{*}$ and so $A R=R A$. This completes the proof of the theorem.

Theorem 2. Let T be a prespectral operator on X, with a resolution of the identity $E(\cdot)$ of class Γ. Let A, in $L(X)$, satisfy $A T=T A$. Then

$$
\begin{equation*}
A \int_{\sigma(T)} f(\lambda) E(d \lambda)=\int_{\sigma(T)} f(\lambda) E(d \lambda) A \quad(f \in C(\sigma(T))) \tag{i}
\end{equation*}
$$

(ii) If $F(\cdot)$ is any resolution of the identity of T

$$
\int_{\sigma(T)} f(\lambda) E(d \lambda)=\int_{\sigma(T)} f(\lambda) F(d \lambda) \quad(f \in C(\sigma(T)))
$$

(iii) T has a unique resolution of the identity of class Γ.
(iv) T has a unique Jordan decomposition for resolutions of the identity of all classes.

Proof. Define

$$
R=\int_{\sigma(T)} \operatorname{Re} \lambda E(d \lambda), \quad J=\int_{\sigma(T)} \operatorname{Im} \lambda E(d \lambda)
$$

By Theorem 1, $A R=R A$. Similarly $A J=J A$. Hence

$$
A \int_{\sigma(T)} p(\lambda, \bar{\lambda}) E(d \lambda)=\int_{\sigma(T)} p(\lambda, \bar{\lambda}) E(d \lambda) A
$$

for any polynomial p in λ and $\bar{\lambda}$. Therefore by the Stone-Weierstrass theorem

$$
A \int_{\sigma(T)} f(\lambda) E(d \lambda)=\int_{\sigma(T)} f(\lambda) E(d \lambda) A \quad(f \in C(\sigma(T)))
$$

and this proves (i). Next, define

$$
R_{0}=\int_{\sigma(T)} \operatorname{Re} \lambda F(d \lambda), \quad J_{0}=\int_{\sigma(T)} \operatorname{Im} \lambda F(d \lambda)
$$

Then by (i), $R R_{0}=R_{0} R, R J_{0}=J_{0} R, J R_{0}=R_{0} J$ and $J J_{0}=J_{0} J$, since R_{0} and J_{0} commute with T. Since each of R, R_{0}, J, J_{0} can be made hermitian by equivalent renorming of $X[1$; Theorem 2.5], and since these operators commute, it follows from Corollary 7 of [5; p. 78] that after some appropriate equivalent renorming of X they are simultaneously hermitian. We assume that this renorming has been carried out. Let $S+N$ and $S_{0}+N_{0}$ be respectively the Jordan decompositions of T with respect to $E(\cdot)$ and $F(\cdot)$. Then

$$
T=S+N=S_{0}+N_{0} \quad \text { and } \quad S S_{0}=S_{0} S
$$

Hence $N N_{0}=N_{0} N$. Consider the equations

$$
\begin{align*}
N_{0}-N & =\left(R-R_{0}\right)+i\left(J-J_{0}\right) \tag{22}\\
i\left(N_{0}-N\right) & =\left(J_{0}-J\right)+i\left(R-R_{0}\right) \tag{23}
\end{align*}
$$

The difference of two hermitian operators is hermitian. Also $N-N_{0}$, being the sum of two commuting quasinilpotents, is also quasinilpotent. By applying Lemma 15 of $[5 ;$ p. 82] to (22) and (23) we obtain

$$
R=R_{0}, \quad J=J_{0} \quad \text { and } \quad N=N_{0}
$$

The last equation suffices to prove (iv). Now, by the standard properties of the integral with respect to a spectral measure

$$
\int_{\sigma(T)} p(\lambda, \bar{\lambda}) E(d \lambda)=\int_{\sigma(T)} p(\lambda, \bar{\lambda}) F(d \lambda)
$$

for any polynomial p in λ and $\bar{\lambda}$. Therefore by the Stone-Weierstrass theorem

$$
\int_{\sigma(T)} f(\lambda) E(d \lambda)=\int_{\sigma(T)} f(\lambda) F(d \lambda) \quad(f \in C(\sigma(T)))
$$

This proves (ii). Finally, if $E(\cdot)$ and $F(\cdot)$ are both of class Γ, then the conclusion $E(\cdot)=F(\cdot)$ follows at once from (ii) and Lemma 3.2 of [2; p . 295]. This completes the proof of the theorem.

We observe that it was shown in §6.3 of [2; p. 309] that the sum of a scalartype prespectral operator and a commuting quasinilpotent need not be prespectral of any class. However, we do have the following three results pertaining to such operators. In the statement of the first theorem, the operators S, N, S_{0} and N_{0} act on X.

Theorem 3. Let S be a scalar-type prespectral operator and N a quasinilpotent operator with $S N=N S$. Suppose that A, in $L(X)$, commutes with $S+N$. Then A commutes with each of S and N. Moreover, if $S+N=$ $S_{0}+N_{0}$, where S_{0} is a scalar-type prespectral operator, N_{0} is a quasinilpotent operator and $S_{0} N_{0}=N_{0} S_{0}$, then $S=S_{0}$ and $N=N_{0}$.

Proof. Let $E(\cdot)$ be a resolution of the identity for S. Then, by Theorem 2 (i) and the hypothesis $N S=S N$ we obtain

$$
N \int_{\sigma(S)} f(\lambda) E(d \lambda)=\int_{\sigma(S)} f(\lambda) E(d \lambda) N \quad(f \in C(\sigma(S)))
$$

By Theorem 3.7 of [2; p. 297], $(S+N)^{*}$ is prespectral on X^{*} of class X, with a Jordan decomposition $S^{*}+N^{*}$. Similarly $S_{0}^{*}+N_{0}^{*}$ is a Jordan decomposition for $\left(S_{0}+N_{0}\right)^{*}=(S+N)^{*}$, and so the second statement of the theorem follows from Theorem 2 (iv). Since A^{*} commutes with the prespectral operator $(S+N)^{*}$, the first statement of the theorem follows readily from Theorem 2 (i).

Theorem 4. Let S, in $L(X)$, be a scalar-type prespectral operator. Let N, in $L(X)$, be a quasinilpotent operator with $S N=N S$. Then if $T=S+N$ is prespectral, every resolution of the identity for T is also a resolution of the identity for S. Also, $T=S+N$ is the unique Jordan decomposition for T. Moreover, N commutes with every resolution of the identity for T.

Proof. Let $S_{0}+N_{0}$ be the Jordan decomposition for the prespectral operator T. Then from the definition of Jordan decomposition [2; p. 297], and Theorem 3 we obtain $S=S_{0}, N=N_{0}$. The other statements of the theorem now follow from Theorem 3.5 of [2; p. 296].

Theorem 5. Let S be a scalar-type prespectral operator with resolution of the identity $E(\cdot)$ of class Γ. Let N be a quasinilpotent operator with $S N=N S$. Then $S+N$ is prespectral of class Γ if and only if

$$
N E(\tau)=E(\tau) N \quad(\tau \in \Sigma)
$$

Proof. The sufficiency of the condition follows from Theorem 3.5 of [2; p. 296]. Now let $S+N$ be prespectral with resolution of the identity $F(\cdot)$ of class Γ. By the previous theorem, $F(\cdot)$ is a resolution of the identity of class Γ for S, and

$$
N F(\tau)=F(\tau) N \quad(\tau \in \Sigma)
$$

By Theorem 2 (iii), S has a unique resolution of the identity $E(\cdot)$ of class r. Hence $F(\cdot)=E(\cdot)$ and

$$
N E(\tau)=E(\tau) N \quad(\tau \in \Sigma)
$$

References

1. E. Berkson, A characterization of scalar-type operators on reflexive Banach spaces, Pacific J. Math., vol. 13 (1963), pp. 365-373.
2. E. Berkson and H. R. Dowson, Prespectral operators, Illinois J. Math., vol. 13 (1969), pp. 291-315.
3. E. Berkson, H. R. Dowson and G. A. Elliott, On Fuglede's theorem and scalar-type operators, Bull. London Math. Soc., vol. 4 (1972), pp. 13-16.
4. N. Dunford, Spectral operators, Pacific J. Math., vol. 4 (1954), pp. 321-354.
5. G. Lumer, Spectral operators, hermitian operators and bounded groups, Acta. Sci. Math., vol. 25 (1964), pp. 75-85.

The University
Glasgow, Scotland

