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1. Introduction

Let U, V and W be vector spaces over a field F and let , U X V -- Wbe a bilinear function. We define the image of to be the set of all vectors in
W of the form , (x, y), x e U, y e V and denote it by Im ,. It is not generally
the case that Im e is a subspace of W. In the paper [2] the following result
is proved by the first author.

THEOREM ]. Let V and V. be vector spaces of dimensions n and n respec-
tively, n

_
n. If is a bilinear function on V X V such that Im is a vector

space then
dim (Imp)

_
n(n.- 1) [1/2- v/(n-k5/4)]

where Ix] denotes the greatest integer function.
In this paper we consider this problem for bilinear symmetric and skew-

symmetric functions. The main results follow.

THEOREM 2. Let F be an algebraically closed field of characteristic 0 and let
V be an n-dimensional vector space over F. If is a bilinear symmetric function
defined on V X V such that Im q is a vector space U then

(1) dim (U)

_
n(n -- 1)/2 [1/2(n -k 1 v/(n -+- 3))].

THEOREM 3. Let be a bilinear skew-symmetric function defined on V X V,
where V is an n-dimensional vector space over a field F of characteristic O. If
Im is a vector space then

(i) Im {0}ifn 1, and
(ii)

(2) dim (Imp) _< n(n-- 1)/2- [1/2(n- /(n-+-2))] if n>_ 2.

Some examples follow that show that if q is a bilinear, symmetric or skew-
symmetric function then the image of may or may not be a vector space.

Example 1. Let U and V be vector spaces over a field F and let T V -- UV*be a linear transformation Let f e be a non-zero linear functional. De-
fine V V-- Uby

(x, y) f (x)Ty W f (y)Tx, x, ye V.
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It is obvious that e is a bilinear, symmetric function and that Im Im T,
a subspace of U.

Example 2. Let U, V and f be as in Example 1. Define a bilinear skew-
symmetric function e V V -- U by

e(x, y) f(x)Ty f(y)Tx, x, y e V.

Then Im e is a subspace of U. Since (x, y) T (f(x)y f(y)x) it suffices
to show that the set

W {f(x)y f(y)x x, y e V}

is a subspace of V. Since f 0 extend it to a basis f, f2, f, of V* which
is dual to some basis el, e, of V. Let x "--1 a e and y "=1 bi e.
Then

f(x)y f(y)x .=. (a, b as b,)e e (e2, e,,),

the subspace spanned by e:, ..-, en. Conversely if z ;’_-. c ei then
z f(el)z f(z)e and hence W (e:, e).

Example 3. Let vl, v, be a basis of a vector space V over F, n > 2
and let M, (F) be the space of n-square matrices over F. Define a bilinear
symmetric function V X V -- M, (F) by

(3) q (x, y) 1/2 ([a, bj] W [a, bj]r),
where x 7= a, v, y ==1 b, v,, [a, bj] denotes the matrix whose (i, j)
entry is a b and the superscript T denotes the transpose. We observe that
if A e Im e then rank (A) < 2. Let E. denote the n-square matrix with 1
in the position (i, j) and 0 elsewhere. Then B 1/2(EI -t- E:I) (Vl, v)
and C E (v, v) but rank (B - C) 3 and hence Im is not a sub-
space of M. (F).
Example 4. Let n 4 in Example 3 and let U / V, the second Grass-

mann space over V. Define a bilinear skew-symmetric function V X V--
U by q(x, y) x/ y. It is easily seen that there do not exist x and y in
V such that (x, y) v/ v. -t- v/ v. Thus Im is not a vector space.

2. Proofs
We first consider certain subspaces of the mt completely symmetric space

V() [1, Ch. VII, 1] and the m Grassmann space/ V over V. We denote
the symmetric product of two vectors x and y by x.y and their Grassmann
product by x/ y. We say that z e V() has symmetric length k and write
r (z) k if z is a sum of k decomposable elements (i.e., elements of the form
v v) but no fewer. We define r (0) 0. If z, z are arbitrary
elements of V() then it is obvious that

(4) c, z,) < (z,),

for any scalars c1, cr.
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We define the skew length, (z), for z e/
equality similar to (4) also holds for . ’ V, in a similar way.

LEv 1. If q X V --> U is a symmetric (skew-symmetric) multilinear
onto mapping then there exists a subspace K of the mth completely symmetric
space V(m) (m Grassmann space / V) such that each non-zero coset in the
quotient space V(’)/K (/m V/K) contains a non-zero decomposable element.
Conversely if K is a subspace of V(’) (/’ V) such that each non-zero coset in
V(’)/K (/’ V/K) contains a non-zero decomposable element then there exists
a multilinear symmetric (skew-symmetric) mapping defined on X V such
that the image of is a vector space.

The proof of the above lemma is analogous to that of Lemma 1 in [2] and
is omitted. In view of this lemma the problem of finding a necessary and
sufficient condition in order that the image of a symmetric (skew-symmetric)
multilinear function be a vector space is reduced to investigating those sub-
spaces K of V(m) (/m V) which have the property that a system of distinct
representatives for the non-zero cosets in V(’)/K (/ V/K) can be chosen
from the non-zero decomposable elements in V() (/ V).
The proof of the following lemma is analogous to that of Lemma 2 in [2]

and is also omitted.

L2. Let K be a subspace of V(’) (of/ V), (tim K p, such that
the cosets in V(’)/K (/’ V/K) can be represented by nonzero decomposable
elements. Then given any p - 1 elements of V(’) (/k V) there exists a non-
trivial linear combination of these of symmetric (skew) length at most p - 1.

Now let vl, ..., v be a basis of a vector space V over a field F and let
$ (F) and5 (F) denote the spaces of all n X n symmetric and skew-symmetric
matrices respectively over F. Define V X V-$ (F) as in (3) and define
f: V V--,,(F) by

(5) f(x, y) 1/2 ([al b] [a, bilr),
where x _,’2.. av and y ,-1 b v. It is routine to verify that
($ (F), ) is a second completely symmetric space and (5, (F), f) is a second
Grassmann space over V. Since any two mt completely symmetric (Grass-
mann) spaces over V are canonically isomorphic we can regard a matrix in
$ (F) ( (F)) to be an element of V(2) (/k V). The following lemma gives
a relationship between the rank of a symmetric matrix and its symmetric
(skew) length.

L. 3. (i) Let A be an n-square symmetric matrix over an algebraically
closed field F of characteristic zero. Then

r(A) [1/2(rank (A) -t- 1)].

(ii) Let B be an n-square skew-symmetric matrix over a field F of character-
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istic zero. Then
(B) 1/2rank (B).

Proof. It is well known that A is congruent to

D diag (I’v, , O,-2v-1)

where is 0 or 1 and B is congruent to

E diag (J, J, 0n-2k),

where J antidiag (1, 1). It is easily verified that (A) (D) and
g (B) g (E). Since x.y and x/ y have rank at most 2 we have

We note that

and

rank (A) < 2r(A) and rank (B) _< 2u(B).

diag (I2 -4- 0,_2 @1 A- ivy). (Vl iv,

diag (J A- 0_2) @1 -t- v) / (- vl + V,),

where i /(-1). This leads us to define

Xt V2t--1 "3
I- iY2t, Yt V2t--1 iV2t,

ut v2t_l A-v.t and wt -vt_l + v2t.

Then D tv=l xt.yt A- evv+l.v2v+l and E t=l ut / w,. Thus it fol-
lows that if 0 then

r(A) v(D) < 1/2rank (A) < 7(A)
and if 1 then

r(A) r(D) _< 1/2(rank (A) + 1) <_ r(A) + 1/2.

Also (B) (E) _< 1/2 rank (B) _< g (B). These inequalities prove the
lemma.

LEMMA 4. Let V be a vector space over a field F of characteristic O,
dim V n > 3. Let l be any positive integer satisfying 1 < 2k -4- 1 < n.
Then there exists a subspace W of V2) such that

dimW 1/2(n- 2k)(n- 2/c A- 1)

and every non-zero element of W has symmetric length at least ]c + 1.

.Proof. Let p be an integer l _< p < n. For an integerr, p+ 1 < r__< n,
consider the r-tuples

(6) / (1,2-,3’-1,...,r-l), i= 1, ,r-p.

Any non-trivial linear combination of the vectors (6) must have at least
p A- 1 non-zero entries. For, suppose that the components jl, "", jr--v Of

-’- d. t are 0, i.e., - d j-i 0, 1,,-.. r p. But the (r p)-
oi--1square matrix[2t ],i 1, .,r-- p,t 1, -..,r-- p, isaVandermondc

and hence is non-singular. Thusd 0, i 1, ...,r- p.



IMAGES OF BIL1NEAR FUNCTIONS 509

For a fixed r, p < r <_ n construct r p matrices by inserting the vectors
tl, ,/r- along the partial diagonals of length r indicated in the diagram
below:

The remaining entries of the above matrix are taken to be 0. For

r=p+t<_n

we have such matrices. Hence the total number of such matrices is

1 +2 + +n- p 1/2(n- p)(n- p -t- 1).

These symmetric matrices are obviously linearly independent. Let W be the
subspace of Sn (F) spanned by these matrices. If A e W, A 0 then start-
ing from the lower left corner of A there is a first non-zero partial diagonal of
length r, say, containing entries bl, br such that not 11 b’s are 0. But
then starting from the upper right corner of A the first non-zero partial di-
agonal is also b, br. These partial diagonals re a non-trivial linear com-
bination of the vectors (6) and hence have at least p -t- 1 non-zero entries.
It follows that rank (A) _> p-]- 1. In particular if p 2k, 1 < 2k -]- 1 _< n,
then we have proved the existence of a subspace W of n (F) (and hence of
V()) such that dim W 1/2 (n 2k)(n 2k -t- 1), and every non-zero ele-
ment of W has rank at least 2/c -t- 1 and hence, by Lemma 3, has symmetric
length at least k + 1.

LMMA 5. Let V be a ector space over F, dim V

___
3. Let K be a subspace

of V() such that every non-zero coset in V()/K contains a non-zero decomposable
element. Then, dim K >_ ko, where ko is the largest integer satisfying

(i) 1 < 2ko + 1 <_ n, and
(ii) 1/2(n-- 2k0)(n- 2k04- 1) _> k0-t- 1.

Proof. Suppose that dim K p < k0. Then

+ <o+_<1/2(n-o)(n-o+) =qo.

By Lemma 4 there exists a subspace W of dimension qo such that every non-
zero element in W has symmetric length at least ko + 1. Since p -t- 1 < qo,
we can find p + 1 linearly independent vectors in W, say w, w+. Then

(7) (+z.= c. w) > k0 + 1,

for any choice of scalars o, cv+ not all of which are O. On the other hand
by Lemma 2 there exists a non-trivial linear combination, _,.= d. w., such
that r(z..,= dw) <_ p + 1 < k0 + 1, in contradiction to (7). This com-
pletes the proof of the lemma.
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It is easily seen that if k0 is the largest integer satisfying the conditions (i)
and (ii) of the preceding lemma then

(8) k0 [1/2(n+ 1 x/(n+3))].

Proof of Theorem 2. From the universal factorization property of the com-
pletely symmetric space V() we find the unique linear map h V() -. U such
that the diagram

V V....... ,V()

is eommugafive. We observe ghag h is ongo because , is onto. Therefore

(9) dimU= dim (Imh)
dim V(- dim (ker h) 1/2n(n + 1) dim (ker

We notice ghat for n 1 or 2 ghe inequaliV (1) reduees go

(10) dim U < 1/2n (n + 1),

which, in view of (9) is obviously true. If n > 3 then it follows from Lemma
1, Lemma 5 and (8) that dim (ker h) > [1/2 (n + 1 /(n + 3))] and the
result follows from (9).

Remark. If n is 1 or 2 then the inequality (10) cannot be improved.
Suppose n dim V 1 and 9 # 0 then it is easily verified that Im is a
1-dimensional vector space and the equality holds in (10). Next let {e, e}
be a basis of V. Then e.e, e.e, e. e} is a basis of V(. Let

V X V--, V

be a symmetric bilinear function defined by 9 (z, V) z. V, z, V V. Then
is easily seen that each element of V( is decomposable. Hence Im q V
is a vector space and again the equality holds in (10).

LEMM& 6. Assume n >_ 2 and let p be an odd integer, 1 <_ p < n. Then
there is a subspace W of 5n (F) such that every non-zero matrix in W has rank at
least p + 1 and dim W 1/2 (n p) (n p + 1).

Proof. For any integer r, p _< r _< n 1, consider the r-tuples

(11) f (1,2-1,3-1, ...,r*-), i 1, ...,r-p + 1.

Then using a similar argument as in the proof of Lemma 4 we conclude that
any non-trivial linear combination of the vectors (11) has at least p non-zero
entries. For a fixed r, p _< r _< n 1, construct r p + 1 matrices in
5n (F) by inserting f and -fl, i 1, ..., r p + 1 along the partial di-
agonals of length r as shown in the diagram below"
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The remaining entries of the matrix (12) are taken to be 0. There are a total
of 1/2 (n p)(n p + 1) such matrices and they are linearly independent.
Let W be the subspace of 3 (F) spanned by them. If A e W, A 0 then
rank (A) _> p. Since A is skew-symmetric and p is odd we have

rank (A) _> p+ 1.

LEMMA 7. Le V be a vector spe over F, m V n 2. Let k be an
iger satisfyi 2 2 2 n. Then there is a sspe W of V such
that dimW=(n-2k- 1) (n 2 a if z W, z O en (z) k + l.

This is an immediate consequence of Lemmas 3 nd 6.

LE 8. Let V be as in Lemma 7. Le K be a sspace of V such ha
every n-zero coset in V/K conins a non-zero decomposable element. Then
mK [ (n (n + 2))l.

Proof. We assert that dim K ko, where k0 is the largest integer stisfy-
ing"

(i) 2ko W 2 n, and
(ii) (n- 2ko)(n- 2o- 1) o+ 1.

The rt of the argument is analogous to the proof of Lemma 5.

Proof of Theorem 3. If n 1 then it is trivial that 0 and hence
U 0}. Next consider the diagram

2
VXV . ,V

Since is onto U, T is ongo U and hence

(la) dim U dim (A g) dim (ker T) ( 1)/2 dim (ker T).
Thus for 2 we use (1) and emma 8 o obtain he inequality (2).

Rer. If dim g is 2 or 3 then define on V X Vby(x,y) xAy.
Then each element in V is decomposable. Thus Im is a vector space and
(2) becomes an equality in these cases.
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