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1. Introduction

Let U, V and W be vector spaces over a field F andlet ¢ : U X V=W
be a bilinear function. We define the émage of ¢ to be the set of all vectors in
W of the form ¢ (x, y), € U, y € V and denote it by Im ¢. It is not generally
the case that Im ¢ is a subspace of W. In the paper [2] the following result
is proved by the first author.

TueoRrEM 1. Let Vy and V; be vector spaces of dimensions ny and n, respec-
tively, 1 < ne.  If ¢ is a bilinear function on Vi X V, such that Im ¢ is a vector
space then

dim (Im @) < m(ny — 1) — [} — v/ (m + 5/4)]
where [x] denotes the greatest integer function.

In this paper we consider this problem for bilinear symmetric and skew-
symmetric functions. The main results follow.

TaEOREM 2. Let I be an algebraically closed field of characteristic 0 and let
V be an n-dimensional vector space over F. If ¢ is a bilinear symmetric function
defined on V' X V such that Im ¢ is a vector space U then

1) dim (U) <n(n+1)/2 - [(n+1 -+ (n+3))]

TuroreM 3. Let ¢ be a bilinear skew-symmetric function defined on VX V,
where V is an n-dimensional vector space over a field F of characteristic 0. If
Im ¢ 7s a vector space then

1) Ime =1{0}ifn=1,and
(i)
(2) dim (Img) <n(n—1)/2 —[F(n — V(n+2))] of n=2
Some examples follow that show that if ¢ is a bilinear, symmetric or skew-
symmetric function then the image of ¢ may or may not be a vector space.

Example 1. Let U and V be vector spaces over a field F andlet T : V— U
be a linear transformation. Let f e V* be a non-zero linear functional. De-
fineg : VX V—>Uby

e, y) =f@)Ty +f)Tz, z,yeV.
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It is obvious that ¢ is a bilinear, symmetric function and that Im ¢ = Im T,
a subspace of U.

Ezxzample 2. Let U, V and f be as in Example 1. Define a bilinear skew-
symmetric function ¢ : VX V — U by

e, y) =f@)Ty — f@)Te, z,yeV.
Then Im ¢ is a subspace of U. Since ¢ (z, y) = T(f(x)y — f(y)z) it suffices
to show that the set
W ={f@)y —fy)z:z,yeV]
is a subspace of V. Since f # 0 extend it to a basis f, fa, - - - , fa of V* which

is dual to some basise;, -+ ,e,of V. Letz = D iya;e;andy = Y i1 b e,
Then

f@y — fyez = Z?=2 (@1b; — a;b)e;ees, -+, €),

the subspace spanned by e, ---, e,. Conversely if z = Z?=2 ¢; €; then
z = f(e1)z — f(z)esand hence W = (e, - - - , €,).
Ezample 3. Let vy, -+, v, be a basis of a vector space V over I, n > 2

and let M, (F) be the space of n-square matrices over F. Define a bilinear
symmetric function ¢ : V X V — M, (F) by

3) oz, y) = 3(la:b;] + [a:b;]"),

where £ = D i=1G: 0, § = D i=1b¢ vy, [a:b;] denotes the matrix whose (7, )
entry is a; b; and the superscript 7 denotes the transpose. We observe that
if A ¢ Im ¢ then rank (4) < 2. Let E;; denote the n-square matrix with 1
in the position (7, j) and O elsewhere. Then B = 3 (B + Exn) = ¢(v1, v2)
and C = Ej = ¢(vs, v3) but rank (B + C) = 3 and hence Im ¢ is not a sub-
space of M, (F).

Example 4. Let n = 4in Example 3 and let U = A’ V, the second Grass-
mann space over V. Define a bilinear skew-symmetric functiong : VX V —
Ubye(x,y) = «/\ y. Itis easily seen that there do not exist  and y in
V such that o (2, y) = v A\ v, + v3 A\ vs. Thus Im ¢ is not a vector space.

2. Proofs

We first consider certain subspaces of the m* completely symmetric space
V™ [1, Ch. VII, §1] and the m Grassmann space A™ V over V. We denote
the symmetric product of two vectors z and y by -y and their Grassmann
product by z A y. We say that z e V™ has symmetric length k and write
7(2) = kif z is a sum of k decomposable elements (i.e., elements of the form

v1+ +++ U,) but no fewer. We define 7(0) = 0. If zy, - - -, 2, are arbitrary
elements of V™ then it is obvious that
4) T(Xirciz) < i t(z),

for any scalars ¢, -+, c,.
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We define the skew length, u(z), for ze¢ A™ V, in a similar way. An in-
equality similar to (4) also holds for u.

LemMa 1. If ¢ : XT V — U is a symmetric (skew-symmetric) multilinear
onto mapping then there exists a subspace K of the mtt completely symmetric
space V™ (mt Grassmann space A\™ V) such that each non-zero coset in the
quotient space V™ /K (A™ V/K) contains a non-zero decomposable element.
Conversely if K is a subspace of V™ (A™ V) such that each non-zero coset in
V™/K (A™ V/K) contains a non-zero decomposable element then there exists
a muliilinear symmetric (skew-symmetric) mapping ¢ defined on X1 V such
that the tmage of ¢ is a vector space.

The proof of the above lemma, is analogous to that of Lemma 1 in [2] and
is omitted. In view of this lemma the problem of finding a necessary and
sufficient condition in order that the image of a symmetric (skew-symmetric)
multilinear function ¢ be a vector space is reduced to investigating those sub-
spaces K of V™™ (A™ V) which have the property that a system of distinct
representatives for the non-zero cosets in V™ /K (A™ V/K) can be chosen
from the non-zero decomposable elements in V™ (A™ V).

The proof of the following lemma is analogous to that of Lemma 2 in (2]
and is also omitted.

Lemma 2. Let K be a subspace of V™ (of A™ V), dim K = p, such that
the cosets in V™ /K (A™ V/K) can be represented by nonzero decomposable
elements. Then given any p + 1 elements of V™ (A™ V) there exists a non-
trivial linear combination of these of symmetric (skew) length at most p -+ 1.

Now let vy, -+ -, v, be a basis of a vector space V over a field F and let
8, (F) and 3, (F) denote the spaces of all n X n symmetric and skew-symmetric
matrices respectively over F. Definep : V X V— 8,(F) asin (3) and define
f:VXV—35,(F) by

®) f@y) = $(a:b] — [a:b5]"),

where ¢ = Y mia:v, and y = b, v,. It is routine to verify that
(8. (F), ¢) is a second completely symmetric space and (3, (F), f) is a second
Grassmann space over V. Since any two mt completely symmetric (Grass-
mann) spaces over V are canonically isomorphic we can regard a matrix in
8. (F) (3. (F)) to be an element of V® (A?V). The following lemma gives
a relationship between the rank of a symmetric matrix and its symmetric
(skew) length.

LemMa 3. (1) Let A be an n-square symmelric matrixz over an algebraically
closed field F of characteristic zero. Then

7(4) = [}(rank (4) + 1)].

(ii) Let B be an n-square skew-symmetric matriz over o field F of character-
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1stic zero. Then
u(B) = 3 rank (B).

Proof. 1t is well known that 4 is congruent to
D = diag (Isp, €, Ou_2p1)
where ¢is 0 or 1 and B is congruent to
E = diag (J, ---, J, Op_m),
where J = antidiag (1, —1). It is easily verified that 7(4) = 7(D) and
w(B) = u(E). Since z-y and xz /A y have rank at most 2 we have

rank (4) < 27(4) and rank (B) < 2u(B).
We note that

dl&g (12 + On_z) = (1)1 + iv2) . (1)1 - 1:1)2)
and

diag (J + Onz) = (1 + 1) N\ (=01 + %),
where 7 = v/ (—1). This leads us to define

Xy = Vg1 T+ W, Yo = Vo1 — Way,
Up = Vg1 + Vo and w; = —ve1 T V.

Then D = X242y + evopi1-toprr and E = D i u; A w,. Thus it fol-
lows that if ¢ = 0 then
7(A) = r(D) < irank (4) < 7(4)
and if ¢ = 1 then
7(A) = 7(D) < 3(rank (4) +1) < 7(4) + 3.

Also u(B) = u(#) < % rank (B) < u(B). These inequalities prove the
lemma.

Lemma 4. Let V be a vector space over a field F of characteristic 0,
dim V = n > 3. Let k be any posttive integer satisfying 1 < 2k + 1 < n.
Then there exists a subspace W of V® such, that

dmW =3(n—2k)(n — 2k + 1)
and every non-zero element of W has symmetric length at least k + 1.

Proof. Letpbeaninteger 1 < p < n. Foranintegerr,p +1<r <mn,
consider the r-tuples

(6) B = (1, 2i—19 32._1) T ;Ti—l)’ 1= 17 L, D

Any non-trivial linear combination of the vectors (6) must have at least
p + 1 non-zero entries. For, suppose that the components 71, - - -, jr—p Of

"ZPd; B are0,ie., D it diji ' =0,t=1,---,7r —p. Butthe (r — p)-
square matrix [ji ', =1, ---,r —p,t =1, --- ,r — p, is a Vandermonde
and hence is non-singular. Thusd;, = 0,z =1, --- ,r — p.
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For a fixed r, p < r < n construct r — p matrices by inserting the vectors
B1, * -+, Br—p along the partial diagonals of length r indicated in the diagram

| ~
o

The remaining entries of the above matrix are taken to be 0. Tor

r=p+tn

€ 8a(F),

we have ¢ such matrices. Hence the total number of such matrices is
1+2+ - +n—p=3n—p)n—p+1).

These symmetric matrices are obviously linearly independent. Let W be the
subspace of S, (F') spanned by these matrices. If A ¢ W, A 0 then start-
ing from the lower left corner of 4 there is a first non-zero partial diagonal of
length 7, say, containing entries by, - - - , b, such that not all b,’s are 0. But
then starting from the upper right corner of A the first non-zero partial di-
agonal is also by, - - -, b,. These partial diagonals arc a non-trivial linear com-
bination of the vectors (6) and hence have at least p + 1 non-zero entries.
It follows that rank (4) > p 4+ 1. In particularifp = 2k, 1 < 2k 4+ 1 < n,
then we have proved the existence of a subspace W of 8, (F) (and hence of
V®) such that dim W = % (n — 2k) (n — 2k + 1), and every non-zero ele-
ment of W has rank at least 2k + 1 and hence, by Lemma 3, has symmetric
length at least k& + 1.

LemmA 5. Let V be a vector space over I', dim V > 3. Let K be a subspace
of V® such that every non-zero coset in V® /K contains a non-zero decomposable
element. Then, dim K > ko, where ko is the largest integer satisfying

i) 1 <2k + 1< n,and
() 3 — 2ko)(n — 2ko + 1) > ko + 1.

Proof. Suppose that dim K = p < ko. Then
p+1<ko+1<Z<3(n—2k)(n— 2k 4+ 1) = qo.

By Lemma 4 there exists a subspace W of dimension ¢, such that every non-
zero element in W has symmetric length at least ko + 1. Since p 4+ 1 < qo,

we can find p + 1 linearly independent vectors in W, say wy, - - - , wy41. Then
) (8 ciw;) = ko + 1,
for any choice of scalars ¢i, - - - , ¢,41 not all of which are 0. On the other hand

by Lemma 2 there exists a non-trivial linear combination, 221 d; w;, such
that (D 25 d;w;) < p + 1 < ko + 1, in contradiction to (7). This com-
pletes the proof of the lemma.
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It is easily seen that if &, is the largest integer satisfying the conditions (i)
and (ii) of the preceding lemma then

) kk=EFnm+1—-+@+3))]

Proof of Theorem 2. From the universal factorization property of the com-
pletely symmetric space V® we find the unique linear map & : V® — U such
that the diagram

VX V—uv®

N

U

is commutative. We observe that 4 is onto because ¢ is onto. Therefore

9) dim U = dim (Im &)
= dim V® — dim (ker h) = in(n + 1) — dim (ker k).

We notice that for » = 1 or 2 the inequality (1) reduces to
(10) dim U < 3n(n + 1),

which, in view of (9) is obviously true. If » > 3 then it follows from Lemma
1, Lemma 5 and (8) that dim (kerh) > [3(n + 1 — +/(n + 3))] and the
result follows from (9).

Remark. If n is 1 or 2 then the inequality (10) cannot be improved.
Suppose n = dim V = 1 and ¢ # 0 then it is easily verified that Im ¢ is a
1-dimensional vector space and the equality holds in (10). Next let {e;, e}
bea basis of V. Then {e;-es, €1-€s, €2+ s} is a basis of V®. Let

e VX V-oV®

be a symmetric bilinear function defined by ¢ (z, y) = z-y, 2, ye V. Then it
is easily seen that each element of V® is decomposable. Hence Imp = V®
is a vector space and again the equality holdsin (10).

LEmMMA 6. Assume n > 2 and let p be an odd integer, 1 < p < n. Then
there is a subspace W of 3, (F) such that every non-zero matriz in W has rank at
leastp +1anddim W =%(n —p)(n—p 4+ 1).

Proof. For any integer 7, p < r < n — 1, consider the r-tuples
(11) Bi= (1,270,387 .. ), i=1,---,r—p+ 1

Then using a similar argument as in the proof of Lemma 4 we conclude that
any non-trivial linear combination of the vectors (11) has at least p non-zero
entries. For a fixed r, p < r < n — 1, construct r — p -+ 1 matrices in
3, (F) by inserting 8; and —8;,2 = 1, ---, r — p + 1 along the partial di-
agonals of length 7 as shown in the diagram below:
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) s

[

i

The remaining entries of the matrix (12) are taken to be 0. There are a total
of 3(n — p)(n — p + 1) such matrices and they are linearly independent.
Let W be the subspace of 3, (F) spanned by them. If A eW, A # 0 then
rank (4) > p. Since 4 is skew-symmetric and p is odd we have

rank (4) =2 p + 1.

LemMmA 7. Let V be a vector space over F, dim V = n > 2. Let k be an
integer satisfying 2 < 2k + 2 < n. Then there is a subspace W of A\* V such
thatdim W =3(n — 2k — 1) (n — 2k) andifze W,z = Othenu(z) > k 4+ 1.

This is an immediate consequence of Lemmas 3 and 6.

LevMa 8. Let V be as in Lemma 7. Let K be a subspace of N\* V such that
every non-zero coset in \* V/K contains a non-zero decomposable element. Then
dm K > [(n — v/ (n + 2))].

Proof. We assert that dim K > k,, where ko is the largest integer satisfy-
ing:
(1) 2k + 2 < m,and
G) i(m — 2k)(n — 2k — 1) = ko + 1.
The rest of the argument is analogous to the proof of Lemma 5.

Proof of Theorem 3. If n = 1 then it is trivial that ¢ = 0 and hence
U = {0}. Next consider the diagram

2
VX T—D AT
\IT
@
U
Since ¢ is onto U, T is onto U and hence
(13) dim U = dim (A*V) — dim (ker T) = n(n — 1)/2 — dim (ker T

Thus for n > 2 we use (13) and Lemma 8 to obtain the inequality (2).

Remark. If dim Vis 2 or 3 thendefineoon V X Vbyoe(z,y) = 2 A 9.
Then each element in A’ V is decomposable. Thus Im ¢ is a vector space and
(2) becomes an equality in these cases.
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