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BY
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1. Introduction

The purpose of this paper is to classify all finite fusion-simple groups whose
Sylow 2-subgroups are the direct product of two semi-dihedral groups. We
prove the following:

TuroreM. If G is a finite fusion-simple group (0*(G) = G and
O(G) = Z(G) = 1) whose Sylow 2-subgroups are a direct product of two semi-
dihedral groups, then G possesses a normal subgroup of odd index of the form
Fy X Fywhere F; =2 My, Ls(q:), ¢: = —1 (mod 4), or Us(gs), ¢: = 1 (mod 4),
i=1,2.

In an unpublished paper John Thompson proved the following:

If T is a Sylow 2-subgroup of a nonabelian simple group G, T contains no
normal elementary subgroups of order greater than 4, No(T) = TC(T), and
Z(T) is noncyclic, then T = Ty X T where T; s a dihedral or a semi-dihedral
group, © = 1, 2.

Our theorem, combined with the main results of [5] and [6], shows that
there is no simple group whose Sylow 2-subgroups satisfy the conditions of
Thompson’s result.

Since many of the arguments of this paper are quite similar to corresponding
ones in [6], we have omitted the proofs of some lemmas. It is thus necessary
that the reader is familiar with [6] and the notation and definitions in that
paper.

2. Centralizers of involutions

Henceforth, G' denotes a minimal counter-example to our theorem and S is
a Sylow 2-subgroup of G.

As in Section 3 of [6], we can find semi-dihedral subgroups S; and S, in S
such that S = S; X 8, and all the involutions and elements of order 4 in S;
are conjugate in G. Let (@) = Z(S:) and (y1) = Z(S;). Then the involu-
tions a1, ¥1, and xyy; are mutually nonconjugate in G. It is easy to see that all
involutions and elements of order 4 in S, are conjugate in C = Cq(1). An
analogous statement holds for Ce(y:). Let (21, x2) be a four-group in S;.
Then z, is not conjugate in C to any involution in 7' = T4 X S, where T is
a generalized quaternion group of index 2 in S;. It follows that C has a nor-
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mal subgroup ¥ of index 2 and that T is a Sylow 2-subgroup of K. We now
apply the main result of [6] to E/{(z:)O(E), a fusion-simple group whose Sylow
2-subgroups are the direct product of a dihedral and a semi-dihedral group.
We conclude that C = C/0(C) has a normal subgroup of odd index of the
form C; X C, where C; =~ SL*(2,71), n = —1 (mod 4) or SU(2, n),
r1 = 1 (mod 4) (using the results in Chapter 2 of [1], and Cy =2 My, L3(g2),
or Us(gz). A similar structure is possessed by Ce(y1). We thus obtain

_Lemma 2.1 If C = Co(21) and C = C/O(C), then C has a normal subgroup
Co = Cy1 X C, where Cy and Cy have the following structures:

(i) S C Crand C; = SL*(2, 1) or SUF(2, ¢1).-

(i) S € Crand Co = My and ¢ = 3, Ls(qe), ¢ = —1 (mod 4), or
Us(g2), ¢z = 1 (mod 4). - _

If D = C¢(yp) and D = D/O(D), then D has a normal subgroup
Dy = Dy X D, where Dy and D, have the following structures:

(1) Sl - Dl and Dl >~ My and QG = 3) La(%), Q1 = -1 (mOd 4‘)7 or
Us(g1), ¢n = 1 (mod 4).

(i) S € Dyand D, =~ SL*(2, ¢s) or SUF(2, ¢2).

If B = Cg(x1y1),then B = (Bn C nD)O(B).

Let C; be the preimage in C of C; and define D; similarly, ¢ = 0,1, 2. We
use this notation for the remainder of the paper.
As a consequence of Lemma 2.1, we have

Lemma 2.2, If X and Y are four-groups in_Si and S, respectwely and
M = Ce(X),N = Ce(Y),M = M/O(M),and N = N/O(M), then

(i) M = X X M, where S; C My and M, has a normal subgroup M, of
odd index tsomorphic to Co/O(C) and

(i) N =¥ X Ny where S; C Ny and N, has a normal subgroup N, of odd
index isomorphic to D1/O(D).

In the remainder of the paper M; denotes the preimage in M of M; and N
is defined similarly in N, ¢ = 0, 1.
3. Subgroup structure of @

In this section H always denotes a proper subgroup of G, S n H is a Sylow
2-subgroup of H, and S n H contains an elementary abelian subgroup A of
order 16. Weset X = An S, Y = A n 8, and denote the involutions in
X and Y by x; and y; respectively, ¢ = 1, 2, 3. As above x; ¢ Z(S;) and
Y1 € Z (Sg) .

Lemma 3.1. If H has an tsolated involution, then Cu(z) covers H/O(H)
forz = x or Y1.

Proof. As Lemma 4.1 in 6.
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Lemma 3.2, If H has no isolated tnwolutions and J is a subgroup of H con-
taining O*(H) A such that J n 8y X J n S, is a Sylow 2-subgroup of J, then
J = J/O(J) has a normal subgroup of odd index of the form Ji X J, where
(8in J)~ is a Sylow 2-subgroup of J; and J; = My, Ls(r:), Us(rs), Az, La(rs),
PGL(2, r:), PGL*(2, r;) (described in chapter 2 of [1]), r: odd, or a four-group,
i=1,2.

Proof. As in Lemmas 4.2 and 4.3.

Next, we require results on the transitivity of maximal 4-invariant p-sub-
groups of G, p an odd prime, under conjugation by N¢(A). If L is a simple
SD-group and Z is a four-group in L, then N (Z) does not act transitively on
the set of maximal Z-invariant p-subgroups of L when p divides | C1(Z) |,
however if D is a Sylow 2-subgroup of N.(Z), then Np(D) does act transi-
tively on the set of maximal D-invariant p-subgroups of L for such a prime p.
Ifurthermore, every maximal Z-invariant p-subgroup is a maximal D-invariant
p-subgroup for some Sylow 2-subgroup D in N .(Z) when p divides | C(Z) |.
As a consequence, it is necessary to make the following subdivisions.

Let 7 be the set of all odd primes dividing the order of G. Let p; and p,
be the set of odd primes dividing the orders of Cxyow(X) and Caryo0n(Y)
respectively. Now set

7F1=‘""(P1UP2), e = Pz — p1, W3 = pP1 — P2, T4 = p1 N pPa.

7T =Tn8 X Tn Szisa2-groupin Ng(A) containing A and T; = T'n S;,
1 = 1, 2, then

Tern if T=A, Ter if Ty =X and T,D Y,
T€T3 if TIDX and T2=Y, TET4 lf TIDX and TgD Y.

Luvmma 3.3. Suppose that T e riand p e fori = 1,2,8,0r4. If T C H,
then Nu(T) acts transitively on the maximal T-invariant p-subgroups of H.

Proof. As in Lemma 4.4 of 6.

LevmAa 34. Ifpemiand T e iy 1 < ¢ < 4 and of P, and P, are maximal
T-invariant p-subgroups of G, then one of the following holds:

(i) Py~ Pyin No(T),
(i) PinP, = 1.

Proof. This lemma follows from the preceding and a standard argument.

Levmua 3.5. Supposethatp e miand T e v;, 1 < ¢ < 4. If P;1s a maximal
T-invariant p-subgroup of G such that

Cr;({2,y)) # 1 forsome zeX*nZ(T),yeY*nZ(T), j=1,2
thenP1NP2inN(;(T).
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Proof. Let V; be a maximal T-invariant p-subgroup of G containing a
maximal T-invariant p-subgroup of H = Ce({2, y)) aswellas P;n H,j = 1, 2.
Then Vi D P, n H for some h e Ny(T) and we have Py~ Vi~ Vi~ Vy~ P,
in Ng(T).

Lemma 3.6. Suppose Q = 1 is an A-invariant p-subgroup, p an odd prime,
such that Q covers a maximal X-tnvariant p-subgroup of No/O(N) and a maximal
Y -invariant p-subgroup of Mo/O(M). If P;is a maximal A-tnvariant p-sub-
group of G conlaining Q, ¢ = 1, 2, then Py ~ Pyin Ng(A).

Proof. Assume that the lemma is false and choose P; and P, so that
R = Py n P, has maximal order. If J = O*(N&(R))A, we can assume that

JnSi X JnS,

is a Sylow 2-subgroup of J. Let U; be a maximal 4-invariant p-subgroup of
J containing P;n J,¢ = 1,2. Then U; » U, in N;(A) by our choice of R.
If J has an isolated mvolutlon 2, the structure of Cg(2) gives a contradiction.
Otherwise J = J/O(J) has normal subgroups J; and J, as given in Lemma
3.2. SinceJi = (JinNo) ", J. = (J.n M) ,and Q R < 0(J), we con-
clude that U;n J1 J, = 1,7 = 1,2. Tt follows that U; C (C;(A4))” and thus,
that Uy ~ U, in N;(A), a contradiction.

4. An A-signalizer functor
Our main goal in this section is to show that if for a ¢ A*, we set
0(Ce(a)) = (Co(a) n O(Cq(2)) n O(Co(y)) |z € X*, y e Y¥),

then 6 is an A-signalizer functor on G.
If K is an A-invariant subgroup of odd order in G and

K.y = KnO(Ce(2)) n0(Ca(y)), zeX* yeV¥
then we say that K is XY -generated if
K= (K,,|zeX* yeV¥.

As an immediate consequence of this definition and the structures of involu-
tions we have

Lemma 4.1. If R 7s an XY -generated p-subgroups of G and R & Cq(a) for
some a € A, then R C O(Cq(a)).

LEmMA 4.2. If R # 14s an XY-generated p-subgroup of G, p emi, 1 <7< 4,
and B C Cge(a) where a = x1, 41, or 21 Y1, then for some T € r; we can find a
T-inwariant p-subgroup Ry of Ce(a) such that

R g Rl; (xly y1> - Z(T)7 and CR;(<xl7 yl)) #= 1
for some x e X* n Z(T),y ¢ Y* n Z(T).
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Proof. By the preceding lemma, R C 0(Cq(a)). Set
E = 0(C4(a))0(Ce({xs, 1)) )O(N n My)O(M n Ny).

Let Ri be an A-invariant Sylow p-subgroup of E which contains E. Let Q
be a Ti-invariant Sylow p-subgroup of E where T, is chosen in 7; such that
Z(Ty) 2 (21, y1). Since A C Ty, we have Q° = R, for some e e Cg(A4). Then

T="Tier. and Z(T) 2 (a1, y1).

If p € p1, then Ry n O(M n No) 5 1 and if p € p;, then Ri n O(N n M,) = 1.
It follows that

Cr,({x,y)) # 1 forsome zeZ(T)nX* yeZ(T)nY¥

We find it eonvenient to single out the following two primes. If No/O(N) =
Ls(q1), let p1 be the prime divisor of ¢, if Mo/O(M) == Ls(q,), let p; be the
prime divisor of ¢,.

LemMA 4.3. Letp emiand T e 75, 1 < ¢ < 4 and assume that p divides the
orders of both O(C) and O(D). If R is a T-inwariant p-subgroup such that

Cr({z,y)) # 1 forsome zeX*nZ(T), yeY*nZ(T),

then one of the following holds:
(1) X and Y centralize Sylow p-subgroups of O(D) and O(C) respectively.
(ii) There exist p-local subgroups H and K of G which cover No/O(N) and
Mo/O(M) respectively such that H n K 2 PA where P is a mazimal A-invariant
p-subgroup of G containing R.

Proof. We assume that (i) is false and that X does not centralize a Sylow
p-subgroup of O(D) (the argument being symmetrical). For definiteness set
z=mandy =y1. Set T = TnNoand T, = T n M, so that X C T,
Yng,andT =Ty X Ts.

Let R, be a T-invariant p-subgroup of D containing both Cr({z1, 1)) and
a Sylow p-subgroup of O(D). Then D contains a p-local subgroup which
covers No/O(N) and contains RT. Among all such p-local subgroups in @
choose H such that a T-invariant p-subgroup P, of H containing R, has maxi-
mal order. Without loss we can assume that H = FP,T, T'O(H) C F, and
in I = H/O(H) wehave F = (Fn Ny~ = No(/O(N) and H = FPy X T,.
If Q = O(H) n Py, then X does not centralize @ 2 R, n O(D), and we can
assume Q < H.

We consider first the case that Py is not a maximal 7T-invariant p-subgroup
of G and let P, denote a T-invariant p-subgroup of G properly containing and
normalizing Po. If p 5 p1, we apply Lemma 2.6 of [6] and contradict our
choice of H and Py. Thusp = p1 ¢ p1.

Suppose that p ¢ pp and so T, = Y. Now for some y ¢ Y*, U = PyCr,(y)
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D Py Since [U, y] = [Q, y] is normal in F n N, and is UT-invariant, we must
have [U, y] = 1 by our choice of H. But then we can find a p-local subgroup
in Cg¢(y) containing UT and covering No/O(N), a contradiction. Thus
P € ps, Z(Tz) = <y1>, and T = X X Tb.

Let Ry be a T-invariant p-subgroup of C containing a Sylow p-subgroup of
0(C) as well as Cr({21, ¥1)). In C we can find a p-local subgroup which covers
M,/O(M) and contains B;T. Among all such subgroups in G choose K such
that a T-invariant p-subgroup of K containing Ri, P, has maximal order.
Since Ty = X, we can argue as above to show that P, is a maximal T-invariant
p-subgroup of G.

Since Pon P; = 1 and P, n R 5% 1, we can assume that R € Pyand Py C P,
by Lemma 3.4. The argument above also shows that Cp,(y1) € Po. Since
P € p2, Cp, (1) covers a maximal Y-invariant p-subgroup of M,/O(M). Since
H covers No/O(N), P, covers a maximal X-invariant p-subgroup of No/O(N).
If U and U, are maximal A-invariant p-subgroups of G such that Py € U n Uy,
then U ~ U;in Ng(A) by Lemma 3.6.

Among all p-local subgroups of G containing Py A and covering No/O(N)
choose one with an A-invariant p-subgroup U containing P, of maximal order.
The arguments above show that U is a maximal 4-invariant p-subgroup of G.
Among all p-local subgroups of ¢ containing P;A and covering M,/O(M)
choose one with an A-invariant p-subgroup U; of maximal order containing
P,. Again U; must be a maximal A-invariant p-subgroup of G. Since
Un U, 2 Py, U = U, for some g e No(A). This proves the lemma in the
case that P, is not a maximal T-invariant p-subgroup.

We consider the case that P, is maximal. Since Pon R # 1, we can assume
that R € P,. Let P, and K be as above. We can assume that K = LP, T,
T,0(K) € L, and in K = K/O(K), L = (L n My~ = M,/O(M), and
K = LPy X T:. Since P, n Py # 1, we can assume that P, C P,. We
claim that P, covers a maximal X-invariant p-subgroup of No/O(N) and a
maximal Y-invariant p-subgroup of M,/O(M). This is clear if P, = P,.
If P, C Py, then p € p; and Z(T:) = (x:). However in this case as above
Cp,(11) € P, and Cp,(7) covers a maximal X-invariant p-subgroup of
Ny/O(N). The argument in the preceding two paragraphs completes the
proof of the lemma.

LevmMmA 4.4 Let E be an A-invariant subgroup of odd order and assume that
AE C H n K where H and K are proper subgroups of G covering No/O(N) and
Mo/O(M) respectively. Then E is XY -generated if and only if E S O(H) n
O(K).

Proof. As Lemma 5.2 in [6].

Set K = 6(Cq(a)) for some a ¢ A¥. Assume R # 1 is an XY-generated
p-subgroup of K and for definiteness assume @ e (zy, y1). If X and Y cen-
tralize Sylow p-subgroups of O(D) and O(C) respectively, then R € O(M) n
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O(N) and every-subgroup of R is XY-generated by the preceding lemma. In
the contrary case, every A-invariant subgroup of R is XY -generated by Lem-
mas 4.2-4.4. Thus K satisfies condition (d) of Proposition 2.1 of [5]. Con-
ditions (a)—-(c¢) follow as in Lemmas 5.3-5.5 in [6]. The arguments in
Proposition 5.7 and lemma 6.2 of [6] provide the following result:

LemmA 4.5.  The functor 0 is an A-signalizer functor on G and the group
W = (6(Cq(a)) | a € A%)
18 of odd order. Moreover, every A-tnvariant subgroup of W is XY -generated.

5. Proof of the main theorem

Set I = N¢(W). We shall show that I is a strongly imbedded subgroup of G.
Since G has no proper normal subgroup of odd index, being a minimal counter-
example, we need only show that C¢(2) C I for all involutions zin 1.

LemMA 5.1, The group I contains Ng(A), O(M), O(N), 0(Ce(z)), a € X*,
and 0(Co(y)), y € Y*.

Proof. Asin Lemma 6.1 of [6].

LemmaA 5.2. If R is an A-invariant Sylow p-subgroup of W, then Ng(R)
covers both Mo/O(M) and No/O(N).

Proof. We can assume R # 1. By Lemma 4.5, R is XY-generated. Let
pem,1 <7< 4.1f X and Y centralize Sylow p-subgroups of O(D) and O(C)
respectively, then B C O(C) n O(D), if @ is an A-invariant Sylow p-subgroup
of O(D) containing R, then Cp(Q) covers No/O(N). Similarly, N ¢(R) covers
M,/O(M). Thus we can assume this is not the case.

Since R # 1, we have Cr((z, y)) % 1 for some = ¢ X*, y ¢ Y*. Since
Ng(A) € I, we can find T e 7; such that Z(T) 2 (x, y) and such that R is
T-invariant.

By Lemma 4.3 we can find p-local subgroups H and K of G such that H
covers No/O(N) and K covers Mo/O(M) and such that PA € H n K where
P is a maximal A-invariant p-subgroup of G containing B. We can assume that
H = FPA, XO(H) C F,inH = H/O(H), F = (Fn Ny~ = No/O(N), and
H = (FP) X Y and that K = LPA, YO(K) C L;in K = K/O(K), L =
(L n Mo)~ = M,/O(M), and K = (LP)” X X. We can also assume that
Q=PnO(H) <Handthat V = PnO(K) <{ K. By Lemma 44, R =
QnV P

Assume, by way of contradiction, that N¢(R) does not cover Mo/O(M).
The following results are proved under this assumption.

(a) We have p #= p. (where py ts defined immediately preceding Lemma 4.3.

Progf. If p = py, then U = P n M, covers a maximal Y-invariant p-subgroup
of My = Mo/O(M). Since R is a Sylow p-subgroup of W, N,,(R) n No(Y)
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contains a subgroup Z such that Z =~ 8,. By Lemma 2.3 of [6], My = (Z, U)
and (N, (R))”™ = M,, contrary to our assumption.

(b) We have Y does not centralize V.

Proof. Else Cr,(V) covers My/O(M) and since B 2 V, this is a contradic-
tion.

(¢) Hither X centralizes Q or p = py (defined before Lemma 4.3). In both
cases Ng(R) covers No/O(N).

Proof. If p = pi, we argue as in (a) to see that Ne(R) covers No/O(N).
Suppose that p £ p; and X does not centralize Q. By Lemma 2.6 of [6], we
conclude that J = Ne(Z(J(P))) covers both My/O(M) and No/O(N).
Since R is a Sylow p-subgroup of O(J) by Lemma 4.4, N;(R) covers Mo/O(M)
a contradiction. This proves (¢).

Set

R, =Rn0(Ce(x:)), Vi=VnO(Coe(x:)) andV,=(V;|71=1,2,3).
Since R is XY-generated, B C V,.

(d) We have [R, L n M, C V,.

Proof. Since V;is normalized by L n My, ¢ = 1, 2, 3, this is clear.

(e) We have Vo € RCy(A).

Proof. 1f H = H/O(C), we see that V; S 0(Cg(Z,)),7 = 1,2,3. Thus
we have
= Cy(4) = (Cvy(4)) ,
since 0(Cz) (%) € 0(Ca(A)), x e X*. Tt follows that
Vo & Cv(A)QnV C (Qa V)Cv(A) = RCv(A4).
This proves (e).

We now set O = Ce(z:) and we let € in C? correspond to C; in C,
1=1,2,3,7=0,1, 2.

(f)  We have [C§”, R) & WCv(A)O(C™), [C{?, R] s of odd order, and
(%, R) Q1 [C§?, RIR fori =1,2,3.
Proof. Since Ng(R) covers No/O(N) by (¢), we have that if ¢ e C§”, then
¢ = ¢1¢ 03 where ¢1 € O\ 0 Ny (R), ¢z ¢ Cs” n L n My, and ¢; e 0(C?). We

then have
R° = R C (RCy(A))® C WCy(A4)0(C?).

This is sufficient to prove (f).
We are now in a position to contradict our assumption that N¢(R) does
not cover Mo/O(M). 1f M* = (L n Mo n C?)[CS", RIR, then M" is A-in-
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variant and covers Mo/O(M). If By = M'n L and Uy = Eyn ([C5°, RIR),
then R C U; which is normal and of odd order in E; and E; covers M,/O(M).
Tet Ry be an A-invariant Sylow p-subgroup of U; containing R and set
G1 = Ng,(Ry). Then G also covers Mo/O(M). Next, set

M= (GiaMonCHY[CP,RIR, Ey=M'nG, and U, = Eyn ([C{?,RIR).

Then B € U, which is of odd order and normal in E, and since B, 2 Gy n
Mon C®, E, covers Mo/O(M). Let R, be an A-invariant Sylow p-subgroup
of U, containing R and set Gy = Ng,(R;). We then have G, covers M,/O(M)
and G, € E, C G; C E;. Next, we set

M’ = (Gon Mon CP)[CS, RIR, Es = M°n G, and Us = Ezn ([CP, RIR).

Then B € Us; which is of odd order and normal in E; and since E; 2 G, n
Myn Cf), E; covers Mo/O(M). Let R; bean A-invariant Sylow p-subgroup
of U; containing R and set G; = Ng,(Rs). Then (5 covers Mo/O(M) and
wehave Gs CT E;s C G, C E, € Gy € E; € L. It follows that

G, RIS RinRynRsn V.

Since Ry € WCv(A)0(C™) and R = R; n W, we have R, = RCz,(:),
1 =1,2,3. Since

(€57, Cri(2:)] € C” n ([C5”, RIR)
which is of odd order, we conclude that Cr,(x:) S O(C “y and so
R: = R(RinO(C"™)), i=1,2,3.

Set Ry = RinRynRsn V. Weclaim that Ry C O(H). IfH = H/O(H),
then

R: C 0(Ca(z:))

and so Ry C C(Ca(%)), x ¢ X*. By Lemma 2.4 of [6], we conclude that
Ry = 1, as asserted. Since R C Ry C VnO(H) = VnQ = R, we see
that [Gs, R] € R and since G5 covers Mo/O(M), we have a contradiction. It
follows that N¢(R) covers Mo/O(M) and a symmetrical argument then shows
that Ng(R) covers No/O(N). This proves our lemma.

Lemma 5.3. If W # 1, then I s a strongly imbedded subgroup of G.

Proof. Since I has even order and is a proper subgroup of G if W # 1,
we need only show that Cy(¢) C I for every involution ¢ ¢ I. By the pre-
ceding lemma we conclude that I covers both My/O(M) and No/O(N).
This and Lemma 5.1 imply that C¢(a) < I for all @ ¢ A¥. Since every in-
volution in 8§ is conjugate in I to an involution in A4, our lemma, is proved.

ProposiTION 5.4. We have O(Co(z)) n O(Ce(y)) = 1 for all = ¢ X¥,
yeY¥
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Proof. Clearly, it is sufficient to show that W = 1. Since G has three
conjugacy classes of involutions, G does not possess a strongly imbedded
subgroup. By the preceding lemma, we conclude that W = 1.

The proof of our theorem now follows exactly as in Section 7 of [6].
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