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1. Introduction

In a series of papers, we have studied the Riesz space C(X) of real continu-
ous functions on a compact space X, its dual L(X)—the space of Radon
measures on X—and its bidual M(X). For each Radon measure u, £'(u)
appears as a band (hence direct summand) of L(X), and £7(u) appears as
a band of M(X). A good part of our work has been on the extension to
L(X) and M(X) of the results in integration theory on £'(u) and £°(x) for
fixed u.

Now another important space determined by each u is the space 9 (u) of
w-measurable functions modulo those vanishing u-almost everywhere. The
question arises: what is the relation of M(u) to £'(x) and £°(u), and what
space plays the corresponding role to L(X) and M(X)?. In [2] (cf. also
[3]), Luxemburg and Masterson have given a general answer. For every
archimedean Riesz space E, they define and study the space I'(E) of ‘“un-
bounded” continuous linear functionals on £: each ¢eI'(E) is an order-con-
tinuous linear functional on an order-dense ideal of E, which is maximal in
the sense that ¢ cannot be extended to a larger ideal. For B = £'(u), T'(E)
can be identified with 9t(x). They point out that I'(E) is isomorphic with
Nakano’s space of dilatators on E, but for our purposes, I'(E) is adequate
and simpler.

In the present paper, we study I'(L(X)), which we deonte by (X).
M(X) contains M (X) as a dense ideal, and for each u, 9M(u) is the closure in
M (X) of the band £7°(r) of M(X). Most of the paper is devoted to obtain-
ing the subspace U(X) consisting of the ‘“‘universally measurable” elements,
and to establishing the following two characterizations of these elements:
(1) they are the elements of 9(X) which are limits of nets of C; (2) they are
the elements of 9 (X) for which a general Lusin theorem holds.

Accomplishing this requires a surprising amount of work. One reason is
that the standard order-convergence does not suffice for our purpose. This
is already foreshadowed in the fact that on the Riesz space R* of all functions
on X (which appears as a band in 9(X)), order-convergence does not in-
clude pointwise convergence. The appropriate order convergence is one
defined by Nakano [4]. We can give it a relatively simple form in 9 (X)
because of the existence of the weak order unit 1, and in this form it enables
us to obtain the above theorems.
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2. Preliminaries

Let E be a Riesz space (that is, a vector lattice). A set A in E will be called
bounded if it is contained in some interval [a, b] = {cel |a < ¢ < b}. E will
be called Dedekind complete if the supremum \/ A and the infimum AA exist
for every bounded set A. It is called universally complete if every set of mu-
tually disjoint positive elements has a supremum.

When we speak of a net {a,} in E, we will mean that the set of indices is
directed, and we will denote its order relation by <. A net {a.} is ascending
(resp. descending) if for every pair of indices o, 8, @ < B implies a, < ag
(resp. @, > ag). The notation a, T @ means that {a.} is ascending and
a =\ .0, ; and similarly for a. | a. A net {a.} converges to a if there exists
a net {bo} such that b, | O and |a — a,| < b, for all @. We denote this
convergence by a = lim,a, or a, — a.

A subset A of E will be called closed if for every net {a.} in 4, lim,a, = @
implies @ e A. Given any set A, the smallest closed set containing A will be
called the closure of A and denoted by A.

An ideal I of E is a linear subspace with the property thata e, |b| < | a |
implies b ¢ I. The closure I of an ideal I is related to I in a simple manner:
every a ¢ I, (the positive cone of I) is the supremum of the set of elements
in I, below it. It follows every a e I is the limit of some netinI. IfI = E,
I is said to be dense in E.

If an ideal I in E has a complementary ideal J, that is, E = I & J, then [
will be called a band. If J exists, it is uniquely determined; hence in the
decomposition @ = ar + as, the component a; of a is uniquely determined
by I. Otherwise stated, if I is a band, then we have a canonical projection
of E onto I. We will denote the image of any set A under this projection
by Ar: Ar = {a:|a e A}. The projection preserves suprema (and infima):
¢ = \/A implies ¢; = VA;. In particular, (¢\Vb); = a;\/b;, whence
(a+)1 = (a0, (@7)r = (ar)”, and lalr = |ar].

Given a set 4 in E, we denote by A’ the set of elements disjoint from
A: A" ={beE||b|N|a| = 0for all aeA}. A’ is a closed ideal. If
E=1@®J,thenJ =1'"and I = J'. Thus a band is closed. The Riesz
Theorem states that ¢f E s complete, then, conversely, every closed ideal I
in Eisaband: £ =1 @ I'. Moreover, for a ¢ £,

ar=\Vi{beIl|0<b<al.

If a band I is generated by a single element b (that is, I is the smallest
closed ideal containing b), then in place of the symbols a; and A; we will
often use the symbols a, and A, .

A (real) linear functional ¢ on E will be called bounded if it is bounded on
every bounded set of E. It will be called continuous if for every net {a.} in
E, a = lim,a, implies (@, ¢) = lim, (@, ¢).

Throughout the present paper, X is a fixed compact space, C is the Banach
lattice of (real) continuous functions on X, L is its dual, and M its bidual.
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M isnot only the set of norm-continuous linear functionals on L, it is in fact
the set of continuous linear functionals in the order sense defined above.
Both L and M are complete Riesz spaces, hence a closed ideal in either one
is a band. Moreover, for every decomposition L = I @ I’ of L into bands,
the corresponding decomposition M = (I’')* @ I* is also into bands. We
will call (I')*the band in M dual to I. It is of course the dual of I in the
ordinary Banach space sense.

L is the space of Radon measures on X. Given u € L, if I is the band gener-
ated by u, then as we stated above, for any » e L or A C L, v; and 4; will be
denoted by v, and A,. In particular, I = L,, and we will write it in the
latter form. Moreover, we will denote the band (I*)’ in M dual to I by
M, ; and for any fe M or A C M, fu, and Ay, will be written f, and 4, .
This is because in integration theory, the properties of L, and M, are studied
entirely in terms of u. Specifically, by the Radon-Nikodym theorem, L, can
be identified with £'(u), hence M, can be identified with £°(p).

We always consider X as a subset of L. It is easily shown that the linear
subspace generated by X is an ideal, and that its morm-closure is a band.
This band is the space of atomic Radon measures on X; we will denote it by
L,. L, is the space of diffuse Radon measures on X; we will denote it by
Li. SoL = L, ® Ls. (In our previous papers, we used the notation L,
and I;.) We denote the bands in M dual to L, and Lg by M, and M, re-
spectively. Thus M = M, ® M. L, is isomorphic to I'(X), hence M, ,
as its dual, is isomorphic to I”(X).

For any p e L or A C L, we will write u, and 4, for pz, and 4,,. And for
any feM or A < M, we will write f. and A, for fu, and A 4, .

The function 1 with constant value 1 on X is a strong unit not only for C,
but in fact for M (under the canonical imbedding of C in M); that is, given
FeM,|fl| <lifand onlyif |f| < 1.

3. The space

We assume a knowledge of [2]. In this section, we give those results of
that paper—stated for the Riesz space L—which we will need.

The letter J will always denote a dense ideal of L. L itself is considered
a J. Given two J’s, J1and Jy, J1 n J2is again a J. Of importance to us,
and easily verified, is the property that every J contains all of X.

We denote the space I'(L) [2] by 9. Each element f of 9 is a continuous
linear functional on some J = J;—its domain—which is maximal in the sense
that f cannot be extended to a continuous linear functional on any larger
ideal (indeed, not even to a bounded linear functional). Given f, ¢ e 9N,
Ff+ 9, NMMNeR),fV g,and f A\ g areall defined on J; n J,, then extended,
each to its domain (which is uniquely determined). We then have:

(8.1) 9N 7s a complete and universally complete Riesz space, containing M
as a dense ideal, and with 1 for a weak unit.
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Since 9N is complete, the statement that 1 is a weak unit means in effect
that for every f e M, ,f = V. (f /A nl).

Given f ¢ M and u e L, the notation (f, u) will be used only when u e J; .
Even with this proviso, we have the same decomposition relation that exists
between L and M :

(8.2) For every decomposition L = I @ I’ into bands, we have the decom-
position M = (I')* @ I* into bands. And (I')* = T(I).

We will call (I')* the band in 9% dual to I. Given u e L, we will denote
by 91, the band in 91 dual to L, . 9N, can be identified with the space M (x)
of all u-measurable functions modulo those vanishing on u-null sets. Clearly
M. n M = M,, and the latter is dense in 97, .

Remark. Note that in the present approach, 9(u) is a superspace of
£°(u) not of £'(x). (Since £7°(u) is the dual of £'(x), we never consider it
a subspace of the latter.)

We will denote the bands in 9% dual to L, and Lg by 91, and 91, respectively.
Thus 9 = M, ® M. Again N, n M = M, and the latter is dense in 9N, ;
and similarly for 9 and M, . From the fact that every J in L contains X,
it is not hard to show that 9, can be identified with R* (communicated by
Masterson) .

We recall that for two elements f, g of 9 (say), g, denotes the component
of ¢ in the band generated by f. Given fe N and \ e B, we will often be
concerned with the element 1 5y +. This is because it corresponds in ordi-
nary function theory to the set of points on which the value of the function
is (strictly) greater than A\. And similarly for 1;;_ay-.

A component of 1 is also defined as an element e such that e A(1 — e) = 0.
This definition is consistent with the above meaning of component. A com-
ponent of 1 in either sense is always a component in the other sense.

We will need various properties of the components of 1, and we collect them
here. The letters e and d will consistently denote such components.

Consider f e M. Given A > 0, if we set

e =1yt d =1y, and ¢c=1—¢—d,

then e, d, ¢ are mutually disjoint, and f. > Ne, fa < M, fo = Ac¢. Given
0 <\ <« Yot =L aa—rp+; inparticular, for k > 0,1; = 1;aa. Note
also that for 0 < N\ < «,

1o+ + 1g-a- 2 L

Finally, /\)\531(/_)\1)+ = 0 and \/).531(/'_)‘1)— =1.
(3.3) Let AC 9 be bounded above, and for each \ € R, set

e = /\feA]-(f-—)\l)"
Then \/xex = 1.
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By hypothesis, there exists g € 91 such that f < g for all fe A. Fixing A,
it follows that foreach f e A, (f — A1) > (g — A1) 7, hence 1 ;- = 1ap- ;
this gives us ex > 1, a)-. The last equality preceding the proposition now
gives the desired result.

Now consider a set {e,} of components of 1. If A.e. = 0, then for every
feNMy, Aofe, = 0. It follows that if \/.e. = 1, then for every f e,
V afe, = f-  One consequence of this last is that f., = 0 for all o« implies f = 0.
Another consequence is that if {e.} is a net and e, T 1, then for every f e N
(not just M), limg, fe, = f.

Given a set {f,} in M, if A.fa = 0, it does not follow that A Lf, = O.
However:

(3.4) Suppose Nofa = 0 in M. Then for X > 0, setting e« = 1+,
we have N\ o = 0.

Since Aofa = 0, we have Ao(1/N)fe = 0. But for every o, Nex < fa,
hence e, < (1/N)f,. It follows Aasea = 0.

4. The limsup and liminf of a net in 91

Given a bounded net {f.} in 9, then ¢ = limsup.f. and h = liminf,f, are
defined respectively by ¢ = AaVesafs and b = VaoApsaofs. And if they
coincide, that is, limsup.f. = liminf,f, = f, then f = lim,f. in the sense
defined earlier (§2). Now these definitions require that {f.} be bounded.
Thus they do not include ordinary convergence in R, or pointwise convergence
in R*, or even in £7°(X).

Nakano’s more general indwidual convergence [4] eliminates this deficiency.
In the present section and the following one, we develop his convergence in
the simpler form made possible by the existence of a weak order unit in 91.

Given f ¢ 9 and N\ > 0, we set

P = (FANM) V (=\) = (FV (=A1)) A AL

f® will be called a truncation of f.
The verification of the following is routine.

(41) (a) —f <f® <5

(b) For0 <A< ¥ = ().

() (=N® = f(”

(d) (f\/ g)()\) — f()\) \/ g()\)’ (f/\ g)()\) — f()\)

(e)  (Particular case of (d)) (fH® = T (f >‘“ = UMY =
LF 1

(f) For every band I, (f®); = (f)™.

Since 7 > 0, ((H™ = " A M forall X > 0, hence (f)® 1 fTasA— o.
Similarly, (/)™ 1 f as A = . Combining these with (e) above, we
obtain

(4.2) | f = limaw f®
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Remark. We clearly also have that f = lim,f™.
As one consequence of (4.2), we have:

(4.3) f < gif and only if f < g™ forall N > 0. In particular, f = g
if and only if f& = g™ for all x > 0.

We extend (d) in (4.1) to an arbitrary collection.

(44) Gaven {f.} < I and f € M, the following are equivalent:
(1) f= Vafa-
2) ™ = Vo foralix > 0.

And stmilarly with \/ replaced by /\.

Proof. That (1) implies (2) is elementary. Assume (2) holds. Then
in particular, for each o, f¥ < f® for all A > 0, whence by (4.3), f« < f.
Thus {f.} is bounded above, and therefore ¢ = \/.f, exists. Then for every
2> 0,0% = VP = s, hence by (4.3) again, f = ¢, and we are through.

(4.5) Let {f\} be a bounded net in M indexed by the non-negative real numbers
and satisfying:

N < «k implies fy, = fV.

Then there exists f € I such that fn = f for all X > 0.
Proof. Set f = limsupy>« /o . Then for each Ay,
F* = (limsuprow 1) ™ = (Aazo Vexr ) ™ = Aazo(Ver f0)
= Moz Ve (fo) &

(routine computation). TFor all A > Xy, the element (f,) ®” in the last ex-
pression is the fixed element f,,, so the entire expression is f, , and we are
through.

We turn to limsup and liminf. Given a net {f,} in 9 and f e 9, then by
f = limsup.f. , we will mean

Y = limsup, f$ forall X > 0,
and by f = liminf, f, , we will mean

f = lminf, f® forall A > 0.

1t is easily verified that for a bounded net in 91, these definitions are equiva-
lent to the ordinary ones. Ior this reason, we are using the same notation.
We emphasize that now, however, the statements f = limsup.f., and f =
liminf, f» no longer imply that {f.} is bounded.

The extended definitions coincide on 9, (=R*) with the pointwise limsup
and liminf. We state this formally.

(4.6) Given a net {f,} in M, and f e M, , the following are equivalent:

(D) f = limsupg fa .
(2) {f, ) = limsupy, {fo, ) Jforall z e X.
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limsup, f. and liminf, f,, when they exist, have most of the properties
that they have under the ordinary definition. For example, if f = limsupg fe,
then —f = liminf,(—f,) and f\V ¢ = limsup.(f. \V ¢) for all g e M. The
following theorems give additional examples.

(4.7) Iff = limsup, fo, then f* = limsup, f& and f~ = liminf, f5 . Con-
versely, if limsupe f™ and liminf, f~ exist, then so does limsup. fa .

Proof. The first statement follows from the immediately preceding re-
marks. Conversely, suppose ¢ = limsup ff and » = liminf,f, . Then by
straightforward computation, g A\ & = 0; hence, setting f = ¢ — h, we have
g = f7, h = f~. It can then be verified that f® = limsup, f& for all A > 0,
whence f = limsup, fo -

(4.8) Let{fo}, {ga}, {hal be nets in I satisfying
Ja ._<_. fa < ha fOT all o.

If limsup. g. ond limsup, h, exist, then so does limsup, f., and

limsup, g. < limsup, f, < limsup, A, .

Proof. Let g = limsup,¢. and h = limsup. h.. For each N > 0, set
f = limsup, f°. We show {fa} satisfies the conditions of (4.5).

The concluding inequalities in the theorem hold for the ordinary definition,
so for each A > 0, limsups ¢g&° < limsup. f < limsup. 2. But by defi-
nition, the first term here is ¢® and the last 2%; combining this with (a) of

(4.1), we obtain
(i) _g—- S g()\) Sf)\ S h()\) S h+,

which gives us that {fi} is bounded. Now suppose 0 < A < k. Then
(fO® = (limsupe f&)® = limsupa(fe”)® = limsup.f&® = fi.

(Here the second equality is by straightforward computation, and the third
by (4.1).) We can thus apply (4.5) to obtain an f e 91, which is the desired
limsup, fe -

Remark. An immediate corollary of course is that if 0 < f, < h, for all «

and limsup, h. exists, then so does limsup, f» . It can be verified that under
these assumption, also liminf, f, exists.

(4.9) Given nets {go}, {ha} tn My, of imsup, g« and imsup, he. exist, then
limsup.(ga + ha) exists and satisfies the inequality

limsupo.(ge + he) < limsupe go + limsup, Ae .
Proof. It is easily verified that for each A > 0,
(1) (9o + ha)® < gL + 1 for all a.
Now let ¢ = limsup, g, and h = limsup, h« ; and for each A > 0, set
£ = limsupa(ge + ha) ®.
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We show {fi} satisfies the conditions of (4.5). By (i),
0SASg®+rV <g+h,
and thus {fi} is bounded. And given 0 < \ < «,
(f® = (limsupa(ga + k) @)™ = limsupa((ga + ha)®)®
= limsupa(ge 4 he) ™ = fr -

Applying (4.5), there exists f ¢ 9 such that fA = f® for all A\ > 0, whence
f = limsupa(ga + ko). That f < g + h follows from (7) and (4.2).

(4.10) If ¢ = limsup. ga, then for every h € 9N,

g + h = limsup.(gs + h).
Proof. Consider A > 0; we have to show that

(g + h)® = limsupa(ga + b)*.
Now

(ga + B = ((ga+h) AN) V (=21) = ((ga A (NL—h) + k) \/ (—=21)
= ((ga A (\1 = h)) \V/ (=N — h) + h.
Thus

limsupa(ga + A)®
= limsupa((ga A (ML —h)) V (=N — h) + h
(g N (AL —h))V (=N — h) + h (cf. the remarks preceding (4.7))
((g+h) AN) V (=)
(g +m®.

(4.11)  Corollary. Given a net {9} in M and ¢ eI, the following are
equivalent:

(1) limsupege = g.

(2) limsupa(ga - g) = 0.

5. Convergence in 91t

Given a net {f,} in 9 and f e I, then by f = lim, f,, or fo — f, we will
mean f® = lim, & for all A > 0. Equivalently, f = lim, f, if and only if
f = limsup. fe = liminf,f,. If the net {f,} is bounded, our definition re-
duces to the ordinary one, hence we again use the same notation.

In 9, , the definition coincides with pointwise convergence. We state
this formally.

(5.1) Given a net {fo} in M, and f e M, , the following are equivalent:
(1) f = lim,f.
(2) (f, ) = lim.(fo, @) for all x € X.

When it exists, lim, f. has all the properties it has under the ordinary defi-
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nition. Thus (ef. the remarks preceding (4.7) ; also (4.9)):
(5.2) Iff = lim,f,and g = limg ga, then
IV g =lim.fa V ga), I g =limu(fa A ga),

f+ 9 =lim,(fo + ga).
Whence:

(5.3) Iff = limg fao, then f* = lima [t and f~ = lim, 7 .
Also:

(5.4) Guwen a net {f,} tn N and f e M, the following are equivalent:
(1) lima fa = f’

(2) lim.(fa —f) = 0.

(3) limg|fo — f| = 0.

For sequences, the extended definition reduces to the ordinary one:

(5.5) If f = limsup, f» tn M, then {f.} ts bounded above, hence the limsup
holds in the ordinary sense.

(5.6) CoroLLARY. [ff = lim, f, in O, then {f.} is bounded and the limit
holds in the ordinary sense.

(5.5) and (5.6) follow essentially from Theorem 1.1 in [4] and the fact
that 9 is universally complete.
We next establish two properties equivalent to convergence. First:

(5.7) Gwen {go) < M, the following are equivalent:
(1) ANage =0.

(2) Nalga A1) =0.

(3) For every N > 0, Naly,ap+ = 0.

Proof. Assume (1) holds. That (2) then holds is trivial. To show (3)
holds, consider A > 0. (1) implies that AN\ ,(1/N)ge = 0. Since

1g, a0+ < (1/N)ga,
we have (3).

Conversely, assume (1) does not hold. Then there exists g € 91 such that
0<g<g.foralla. Itfollows0 < g A1l< g,/ 1foralla(lisa weak
order unit for 91), and thus (2) fails to hold. To show (3) fails to hold,
choose X > 0 such that (¢ — A1)t 52 0. Then 1+ # 0 (again, because
1 is a weak order unit). But 1,_ap+ < 1, ap+ for all o, and so (3) fails to
hold.

(5.8) Given a net {f.} in M, the following are equivalent:
(1) lm,f, = 0.

(2) limg (fa A1) = 0.

(8) Forevery N > 0, lim, 1, 2+ = 0.
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Remark. 1t is obvious that for each of these statements to hold, it is
sufficient that it hold for limsup.

Proof. Assume (1) holds. Then of course (2) holds. To show (3)
holds, consider A > 0. Choose any « > A. Then lim, f, /A «1 = 0 and for
each «,

1,0+ = laaan+ .

Thus for simplicity, we can assume {f.} is bounded. For each «, set
Viesafa = ga. Then Asga = 0, hence by (3.4), N\os1¢p 2+ = 0. Since
for every o, 1;,ap+ < 1+, we have (3).

Assume (2) holds. That (1) holds follows from (5.7) and the identity
Visalfa A1) = go A 1. Finally assume (3) holds. It is enough to show
that this implies (3) in (5.7). But given X > 0 and «, we have by straight-
forward computation that

1yt = Vesa Liggant -

(5.9) CoroLLARY. Giwen a net {fo} in M, and feIM, the following are
equivalent:

(1) limafa = f

(2) limg|fa—f| A1 =0.

(3) lima(fa =N =0.

Given a net {f,} in 9, and f e N, we will say lim, fo = f uniformly if there
exists ap such that fo — feM for all @ > a and limay ool fo — f|| = O.

(5.10) (Egorov) Given a net {fo} in M, and feM, if lim, fo = f, then
there exists a net {e,} of componenis of 1 satisfying:

(a) e, T 1.

(b) For each v, lima(fa)e, = fo, uniformly.

Proof. Consider first the case: {f,} € M, and lim,f, = 0. Let {e,} be
the set of all components of 1 for which (b) holds, and order this set by <.
It is easily verified that for e,, , e,, in this set, e,, \/ e,, is also in the set;
so we have an ascending net. We show \/, e, = 1, which will complete the
proof for this first case.

LEemMma 1. Gwen peLy, 8§ > 0, and X > 0, there is a decomposition of 1,
1 =4d+ e and an o such that
<d$ M) <,

(fa)e <\ fOT alla > o

By (5.8), lim, 1(f‘,—)‘1)+ = 0. For each a, set de = \/ﬁ>a 1(]5_).1)+ . Then
de | 0, hence (do, u) | 0, hence there exists o’ such that (d,, u) < & for
alla > o. Setd = day, ¢ =1—d. Thenfora > o, 1y a+ < da < d,
whence (f,). < Al
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LemmA 2. Given p e L and § > 0, there is a decomposition of 1,1 = d + e,
such that {d, u)y < dand e is an e, .

For each n = 1,2, ---, take (3")6 and 1/n for the § and X of Lemma 1,
and denote the resulting decomposition of 1 by 1 = d, + e., and the cor-
responding o' by a,. Then ¢ = A, e, has the property of e, in (b) (e
plays the role of a in the definition of uniform convergence). This gives
Lemma 2.

We can now show \/,e, = 1. Suppose not; then there exists a component
do of 1 disjoint from all the e,’s. Choose u € L, such that (dy, p) = (L, u) = 1.
Let 1 = d + e be the decomposition of 1 given by Lemma 2 for § = 3. Then
e is an e, not disjoint from do . We thus have a contradiction.

The general case follows from the above case immediately.

6. The space of semicontinuous elements

We will call fe an Ls.c. element (resp. u.s.c. element) if f = V 4
(resp. f = A A) for some subset A of C. We have immediately that if
f,garels.c., thensoaref + g,f\V ¢, f A g, and \f for A > 0. Also if {f,}
are all Ls.c., and f = \/,f., then fis Ls.c.. Denoting by & the linear sub-
space generated by the ls.c. elements, it follows from the definition and the
above properties that & is a linear sublattice of 9% and that every element of
is the difference of two positive l.s.c. clements. The proofs are the same as
those in [1]. Also, by the same argument as was used in [1], we can establish:

(6.1) The projection mapping M — M, maps & isomorphically onto S, .

The subspace S of M is clearly contained in &. It might be expected that
S n M = 8§, but in general this is not so. We give a partial description of
Sn Min (6.4). Tirst,

(6.2) For each f €S, there exists {f,} < S such that f = limy, fa .

Proof. f = g — h, g and h positive l.s.c. elements. Ioreachn =1,2, ---
setgn = g A\ nl,h, = h A\ nl. Theng, T gand h, T h, hence g, — h, — f.
Since ¢, and h, are clearly l.s.c. elements of M, g, — h, € S, so we are through.

(6.3) CoroLLARY. &S n M C Bo (the space of Borel elements of M [1]).

Proof. Consider fe Sn M. By (6.2), there exists {f,} S with
f = lim, f,. From feM, there exists A > 0 such that —A\1 < f < AL
But then f = lim, . Since we still have {f?°} < S and the convergence
takes place in M, we have the desired conclusion.

Note that for every X > 0, f® €S n M, hence, by the corollary, lies in Bo.
In M, every element is bounded above by an element of C—in fact, by a
multiple of 1. This of course is no longer true in 9. We give an example to
show it is not even true if we replace C by &. Specifically we produce an
element of M which has no l.s.e. element above it; since cvery element of
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S has an Ls.c. element above it (it is the difference of two positive L.s.c. ele-
ments), this will supply our example.

Let X be the closed interval 0 < z < 1 of R, and {r,} the set of rationals
in X. Define feN, by f(r,) = n (n = 1,2, --+), f() = 0 otherwise.
Suppose there exists an l.s.c. element ¢ > f. We obtain by induction a
nest of closed intervals Ky D K, D --- such that g(x) > k for all z ¢ Ki
(k=1,2,---). Sinceg(r,) > 1and g isls.c., we can find a closed interval
K, such that g(z) > 1 for all x ¢ Ky. Suppose K;, -+, Kz, have been
chosen. The interior of K;_; contains an r, for which ¢(r,) > k, hence we
can find a closed subinterval K; of K;_; such that g(a) > k for all z € K .
We thus have thenest {Ki}. Now N, K; is non-empty. But for x ¢ Ny Ky,
g(z) > k for all k, giving us a contradiction.

7. The star elements

For the moment, let us consider M. 8 is isomorphic to its projection S, in
M, , but the imbedding of S in M differs considerably from the imbedding of
S, in M,. One important difference is the following. If (A4, B) is a pair of
subsets of S, forming a Dedekind cut in S,, then there is a unique f e M,
such that f = \V A = A B. It follows easily that M, can be identified with
the Dedeking completion of S, (hence of S). In contradistinction to this,
if (4, B) is a Dedekind cut in S, then in general \/ A % /\ B, that is, there
are many elements of M between A and B.

Of course, for some Dedekind cuts (A4, B), there ¢s a uniquef = \/ 4 = A B.
We call the set of all such f’s the Dedekind closure of S in M, and denote it by
U. U isisomorphic to the space of functions on X which are integrable with
respect to every Radon measure; consequently we call its elements the “uni-
versally integrable” elements of M.

We now want to define and study the corresponding space in 91, the space
of “universally measurable” elements. We recall the procedure followed in
M. It turned out to be convenient to assign to every f ¢ M a Dedekind cut
(4, B) in 8: the one determined by f, ; that is,

A = {heS|ha < fi}, B = {(heS|ha 2 fd.

We then denoted \/ 4 by f« and A B by f*. Finally, U was defined as the
set (fe M |f = fu = f1.

The first step in carrying out the above for 9 is to extend the definition of
the star elements to all f e 9, or to as many of them as possible. But in
9t—and indeed in 9,—as we saw at the end of the last §, not every element
has an element of $ above it (and one below it). Thus the above procedure
cannot be paralleled in 917 without modification. The natural modification,
however, is at hand: the use of truncations.

Given f € 91 and ¢ € 91, we write g = fy if ¢® = (f®)« for all A > 0, and
we write ¢ = f*if ¢ = (F¥)* for all A > 0. Since the truncations are in
M, the star elements used in the definitions are those defined above. More-
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over, if f e M, these definitions reduce to the above, hence we use the same
notation.

Given f € 9, if f« and f* exist, then they have essentially all the properties
proved in [1] for M, the proof in each case simply reducing to the correspond-
ing one for M. Thus in the remainder of this section, we will usually only
state these properties, and concern ourselves principally with questions of
existence.

We note first that by the very definition:

(7.1)  If fx exists, then for all A\ > 0, (f&)® = (f™)«; and if f* exists,
then for all X > 0, (f5)® = (™)™

Some elementary properties:

(7.2) (a) Forfes, f = f«=f"

(b) If f* exists, then —f* = (—f)«, and «f* = («f)* for all k > 0. And
stmilarly for fx .

(¢) If fx and f* exist, then fy < f*.

(d) f* exists if and only if (f.)™ exists, and they are equal. And similarly
Jor fx .

(e) If f* exists, then (f*)a = fa ; and similarly for f« .

() If f* and ¢* exist, then f < g implies * < ¢*; and similarly for fs
and g4 .

Remark. Because of (d), it will often simplify matters, in studying f«
and f* for some f, to assume that f &9, .

(7.3) Given f eI, the following are equivalent:
(1) f* exists.
(2) (fF)* and (f7) « exist.

And if such is the case, then

=N T = s
Similarly for fx .

Proof. We first show the following:
(7.4) LemMa. If f* exists, then for g €8,
V=0V FAg=0AD"
And similarly for f« .
We show the second of these. Given A > 0,
FADY = THY A g™ = ™) A g
From (6.3), g™ € U, hence by (8.13) of [1],
UV*AG® = PN = (GADP
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Turning to the proof of the theorem, if f* exists, then by the lemma (and

(7.2)), (" = (MM *and ") = () «. Conversely, assume (f©)* and
(f7) % exist. We show first that

) UOH*A @) =0.

It is enough to show ((fNH* A (f)x) A1 = 0.

(YA AL=(ADAW)AD =FADAG A
by the lemma. Now in M, g A h = 0 implies ¢* A hs = 0, so we have (i).

Setting ¢ = ()™ — (f)«, it follows from (i) that ¢* = (f©)* and
g~ = (f)x. Straightforward computation then gives that ¢® = (f®)*
for all X > 0, whence g = f*.

Before continuing with existence problems, we give an example to show that
f¥ need not exist. By symmetry, also fx need not exist. Let X be the interval
0 < z £ 1in R, u the Lebesgue measure, and {X,} disjoint subsets of outer
u-measure 1 whose union is X. Let e, be the element of 9, having value 1
on each point of X, and 0 elsewhere (n = 1,2, ---). Finally setf = Y_, nen
= \V/nne, €M, . We show f* does not exist.

Suppose f* exists. We show f* > nl, for all n (1, the component of 1 in
N,), which will contradict the fact that 910 is archimedean. We first establish

(1) x> 1, for all n.

Inom,,if0 < g < hand (g, p) = (h, u), theng = h. Now e, < 1, hence
ek < 1 hence (e}), < 1,, while ((ex),, w) = {eh, u) = 1 (since this last is
precisely the p-outer measure of X,). Thus (ex), = 1,. But el > (el),,
so we have (1).

Returning to f*, for every n, f > ne, , hence f* > (ne,)™ = ney > nl,.

In contrast to this example, we show:

(7.5) Guwen f e My, f+ exists. Specifically, the set

{geSIga < fd}

1s bounded above and its supremum s fx .
Proof. For simplicity, we assume f = f, (that is, f € 9M,)
Levma. For each p e L., there exists v e L satisfying:

(a) 0L » <
(b) L, =1L,.
(€)  SUph us.e. , ha<s By v) < 0.

We can assume | u]| = 1. Foreachm = 1,2, .- f A mleM,, hence
(f /\ ml)4 exists; choose a u.s.c. element A, > 0 such that (hn). < f A ml and
@) Py ) 2 ((f A mL)se, ) — L.

Foreachn = 1,2, -+ ,seten = Anlp,—an-. S0

(i) (Bm)e, < me, for all n, m.
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We show e, T 1. Since the e,’s are in U, and U is isomorphic to U,, it is
enough to show (e,), T 1.. Now

(€n)a = Am Q=)o = Am (1a)(Gm)anta)~ -

It follows (cf. the statement preceding (3.3)) that (e.)s T 1..

Setdi = e1,d, = €, — €21 (n = 2,3, --+). Then the d,’s are mutually
disjoint components of 1 with ), d, = 1. For each n, let I, be the band
generated by d., H, its dual band in L, and p, = un,. Setwv, = (1/n 2")ua

(n=1,2 ---),andv = D .v.. Thatwsatisfies (a) and (b) of the lemma is
clear; it remains to show it satisfies (c).

(iii) (b, v) < 1 for all m.
In effect,
(homy ) = (hmy 2onvn)
= 2 (hm, )
= 20 (hmdan, (1/n 2")usm)
< 2wndn, (1/n 2")um)
= 2 3)dn, un)
DI

1.

IA

[

Here the first inequality follows from (ii) by taking the projection of both
sides of (ii) on the band generated by d, ; and the second inequality from
oy pm) = ol < llull = 1.

To establish (c), we show that for every u.s.c. element 4 such that hs < f,
(h, v) < 2. h, being u.s.c., is bounded above by ml for some m; hence
he < f A ml. Alsowe can assume h > hn (else replace A by b \/ hn). Then

(h, V> = (hm, V) + <h - hm,l/>
< Ay v) + b — ey )
= (hm’ 1'> + <h: N) - <hm7 ”)
< <hm, 1/> + <(f/\ ml)*; ”) - (hm, /‘>
< (hmyv) + 1 @)
<2 (i ).

This completes the proof of the lemma; we proceed to prove the theorem.
Every element of 8 is a supremum of u.s.c. elements, hence we can confine

ourselves to theset A = {hus.c.|h > 0, h, < f}. We will produce a dense

ideal J in L such that supses (h, w) < o for every weJy. Since the h’s
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in 4 form an ascending net, it will follow that the function ¢ on J defined by
¢ (w) = supses (h, w) extends to a continuous linear functional on all of J,
hence is an element g of 9 with ¢ = \/ 4.

For each pe Ly, choose »(u) by the Lemma. The ideal generated by
{v(u) | ueLy} is then the desired dense ideal J, and we thus have our g € M
described above.

It remains to show ¢ = fix. As is easily verified, given N > 0, the sets

{h AN |hed} and {husc.|h >0, hy < f A M}

are identical. Hence for each A > 0,

gAN = (Vaeah) AN = Viea (W ANL) = (f A N)x.
Since this holds for allA > 0, ¢ = f«.

Remark. We will later need the fact that fx is a supremum of u.s.c. ele-
ments in M.

(7.6) Given g < f,if f* exists then g™ exists, and if g exists, then fx exists.

Proof. By (7.3) it is enough to show that (¢)* and (57)« exist; and by
(7.5) we need only show the former. Now ¢ < f*, and by (7.3) again,
(f)* exists. Thus for simplicity we can assume 0 < g < f.

Setgn =g Anl,fu=fAnl (n=12 ---). Theng, < f., hence

gn < fu =" Anl <5

It follows h = \,.gs exists. We show that for every k = 1, 2, «--,
h Akl = gi , whence it will follow that & = g*. Given k,

hAKL = (Vagi) ANkl = Va(gn AFL) = Vaxi (g0 A KL).
But for every n > k, gu A\ k1 = gr , so we are through.

Remark. The above immediately gives the stronger conclusion: if f* exists
and g, < f., then g* exists.
The verification of the following corollary is straightforward.

(7.7) Let {f.} be a bounded set in 9. If in the following chain, (\/afa)®

exists, then so do all the star elements in the preceding terms, and the inequalities
hold.

(Nafa)* £ Nafa £ Vafa < (Vafa)™
Similarly for the following chain if (/\afe)x exists.

(/\afa)* S /\a (fa)* S \/a (fa)* S (\/afa)*-
For countable sets, the last inequality in the first chain and the first in the
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second chain become equalities:

(7.8) For a countable bounded set {f,} in M,
(a') ’éf (\/nfn)* exists, then (\/nfn)* = \/nf: ;
(b) if (Nnfn)x exists, then (Nafa)sx = An (fa)s.

This follows, via (4.3) and (4.4), from the corresponding theorem for
M [1; (7.7)]. We remark, that (7.8) gives us in particular: if f*, ¢ exist
then ¥V ¢* = (fV ¢)% and if fu, g« exist then fx A gs = (F A ¢)%.

By only slight modifications of the proof of (7.6), we obtain:

(7.9) If f* and g* exist, then so does (f + ¢)*, and
F+p*<r+g4"

Semelarly, of f« and g exist, then so does (f + ¢)x, and
fe T 95 < (f+g)*.

If feS, then f = fi« = f*. It follows from (7.6) that f* exists for every
f € 9 bounded above by an element of 8, and f exists for every f e 9 bounded
below by an element of §. Indeed these hold if f, is bounded above, or respec-
tively bounded below, by an element of 8,. We can actually make a sharper
statement. It is intuitive and what we would have expected, but the proof
is not short.

(7.10) If feM 7s dominated by an element of S—more generally, if f, is
dominated by an element of $,—then

= AtheS|h > f}.

Proof. For simplicity we assume f e 9, . Also, as in the proof of (7.6), we
can assume f > 0. But now, given k€8, h, > fif and only if 4 > f. Finally,
every element of 8 is an infimum of 1.s.c. elements, so the theorem reduces to
the following: We have f ¢ (91,)+, the set {{| [ an Ls.c. element, I > f} is non-
empty, and we have to show the infimum of this set is f*. In the remainder of
the proof we denote l.s.c. elements by the letter . Also we fix, once and for
all, a particular [, > f.

Set g = A{l|l > f}. Consider N > 0; we have to show that ¢ A A\l =
(F A M)*. That ¢ A N > (f A AL)* follows from the fact that I > f
implies I A N > f /A M. To show equality, it is enough to show that for
every L > f AN, g AN L L

Consider I > f A\ M, and we can assume that I < I, A\ AN. Choose a
sequence of positive real numbers N\, T N, and for each =, set

e, = 1(1_)‘”1)+ y dn =1 — €n, ln = ld,, + (l0)¢”°

As the notation indicates, [, is l.s.c. However this requires proof. By its
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very definition, e, is L.s.c., hence also (ly).,. That [, is 1s.c. then follows from
(1) ln = (l A M 1) V (lo)e,.-

We show this. Note first that I, = lo, V' (lh)e,. Since ly, < I A a1,
this gives us first that I, < (1 A M1) V ()., . It gives us secondly that
for the opposite inequality, we need only show

INMLLS L,V (b,
This follows from (I A Ml)a, < lg, and I A\ M), < (b)e, -

(ii) I 2 f.
We of course have ()., > fe, ; we show lag, > fa, .
FAM), < la, < Mda.

Writing this fa, A M. < M. dn., the strict inequality N > N, , gives us
fd,, S )\n dn . But then

Joo = faa A Mdn = FAMDL < FAM), <l,.
It follows from (ii) that ¢ < Aal., hence
g AN < An (a AN

We show Ax (In A N) = [, which will complete the proof. Set e = Anén.
Then ¢ \/ (Vmdn) = 1, hence it is enough to show that for every m,

NAa (o ANz, = la, and Aa (o AMN), = 1I,.

/\n (ln A)\l)dm = /\n [(ln)dm /\>\ dm] = (/\n (ln)dm) /\)\ dm = ldm /\)\ dm = ld,,,, .
Here the second last equality follows from the fact that for n < m,
(In)a,, = la, and for n > m, (l.)a,, = la,, -

That I, = Ne is clear; we show(l, A\ Al), = Ne for every n. Given
n, (o AN = (lu)e A Ne = (lo)e /\ Ne, 50 it is enough to show (lo). > Ne.
For every n, (lo)e = ((lo)s,)e = (Anen)e = Nne;since X = sup, A, , it follows
that (). > Ne.

f* may exist for an f e 9 which is not dominated by an Ls.c. element. The
f €91, obtained in the example at the end of §6 has the property f = f* (since
for every A > 0,f A M e U).

8. Convergence to the star elements

In §9 we define the universally measurable elements and establish the
characterizations described in the Introduction. The present section is de-
voted to various preparatory propositions, culminating in (8.9).

(8.1) Giwvenf = \/ufnin M, if each f, 1s an infimum of 1.s.c. elements, then
80 1s f.
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Proof. Since this of course holds for finite suprema, we can assume
fi < fo £ ---. feM, hence there are ls.c. elements above it; hence
f' = Af{hlsec.|h > f} exists. We show that for each pe L, and ¢ > 0,
I, w < {f, wy + 2¢. It will follow f* = f.

Consider such a u and e. It is enough to show there exists an l.s.c. element
h > fsuch that (b, u) < {f, u) + 2e.

(i) There exists an ascending sequence by < hy < --- of Ls.c. elements
such that for each n, hy > fu and (hn, u) < (fa, ) + €.

Each f, is actually the limit of a descending net of l.s.c. elements, hence
there exists an Ls.c. element g, > f, such that

s ) < oy ) + /2%
Seth, = Vigsi (n =1,2, ---). We show by induction that

(h”7”'> < <f"7 I-‘) + (e — 6/2”),

which will give us (i). The inequality of course holds forn = 1. Assume it
holds for n — 1. Then

Choy ) = (gn V Bn, )
= (gn, 1) + (a1 — g2)", 1)
< oy ) + (ot — for, W
= {gn, &) + (b1, ) — {fa1, W)
S (fasm) + €/2" + (e = ¢/277)
= (fa, w) + (e — ¢/2").

(The first inequality follows from g, > fo > fa-1.)
Now f < Al for some N, so we can assume h, < Al for all n; hence there exists
h such that b, T h. It follows we can find n such that

<h7ﬂ> < <hﬂ, N>+€S<fn,ll>+2ég <f)”>+2e'

(8.2) If fedMy 7s an infimum of 1s.c. elements, then 1; is an infimum of
Ls.c. components of 1.

Proof. By hypothesis, f = Aaha the h’s 1s.c. elements. Then for each
n =1 2 -+, nf = Aanhe hence nf N\ 1 = Aq (mha A 1). Since
1, = V. (f A 1), it follows from (8.1) that 1, is an infimum of Ls.c. ele-
ments. The proof thus reduces to:

(8.3) If a component e of 1 is an infimum of l.s.c. elements, then it is an
infimum of l.s.c. components of 1.

We can assume there is a descending net {h.} of l.s.c. elements such that
he | e. Foreach a, set ex = Lp—amp+. We show first that e, > eforalla.
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In effect, he > e, s0
(he — BN 2 (e — G = e

That e, > e now follows from the simple property that g > e for some X > 0
implies 1, > e.
It follows Agex > e. On the other hand, ¢, < 2h,, hence Aot <

2 Naha = 2¢. Since /\, €, is itself a component of 1, we must have N\ e. = e.
This completes the proof of (8.3), and with it, (8.2).

Remark 1. The infimum of two Ls.c. elements is an ls.c. element, and
similarly for two l.s.c. components of 1. Thus an infimum of Ls.c. elements
(resp. components of 1) is the limit of a descending net of 1.s.c. elements (resp.
components of 1).

Remark 2. Given a countable collection of nets on a space, we can, by a
standard procedure in the theory of nets, replace them by subnets all having
the same index system. We will be using this below.

(84) Given fed, , if for every N > 0, f A\ M is an infimum of 1.s.c. elements,
then there exists a net {ga} of 1.s.c. elements in M, such that f = limgf, .

Proof. Foreachn = 1,2, .-+ set
fa=fAM —fAWm—=11=FAnl— (n—1)1)F

and d, = 1;,. Then d, = 1y_u-ny* and therefore d, | 0 (cf. the para-
graph preceding (3.3)). Also, by the definition of the f,’s, D _.f» = f, hence
lim,f. = 0

Fix n. By hypothesis, f /A nl is an infimum of Ls.c. elements, hence f, is
also, hence in turn, by (8.2), d, is an infimum of 1.s.c. components of 1. Thus
f» is the limit of a descending net of l.s.c. elements, and d, of a descending net
of L.s.c. components of 1.

Now this holds for each n. Applying Remark 2 above, we can thus assume
there exists a countable collection {hss|8} (n = 1,2, ---) of descending nets
of 1.s.c. elements, and one {d.s|B8} (n = 1,2, --) of l.s.c. components of 1,
all with the same index system {8}, such that for each =,

fn = hm,g hn,g and dn = lll'nﬂ dn,g .
Even more,

(1) the above nets can be chosen so that dnpy1,s < dn,g and hng < dug for all
n and B.

Consider the nets obtained in the preceding paragraph. For each n and 8
set d, 8 = Aj=1djs. The dn 8’s satisfy the first inequality in (i). More-
over, they have all the properties of the d,’s. Thus we can assume the d, g’s
themselves already satisfy the inequality. Now for each n and B, set ho, 8=
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hng N\ dug. The h g’s then satisfy the second inequality in (i). It is also
easily verified that they have all the properties of the h,4’s. (That B 82 Jn
follows from d,.g > d, > fa, this last since 0 < f, < 1.) So again we can
assume the h,4’s already satisfy the inequality. We thus have (i).

We can now obtain the net {g.} of the theorem. Endow the product set
{ (n, B)} with the product order. Foreach (n, 8), set gmsy = 2 1=1hijs. We
show {gw g} is the desired net {ga}.

For this, it is enough to show that for every &k = 1,2, --- |

JA KL = lime g (gas A k1).
Since { (n, B) | n > k} is terminal in { (n, 8)}, we need only show that
(ii) F A\ kL = lime,g) >k (G /A kL),

In the following computation, we relegate the justification for some of the
steps to the Appendix, §11.

Consider gwm.g with n > k.

Gy A KL = (2i-1hig) A KL < (2terhip) A KL+ (i1 hig) A kL.
Since h;,g < 1for all 7, 8, the first of these two terms is simply Z’,Ll hig. We
consider the second.

(w1 hig) A KL < (X j=rr1dip) N Kl

(Vieer1(j — k)djp) N K1 (11.1)
Vi-er1((J — k)dig) N\ k1)

< Viaen (kdjs)

=k Vij-t1d;s

It

= kdii18 -
Thus s A k1 < D 5e1his + kdeyrs. This gives the second inequality in
(iii) FAKL < gup A KL S (2 5ahip + kdeias) A kL
The first follows from
Japy = 2 j=hig = 2 jfs =f A nl> f A KL

We show finally that the (descending) net on the right of (iii) converges to
f A k1 with 8. This will give us (ii).

Yimg (XSt by + kdiprg) = D51 fi + kdi
FAN KL + kdipa
(f A\ k1) (2kdiy1) (11.3)
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whence,

limg (D51 b + Fdrrrg) A k1

(FNEL)V (2kdrsa)) N KL
(f A\ kL) (kdiya)
= f A kl.

For the last equality, see the opening remark in the proof of (11.1).
We have actually proved more than the statement of (8.4). Denote each
dn in the proof by dw.s = da ; we thus have a net {d,}, and clearly da | O.

(8.5) Together with the net {gs} obtained in (8.4), there exists a net {e.} of
u.s.c. components of 1 such that:

1) e T 1.

(2) For each oy, there exists n () with the property that

(9a)ewy < n(a0)l  for all a.

Proof. For each a, set ¢, = 1 — d,. We need only prove (2). a =
(n0, Bo); we claim ng is the desired n (). In effect, given «,

Gnd Vemosgy = 2231 (738 )ocno s,

2 5=1(ds)ewmoss)

= 2 0=1(dis A\ €mosnr)
< 2272 (dig A €mopor)
< ml.

IA

We turn specifically to the star elements. From (8.4) and (8.5), we have:

(8.6) Given fedMy , if f* exists, then there exist @ net {ga} of Ls.c. elements
m My, and a net {e.} of u.s.c. components of 1, such that:

1) f * = lim, Ja -

2) e T 1.

() For each o, there exists n (o) with the property that (ga)es,
for all a.

< n(ao)l

For fedM, , fx always exists and is the limit of an ascending net of positive
u.s.c. elements of M ((7.5) and the remark following it). Moreover, if f*
exists, this net can be chosen in a well-defined relation to the nets in (8.6):

(8.7) Given f ey, f* exists, then there exist nets {ga} and {es} as described
i (8.6), and a net {q.} of u.s.c. elements (with the same index system) such that:

1) 05 ¢ <X ga forall o

2) fsx = limage.

Proof. Asin the proof of (8.4), foreachn = 1,2, -, set
=7 Anl =N (-1
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and

Fdn= fe A 11 — fsx N\ (n — 1)L

Let {hug}, {dug} (n = 1,2, ---) be the nets obtained in that proof, this
time for the (f*).’s.

Now every (f« ) is the limit of an ascending net of positive u.s.c. elements.
By remark 2 preceding (8.4), we can assume that these nets all have the index
system {B8}. Thus for each n, we have {p,s}, positive u.s.c. elements, such
that pag T (fe)n. Since (Fa)a < (Fn, Prp < hup for all n and all 8, 8.

Setting gmg = Doi=1hnp qup = Doi=1Pnp (and ewpy = 1 — dap), it
is easily verified that (8.7) is satisfied.

Remark. From (1) above, it follows of course that (3) in (8.6) holds for
the g.’s also.

We now extend (8.6) to elements of 9 not necessarily in 91, .

(8.8) Given feM, if f* exists, then there exist a net {l,} of Ls.c. elements
in M, and a net {e.} of u.s.c. components of 1, such that:

1) = limal,.

(2) e T 1.

(8) For each ay, there exists a natural number n(ay) with the property that

(la)eao < ’n(ao)l fOT all c.

Proof. By (7.3), (ff)* and (of course) (f )4 exist, and f* = (F7)* —
(f )x. Applying (8.6) and the remarks preceding (8.7) (we do not use
(8.7) itself)—and, as usual, Remark 2 preceding (8.4)—we have nets {g.},
{qa}, {€a}, consisting respectively of positive Ls.c. elements, positive u.s.c.
elements, and u.s.c. components of 1, such that {g,} and {e.} satisfy (8.6)
for ") *andge T (f )x. Foreacha,setly = go — gu. Then {l,} is a net
of L.s.c. elements converging to f* (5.2). That (3) holds for {l.} follows from
the fact that it holds for {g.} and that I, < g. for all a.

Finally:

(8.9) Given fe M. if f* and fx exist, then there exist a net {1} of l.s.c. ele-
ments, a net {u.} of u.s.c. elements, and a nel {e.} of u.s.c. components of 1,
all in M, such that:

A1) Ua £ 1y for all o.

@) f* = limal.

B) fx = limate.

4) e T 1.

(5) For each ay, there exists a natural number n(ao) with the property that
for all a,

—n(a)l < ta < la < n(a0)l.
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Proof. Choose nets {g"}, {¢’}, (e} to satisfy (8.7) for f*, and nets

(g2, {qff)}, (e} to satisfy it for /~, and as always we arrange for all of these

to have the same index system. For each e, set [, = gfxl) - in), Ug = qil) -

g and e, = e A e, Tt is easily verified that these have the desired

properties.
9. The universally measurable elements

We denote by U the set {fe M |f = fx = f*}, and call its elements wuni-
versally measurable. 'We will show they are precisely the elements of 9T which
are limits of nets of C, and for which our general Lusin theorem (9.9) holds.

First for their elementary properties.

(9.1)  An element of 9 lies in W if and only if & lies in U for every X > 0.

This follows from the very definition.
(9.2) U 7s a o-closed linear sublattice of M.
Proof. Given f, g e U, then by (7.9) and (7.2),

C+) <+ =Ff+g=rftau+g«< F+ "

We thus have equality, giving f + geU. Thvt feU implies «f e U for all
k € R is straightforward.
Again, given f, g e U, then by (7.7) and the remark following (7.8),

UV = Vg =fVeg=rhVauFVss FV~

Thus we have equality, giving f V ¢geU. Finally, the o-closedness of U
follows from (9.1) and the o-closedness of U in M [1; (8.2)].
Since for every fe M, f = lim, /™, (9.1) and (9.2) give:

(9.3) U s the o-closure in M of U, and moreover, every element of W is the
limit of a sequence in U.

The next three propositions are easily verified.

(9.4) A 4s zsomorphic with its projection W, in N, .

(9.5) Given a sequence {f,} in U, and f e U, then f = lim, f, if and only if
fo = limu (fa)a -

(9.6) U ¢s Dedekind-closed in M.

We now proceed to our two characterizations of .
(9.7) An element of I lies in W of and only if it <s the limit of a net of C.

Proof. Supposef = fx = f*. Let {l,} and {ua} be the nets given by (8.9).
As is well known, for each «, we can choose f, e C such that u, < fo < la.
Then f = lim,f., and we thus have the necessity. The sufficiency follows
from (9.1) and the corresponding theorem for M [1; (9.6)].

For the Lusin theorem, we need the following lemma. We emphasize
that in both (9.8) and (9.9), the relation \/, e, = 1isreferring to M (thus, for
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example, the set of ‘“‘characteristic functions” of finite subsets of X does not
have 1 for its supremum ).

(9.8) Let {e,} be a set of componenis of 1 such that \/ye, = 1. Given a net
{fa} in I, and f € I, if for each v, limg (fa)e, = fe, , then lima fo = f.

Proof. Assume first that {f,} is bounded, and set ¢ = limsup.f.. Since
projection is (order) continuous, it follows that for each w, g., =
limsups (fo)e, = fe,. This gives in turn that g = f (cf. the discussion follow-
ing (3.3)). Thus f = limsup.f.. A similar argument gives us that f =
liminf, f. , so we have f = lim, fa .

We turn to the general case. We have to show that for each N > 0,
lim,f& = f». Given X > 0, and applying (f) in (4.1), we have that for
each v, (f&))e, = (fu)o for all @, and (f¥)., = fo'. Thus, from the hy-
pothesis, lim, (£ e, = (fo")ey. It follows from the first part of the proof
that lime fY = f, and we are through.

(9.9) Given f €M, let A be the set of components e of 1 each satisfying
(a) eus.c.
(b) feeC..

Then f e W if and only if VA = 1.

Proof. We show the condition of the theorem is equivalent to that of (9.7).

(1) For each pair ey, e of components of Lin A, e1 \/ ez also liesin A. Thus
the elements of A form an ascending net.

This can be shown by means of the Tietze Extension Theorem and the fact
that for a u.s.c. component e of 1, if K denotes the support of e in X, then C,
can be identified with C (K).

Now assume feU, and let {l,} and {u.} be the nets given by (8.9). For
cach a, set go = lo — .. Then lim,g. = 0, hence by (5.10), there exists a
net {e,} of components of 1, with e, T 1, such that for each v, lima (ga)e, = 0
uniformly. Moreover, since the g.’s are (non-negative) ls.c. elements, the
argument used in the proof of (5.10) gives us that the e,’s can be chosen to
be u.s.c.

For each «, choose f,eC such that v, < fo < lo. Then for each «,
limg (fa)e, = fe, uniformly. Now it is easily verified that C., is norm-com-
plete. It follows f., e Co,. We thus have the necessity.

Now assume \VA = 1. TFrom (i), we write A as a net {e,}, with e, T 1.
From (b), for each v, we can choose g, € C such that (gy)e, = f.,. We show
lim, g, = f. But this is immediate from (9.8) using the fact that for each
v, (94 )e, = fe, for all ¥’ > y. We thus have the sufficiency.

10. Some final remarks

In the present section, the only convergence dealt with will be that of se-
quences, hence by Nakano’s theorem (5.5), the convergence will be the ordi-
nary one.



644 SAMUAL KAPLAN

A subset A of a Riesz space is o-closed if for every sequence {a,} in A,
lim, a, = aimpliesa e A. Given any set A, the smallest o-closed set contain-
ing A will be called the o-closure of A. If A is a linear sublattice, then so is its
o-closure.

We denote by ®a (respectively Bo), the o-closure of C (respectively §) in
9N, and call its elements the Baire (respectively Borel) elements. By (9.2),
we have ®a C ®o C U. The set of elements of ®a which are each the limit
of a sequence in C will be denoted by ®a' and called the first Baire class. The
set of elements which are each the limit of a sequence in ®a’ will be denoted
by ®a’ and called the second Baire class.

Now let p be a fixed (positive) element of L. The theorems (9.7) and
(9.9) are extensions to 9 of standard theorems on 9M,. We give the latter
here in the form they assume in the present context. Note that all of 91T,
plays the role in 97, that U plays in 9.

(10.1) Every element of M, s the limit of a sequence in C,, .
(10.2) (Lusin) Giwven fe9IMN,, there exists a sequence {e,} of u.s.c. com-
ponents of 1 such that:

@) (ends T L.
(b) fo,eCe (n=1,2 ---).

(b) is equivalent to (0') fen, € (Cw)ep,. Finally, a third standard
theorem on 91, is that every u-measurable function is equal p-almost every-
where to some function of Baire class 2. In our context this takes the form:

(10.3) Given feM,, f = h, for some h e ®Rd’.

Otherwise stated, the projection 91 — 9%, maps ®a’ onto 9N, .

11. Appendix

In this section, as stated there, we establish some of the equalities and
inequalities occurring in the proof of (8.4).

(11.1) If the components ey, - - -, e, of 1 salisfy e, > es > -+ 2> ey, then
26 = Viie.

Setdi=¢;i—euq1 G=1,---,n—1),dn=¢,. Foreachi e;= 2 r=1d;,
hence

Diie; = Ddradiad; = Diaidi = Viaidi < Vieides.

For the opposite inequality, it is enough to show that for each 4,
Doiie: > dges,. But this is clear.

(11.2) For a component e of 1, and \, k > 0,
e N k1l < ke.
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This is clear.
In the following, f and d4; are those of (8.4)
113) fARL+Ekdepn = FAKL)NV (2kdrya)

As we noted at the beginning of the proof of (8.4), dy1 = 1gxp+, S0
Edea < f. So, setting e = 1 — dy1, we have

FARL=fN kdia\Vke) = (fAkda) V FARe) = (kdia) V (A ke).
It follows that

AR+ kden = (kdip) V (f A ke) + kdia

2k di1) V (f N\ ke + b drya)

2k dia) V' (f N\ ke + f N\ k diya)
(2kdra) V (f N\ K1).
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