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1. Introduction
Let L be a finite-dimensional Lie algebra over a field F of characteristic 0.

Let 9r (L) denote the category of L-modules. The Lie algebra cohomology
functor H (L, is a functor from (L) to the category of graded F-spaces,
which we view as the sequence of injectively derived4unctors of the functor
H (L, ), where, for every L-module V, the F-space H (L, V) is the L-an-
nihilated part VL of V.

Replacing (L) with the category](L) of locally finite L-modules (sums
of finite-dimensional L-modules), we obtain an analogous functor H(L, ).
There is an evident natural transformation from H](L, ) to H(L, ), and
we have H(L, V) VL H (L, V) for every locally finite L-module V.

Let A denote the radical of L. If V is an L-module then the action of L
on V, together with the adioint action of L on A, determines an L-module
structure on H (A, V), which factors through L/A. Taking the L-fixed part
H (A, V) for each V, we obtain a new functor H (A, from (L) to the
category of graded F-spaces. The natural restriction map sends H (L, V)
into H (A, V). Composing this with the natural map H(L, V) --, H (L, V)
for every locally finite L-module V, we obtain a natural transformation from
H(L, ) to the functor H(A, ), restricted to r](L). Our first main re-
sult is that this is actually a natural equivalence.

Let (L) denote the universal enveloping algebra of L. Endow (L)
with the topology for which the two-sided ideals of finite codimension consti-
tute a fundamental system of neighborhoods of 0. Then the continuous dual
(L) of (L) is the Hopf algebra of representative functions on (L).
In the case where F is algebraically closed, (L) is the algebra of polynomial
functions of a connected pro-affine algebraic group P, whose elements are the
F-algebra homomorphisms 5 (L) --, F. The category (L) is identifiable
with the category of C (L)-comodules, and hence with the category of rational
P-modules. Thus, the functor H(L, is naturally equivalent to the ra-
tional cohomology functor H (P, ).
Using the known structure theory of (L), we single out a naturally de-

fined homomorphic image G of P, the basic group of L. This is an ordinary
connected affine algebraic group whose Lie algebra contains L as an alge-
braically dense sub Lie algebra. In a sense made precise in 3, the rational
cohomology of G is the same as that of P, and hence is given by the functor
H(L, ) or H(A, )’. Finally, we shall obtain a structural characteriza-
tion of the basic group within the class of affine algebraic groups.
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For terminology and basic results concerning affine algebraic groups, as
used here, we refer the reader to [5]. Thanks are due to M. E. Sweedler for
his help in discussing the present material and, especially, for his clarification
of the definition of the basic group.

2. Lie algebra cohomology
The equivalence of the functors Hf (L, and H (A, )" is obtained by com-

bining an effaceability result for cohomology of solvable Lie algebras (due to
J. L. Koszul and G. Leger) with a result on extendibility of representations
(due to H. Zassenhaus). In a somewhat strengthened form, these results are
exhibited, with proofs, in [2]. The following lemma is the formulation we
need here.

LEMMA 2.1. Let L be a finite-dimensional Lie algebra over a field of character-
istic O, and let A denote the radical of L. Let V be a locally finite L-module.
Then there exists a locally finite L.module W containing V such that the canonical
map H" (A, V) --, H (A, W) is the O-map for every n > O.

Proof. Let S be any finite-dimensional L-submodule of V. By [2, Lemma
3], there is a finite-dimensional A-module S’ containing S as an A-submodule
such that the canonical map

H’(A, S) H"(A, S’)
is the 0-map for every n > 0, and the representation of the commutator ideal
[L, A] on S’ is nilpotent. Now [2, Lemma 4] applies to give the existence of a
finite-dimensional L-module So containing S as an A-submodule and S as an
L-submodule. Clearly, the canonical map Hn(A, S) H"(A, S) is the
0-map for every n > 0.
Now let us form the direct sum, 2 say, of the family of S’s, one for each

finite-dimensional L-submodule S of V. This contains the direct sum, 2
say, of the family of the L-submodules S of V as an L-submodule. The in-
jections S -, V yield a surjective L-module homomorphism 2 --* V in the
natural way. Let Q denote the kernel of this homomorphism, and put W
O/Q. The injections So --. 2. followed by the canonical map 2 -, W are
injective L-module homomorphisms SO -* W. The restrictions of these to the
L-submodules S fit together to yield an in]ective L-module homomorphism
V -. W, by means of which we identify V with its image in W.

Since L is finite-dimensional and V is locally finite, every element of
H" (A, V) is the natural image of an element of H" (A, S), where S is some
finite-dimensional L-submodule of V. Hence it is clear that W satisfies the
requirements of Lemma 2.1.

THEOREM 2.2. Let L be a finite-dimensional Lie algebra over a field F of
characteristic O, and let A be the radical of L. Let V be a locally finite L-module.
Then the natural homomorphism

Hf(L, V) --, H (L, V),



172 e. HOCHSCHILD

followed by the restriction homomorphism

S(i, V)-- H(A, V) L,
is an isomorphism

Hf (L, V) -- H (A, V) L,
whence there is a natural equivalence from the functor Hf (L,
to 9(L) of the functor H (A, . to the restriction

Proof. By Lemma 2.1, there is a locally finite L-module W containing V
such that the canonical map H (A, V) --. H" (A, W) is the 0-map for every
n > 0. By enlarging W, if necessary, we arrange that, furthermore, W is in-
jective in the category 9(L). Now we show by induction on n that the
natural homomorphism

U? (i V)-, (A V)

is an isomorphism. This is evident for n 0.
Next, consider the case n 1. We have the exact cohomology sequence

Wa (W/V)a H (A, V) --. H (A, W).

By the choice of W, the lastmap here is the 0-map. All the maps are L-module
homomorphisms, and L acts throughout via L/A. Since the modules are
locally finite, they are therefore semisimple as L-modules. It follows that the
induced sequence for the L-annihilated parts is still exact. On the other hand,
we have a similar exact sequence of locally finite cohomology, as follows

W -- (W/V) --. H (L, V) -- Hf (L, W)

where the last term on the right is (0), because W is an injective of the cate-
gory9(L). Now these sequences fit together to make up the following com-
mutative and exact diagram, in which the vertical map is the natural one:

H(A, V)

--, (w/v) (o)

H(L, V)

From this, we see directly that the vertical map is an isomorphism, so that the
case n 1 is established.
Now suppose that n > 1 and that the result has been proved in the lower

cases. Proceeding as above, we obtain the following commutative and exact
diagram

H"-1 (A, W) -. H’- (A, W/V) L -- H, (A, V) -. H" (A, W)
T T T

H;-’ (L, W) -- H;-’ (L, W/V) -. H; (L, V) -. H; (L, W).

Since W is an injective of the category 9(L), the first and last term of the
bottom row are both equal to (0). By the choice of W, the last map of the
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top row is the 0-map. By inductive hypothesis, the two vertical maps on the
left are isomorphisms. Hence the diagram shows that the map

H(L, V) -- H’ (A, V) L

is also an isomorphism.. This completes the proof of Theorem 2.2.

3. The basic group
We continue the discussion of the end of the introduction, using the same

notation. It will be convenient to view C (L) as a two-sided (L)-module.
The left and right transforms u.f and f.u of an element f of (L) by an ele-
ment u of (L) are given by (u.f) (x) f(xu) and if.u) (x) f(ux). In
each of these two ways, L acts on (L) by F-algebra derivations. Let A
again stand for the radical of L. The A-annihilated part (L) a of the left
(L)-module (L) is a sub Hopf algebra of C (L), which may be identified
with C(L/A). Since A is an ideal of L, the left annihilated part (L)
actually coincides with the right annihilated part. Another important sub
Hopf algebra of (L) is the algebra C of the trigonometric functions (in the
terminology of [3] and [4]). The elements of C are the representative func-
tions associated with the semisimple representations of L that are trivial on
the commutator ideal [L, L]. Quite generally, an element f of (L) is as-
sociated with a semisimple representation of L if and only if the left (L)-
module (L) .f is semisimple, or if and only if the right (L)-module f. (L)
is semisimple. We say then that f is a semisimple element of C (L). The well-
known fact that, over a field of characteristic 0, the tensor product of two finite-
dimensional semisimple L-modules is still semisimple implies that the semi-
simple elements of (L) constitute a subalgebra, and hence even a sub Hopf
algebra of C (L). In fact, this sub Hopf algebra is C (C (L)) C (R) (L),
as can be seen from Jacobson’s structure theorem on fully reducible Lie alge-
bras of linear endomorphisms.
The following result is contained in [3] and [4]. There is a right (L)-

stable subalgebra B of (L) satisfying the following conditions:

(1) B is finitely generated as an F-algebra.
(2) C (L) C (R) B, and hence B separates the elements of L.
(3) The set B8 of all semisimple elements of B coincides with (L).
Since B is finitely generated as an F-algebra, so is the smallest sub Hopf

algebra of (L) that contains B. We denote this sub Hopf algebra by R.
It is known that B is unique up to left translations by elements of P, whence R
is uniquely determined. The following characterization of R, for which I am
indebted to M. E. Sweedler, is independent of the unicity result concerning B.

Let V be any non-zero right (L)-submodule of B, and let W be a (L)-
submodule of V that is of minimal positive dimension. Then W is simple as a
right (L)-module, whence W c Be (L). Thus, in the category of
right t (L -modules, B is an essential extension of (L), in the sense that
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every non-zero submodule of B has a non-zero intersection with (L)A. On
the other hand, it is clear from property (2) of B that B is a direct right t (L)-
module summand of (L). Hence B is an injective of the category of locally
finite right (L -modules. It is well known from the theory of Eckmann-
Schopf [1] that the isomorphism class of an injective essential extension of a
module is uniquely determined by that module. Hence the representative
functions on (L) that are associated with the right (L)-module B do not
depend on the particular choice of B. These functions are precisely the ele-
ments of the smallest two-sidedly (L)-stable subspace of C (L) that con-
tains B, i.e., they are the elements of (L).B. If denotes the antipode of
3C (L), we have R ( (L B) ( (L) B Thus, R is the unique sallest
sub Hopf algebra of C(L) containing an injective extension of the right "tt(L)-
module C (L)A (every injective extension contains an injective essential ex-
tension).

In order to simplify our statements, we shall assume from now on that F is
algebraically closed. We define the basic group associated with L as the affine
algebraic group of all algebra homomorphisms R --. F. As is well known,

(L) is an integral domain, so that the corresponding pro-affine algebraic
group P is connected. The basic group is the restriction image of P. It is a
connected affine algebraic group in the usual sense. Let G denote the basic
group, and let T denote the kernel of the restriction morphism P -. G.

Consider the action of T by left translations on E (L). Clearly, the sub
Hopf algebra C is stable under the action of P. Viewed as functions on P,
the elements of C are linear combinations of rational characters (group
homomorphisms of P into the multiplicative group of F). In particular, it
follows that the commutator group [P, T] acts trivially on C. Since it acts
trivially also on R, and so on B, and since C(L) C (R) B, it must be trivial.
Thus, T is contained in the center of P. Moreover, since T is determined by
its action on C, we see that T is a redvctive algebraic subgroup of P, in the
sense that every rational representation of T is semisimple.
Now let V be any locally finite L-module. We may view V as a rational

P-module. Since T is a reductive central algebraic subgroup of P, we have
the canonical direct P-module decomposition V Vr - Vr, where Vr is the
T-fixed part of V and V is its unique T-module complement in V. The ra-
tional P-module Vr may be regarded as a rational G-module in the natural way.
Using such a decomposition also for a rationally injective resolution of the
rational P-module V, we find by familiar reasoning that the inflation map
H (G, Vr) --, H (P, V) is an isomorphism (note that H (P, V) H (P, V) r

H (P, Vr), and that the T-fixed part of any rationally injective rational P-
module is rationally injective as a G-module). On the other hand, if M is
any rational G-module then we may regard M as a rational P-module, with
M Mr. In summary, we have the following result.

THEOREM 3.1. Let L be a finite-dimensional Lie algebra over an algebraically
closed field F of characteristic O. Let G be the basic group associated with L, and
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let T be the kernel of the restriction map P -- G. On the category 9j(L), we
have natural isomorphiams HI (L, V) H (G, V) establishing a natural equiva-
lence between the functors HI(L, and H(G, ). Viewing rational G-
modules as locally finite L-modules thereby gives a natural equivalence between the
functor H (G, ) and the appropriate restriction of the functor H](L, ).

Finally, we give a characterization of the basic group within the class of
affine algebraic groups. The Lie algebra of our basic group G will be denoted
2 (G). If K is any affine algebraic group and M is a sub Lie algebra of the Lie
algebra . (K) ofK then M is called an algebraic sub Lie algebra if it is the Lie
algebra of an algebraic subgroup of K, and M is said to be algebraically dense
in (K) if the smallest algebraic, sub Lie algebra of 2 (K) that contains M
coincides with

THEOREM 3.2. Let F, L, G be as in Theorem 3.1. Then L is algebraically
dense in 2 (G), and the intersection of the center of G with the radical of G is
unipotent. If K is any connected ane algebraic group over F satisfying these
conditions then there is a surjective morphism of ane algebraic groups G -- Kwhose differential coincides with the identity map on L.

Proof. It is clear from the definition of G that L may be identified with a
sub Lie algebra of (G) and, as such, is algebraically dense in 2 (G). Let Z
denote the center of G, and let Z8 be the algebraic subgroup consisting of all
the semisimple elements of Z. Then Z is the direct product of Z8 and an
algebraic vector group V Z n G, where G denotes the unipotent radical
(not necessarily the full radical) of G. As before, let P be the pro-affine
algebraic group of all F-algebra homomorphisms (L) --. F, and let T denote
the kernel of the restriction morphism P --. G. Let Z be the inverse image of
Z, in P, so that the restriction morphism maps Z onto Z, and T c Z. Since
Z, and T are reductive, so is Z,. Moreover, Z is contained in the center of
P, because [Z, P] acts trivially on both B and C.
For any Hopf algebra E, let us denote the group of all algebra homo-

morphisms E --. F by 9 (E). Let U be the kernel of the restriction morphism
Z -. 9 (C (L)), where A is the radical of L. Then U is a reductive central
subgroup of P so that the U-fixed (right and left) part (L’) v is a direct
(right and left) (L)-module summand of (L). In particular, (L) v is
therefore an injective of the category of locally finite right or left (L)-
modules. Since it contains (L) a, we have from our above characterization
of R that R c (L) v. This implies that the restriction morphism
Z, -- 9 (C (L)) is injective.
The Lie algebra of 9(C (L)4) is isomorphic with the semisimple Lie algebra

L/A, as follows from the fact that a semisimple Lie algebra is universally
algebraic. Hence the radical of G is contained in the kernel of the restriction
morphism G --. 9((L)) Since this restriction morphism is injective on
Z,, we conclude that the intersection of Z, with the radical of G is trivial.
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Therefore, the intersection of Z with the radical of G is precisely the vector
group V, and thus is unipotent.
Now let K be any connected affine algebraic group over F such that L is

algebraically dense in . (K) and the intersection of the center of K with the
radical of K is unipotent. Let Q denote the Hopf algebra of polynomial
functions of K. Since L (K), we may view Q as a left %t (L)-module in
the natural fashion. This yields a Hopf algebra homomorphism p Q -- (L)
such that, for q in Q and u in (L), we have p (q) (u) c (u. q), where c is the
co-unit (augmentation) of C (L). The assumption that L is algebraically
dense in (K) implies that p is injective. Hence we may identify Q with a
sub Hopf algebra of (L), so that K becomes identified with the restriction
image P of P. From the assumption that L is algebraically dense in 2 (K)
it follows also that the radical of K is the smallest algebraic subgroup of K
whose Lie algebra contains the radical A of L. Let K’ denote the factor
group ofK modulo its radical. Then we haveK 9 (Q).

Let S be the group of all semisimple elements of the center of K. Our
unipotency condition on K implies that the intersection of S with the radical
of K is trivial. Hence the restriction to S of the canonical map K -* K is
injective. Let be any element of T. Then is a semisimple element of the
center of P, whence its restriction image t belongs to S. The canonical image
of t in K is the restriction image t, which is the neutral element because
Q 3c (L) R. Hence we conclude that t is the neutral element of K.
Thus we have shown that the kernel T of the restriction morphism P --. 9 (R)
is contained in the kernel of the restriction morphism P --. 9 (Q), so that it
coincides with the kernel of the restriction morphism P -- 9 (QR). Since F
is of characteristic 0, this implies that QR R, i.e., that Q R. Thus, K is
the image of the restriction morphism 9(R) --* 9(Q), and Theorem 3.2 is
proved.
The structure of the basic group G can be analysed further. In particular,

it can be seen from the construction of the subalgebra B of 5C (L), as carried
out in [3] and [4], that the dimension of the unipotent radical of G is equal to the
dimension of the radical of L. On the other hand, the dimension of G is equal
to that of L (so that L 2 (G) ) if and only if the radical of L is nilpotent.
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