SPACES OF H-STRUCTURES

BY
George McCarty ${ }^{1}$

Here we initiate the study of the homotopy groups in all dimenions of the space of H -structures on a given CW-complex Y. Calculations are offered for some of these groups in case Y is a finite Postnikov system or a sphere, and a representation of these groups is introduced into

$$
\operatorname{Hom}\left(\pi_{*} Y \otimes \pi_{*} Y \rightarrow \pi_{*} Y\right)
$$

which in several senses generalizes the Samelson product.
In §1, we examine three sets of functions which are candidates for "the" set of H -structures on a complex Y, each of which may be endowed with the c -o or the k topology; it is shown that these six function spaces are all weakly homotopy equivalent. Four of these spaces are nonempty even when Y is not an H-space, yet weak equivalences persist among these four in that case.

In §2, a lemma is established which describes the set of components of the mapping space $\{X \wedge Y \rightarrow Z\}$ for certain complexes X, Y, Z. This lemma is immediately used to count the number of H-structures on Y when $\pi_{i} Y=0$ unless $1 \leq n \leq i \leq 2 n$ for some interger n : there is an isomorphism

$$
\Phi: \pi_{0}\{Y \wedge Y \rightarrow Y\} \cong \operatorname{Hom}\left(\pi_{n} Y \otimes \pi_{n} Y \rightarrow \pi_{2 n} Y\right)
$$

In §3 we argue that this function Φ may be considered as a homomorphism

$$
\Phi: \pi_{q}\{Y \wedge Y \rightarrow Y\} \rightarrow \operatorname{Hom}\left(\pi_{r} Y \otimes \pi_{s} Y \rightarrow \pi_{q+r+\varepsilon} Y\right)
$$

defined for all spaces Y and all integers q, r and s, which includes Samelson products. A generalization of James' separation element is defined in order to express Φ in terms of the space of functions

$$
\{Y \times Y \xrightarrow{f} Y: f \mid Y \vee Y=1 \vee 1\}
$$

in this setting Φ includes a homotopy precursor of the binary homology operarions over H_{n}-spaces of W . Browder. Calculations are made for Φ when Y is a sphere; if Y has a finite Postnikov system then $\{Y \wedge Y \rightarrow Y\}$ is shown also to have bounded homotopy and its highest-dimensional nontrivial homotopy group is given. We conclude with a comment on the additional structure carried by Φ.

It is a pleasure to acknowledge my fruitful conversations with R. F. Brown and H. B. Haslam during the course of this work.

1. The function spaces

We shall work in the category of pointed CW-complexes, with the obvious exceptions of functions spaces. All direct products and function spaces will

[^0]be given the "convenient" k topology of R. Brown and Steenrod; this means that, in forming $X \times Y$ or $\{X \rightarrow Y\}\left(=Y^{X}\right)$, the direct product or compactopen topology is enlarged to its compactly-generated topology [4], [11]. This change of topology does not change the class of compact subsets of a space, and therefore does not affect its weak homotopy type. However, with the compactly-generated topology,
$$
X \times Y \quad \text { and } \quad X \wedge Y=X \times Y / X \vee Y
$$
are always CW-complexes, without further assumptions about X or Y. Similarly, the k topology on a function space always renders the evaluation map continuous, and the exponential law always holds; for our purposes this is merely an expository convenience, since our constructions can be shown to result in continuous functions even if the c-o topology is used.

Let Y be a space (i.e., CW-complex) ; the "folding" map $\varphi: Y \vee Y \rightarrow Y$ is defined by $\varphi(x, *)=x=\varphi(*, x)$, where $*$ is the distinguished point of Y; let κ denote the constant map $Y \vee Y \rightarrow Y$. We shall interrelate three function spaces:

$$
\begin{aligned}
\mathfrak{F}(Y) \text { or } \mathfrak{F} & =\{Y \wedge Y \xrightarrow{f} Y\}, \\
\mathcal{G}(Y) \text { or } \mathcal{G} & =\{Y \times Y \xrightarrow{g} Y: g \mid Y \vee Y=\kappa\} \\
\mathfrak{H C}(Y) \text { or } \mathfrak{H} & =\{Y \times Y \xrightarrow{h} Y: h \mid Y \vee Y=\varphi\}
\end{aligned}
$$

here the base points for \mathcal{F} and \mathcal{G} are constant maps; the base point for $\mathfrak{H C}$ is arbitrary. Thus $\mathfrak{H C}$ is the space of H-structures on Y (which have an exact identity); $\mathfrak{F C}$ may be empty, of course, but \mathfrak{F} and \mathcal{G} can hold interest even when Y is not an H-space (e.g., $\pi_{i} \mathcal{F}\left(S^{2}\right) \cong \pi_{4+i}\left(S^{2}\right)$).

The quotient $\operatorname{map} q:(Y \times Y, Y \vee Y) \rightarrow(Y, *)$ induces a map $q^{\#}: \mathfrak{F} \rightarrow \mathcal{G}$ which is a $1-1$ correspondence. Conveniently, $q^{\#}$ is a homeomorphism between the k-topologicalized spaces \mathfrak{F} and \mathcal{G} [11, Lemma 5.10]. (This implies, of course, that $q^{\#}$ is a weak homotopy equivalence between those spaces endowed with their c-o-topologies; in fact, it is not difficult to show that $q^{\#}$ is a homotopy equivalence in this case.)

Suppose that Y is an H-space with multiplication m which we take as base point for $\mathfrak{H C}$. Then there is a map $m^{\#}: \mathcal{G} \rightarrow \mathfrak{H}$,

$$
m^{\#}(g)(y, z)=m(m[y, z], g[y, z])
$$

If (Y, m) were a topological group, with $m^{-1}: Y \rightarrow Y$ the exact inversion for m, then an inverse map m_{b} to $m^{\#}$ would be given by

$$
m_{b}(h)(y, z)=m\left(m\left[m^{-1}(z), m^{-1}(y)\right], h[y, z)\right]
$$

and $m^{\#}$ would be a homeomorphism. It is still possible to define a map $m_{\#}: \mathfrak{H} \rightarrow \mathcal{G}$ when m is merely an H-structure: James [7] has shown that m has a left homotopy inverse m^{-1}, and in the above definition of m_{b}, its values $m_{b}(h)$ are, when restricted to $Y \vee Y$, all equal and homotopic, via H_{m}, to the
constant map. The AHEP of $\mathrm{Y} \vee Y$ in $Y \times Y$ is equivalent to the existence of a retraction

$$
r: Y \times Y \times I \rightarrow Y \times Y \times 0 \cup(Y \vee Y) \times \mathrm{I}
$$

and we have a map on the range of r; let

$$
m_{\sharp}(h)=\left(\left[m_{b}(h) \times 0\right] \cup H_{m}\right) \circ r \circ\left(1_{Y \times Y} \times 1\right) .
$$

We conjecture that $m_{\#}$ is a homotopy inverse to $m^{\#}$; an attack on this problem might proceed by strengthening James' theorem, that two maps $g, g^{\prime}: K \rightarrow Y$ into an H-space, Y, which are homotopic and which agree on a retractile subcomplex L are homotopic rel L [7], to assert that the homotopies rel L may be chosen continuously as g^{\prime} varies in $\{K \rightarrow Y\}$. However, we content ourselves with a weaker result (compare [1], [2], [9]) ; our proof uses a weak trick with the theorem of James which is quoted above.

Proposition 1. If (Y, m) is an H-space then $m^{\#}: \mathcal{G} \rightarrow \mathfrak{H}$ is a weak homotopy equivalence.

Proof. Let L be a retractile subcomplex of K and let $L \xrightarrow{i} K \xrightarrow{j}(K, L)$ be the inclusions; then the induced sequence of loops

$$
0 \rightarrow[K, L \rightarrow Y, *] \rightarrow[K \rightarrow Y] \rightarrow[L \rightarrow Y]
$$

is exact (our bracket notation $\left[K \rightarrow Y\right.$] means $\pi_{0}\{K \rightarrow Y\}$ as usual): at $[K, L \rightarrow Y, *$], exactness is just the property which motivated James' definition of retractile subcomplexes; at $[K \rightarrow Y$], exactness is the homotopy extension property. Furthermore, it is a standard fact about loops that if $\psi: K \rightarrow Y$ then left multiplication by ψ in $[K \rightarrow Y$] defines a bijection between $\operatorname{Im}(j *)=\operatorname{Ker}\left(i^{*}\right)$ and $i^{*-1}(\psi \mid L)$; hence $i^{*-1}(\psi \mid L)$ is in bijective correspondence with $[K, L \rightarrow Y, *]$.

Now notice that the inclusion

$$
k:[K \xrightarrow{\theta} Y: \theta|L=\psi| L] \rightarrow i^{*-1}(\psi \mid L)
$$

is 1-1 since L is retractile in K, and is onto by the AHEP. Our proposition follows, then, if we take K to be $S^{n} \times Y \times Y$, let

$$
L=* \times Y \times Y \cup S^{n} \times * \times Y \cup S^{n} \times Y \times *
$$

and define $\psi: K \rightarrow Y$ by $\psi(x, y, z)=m(y, z)$.
We remark that (in either the k or the c-o topology) the homotopy type of \mathcal{F} and \mathcal{G} is a homotopy invariant of Y for standard reasons; thus the weak type of $\mathcal{T C}$ is an invariant of the type of Y.

2. Multiplications on short Postnikov systems

D. W. Kahn [8] has given necessary and sufficient conditions that Y be an H-space, at least for countable and 1-connected complexes, in terms of H-struc-
tures on the stages in a Postnikov decomposition of Y and its k-invariants. And it is a folk theorem that the multiplication on an Eilenberg-MacLane space is unique, $\pi_{0} \mathscr{H}(K[\pi, n])=0$. Copeland [5] has extended this to show, for associative and inversive H-spaces Y which have two nontrivial homotopy groups in dimensions n and $m, 1<n<m$, that $\pi_{0} \mathcal{F} Y$ is in 1-1 correspondence with $H^{m}\left(Y \wedge Y, \pi_{m} Y\right)$. This latter group is, in general, difficult to calculate, although Curjel [6] computes $\pi_{0} \mathcal{F}\left(S^{1} \times K[Z, 2]\right)$ to be the integers Z; our next theorem agrees with his result.

Theorem 2. Let Y be a space with $\pi_{i} Y=0$ unless $1 \leq n \leq i \leq 2 n$ for some integer n; then there exists a bijection

$$
\Phi: \pi_{0} \mathcal{F} Y \rightarrow \operatorname{Hom}\left(\pi_{n} Y \otimes \pi_{n} Y \rightarrow \pi_{2 n} Y\right)
$$

This correspondence is homomorphic if Y is an H-space.
(Here and throughout this note, π_{1} refers to the fundamental group made abelian.) The proof of this theorem is immediate to the following lemma.

Lemma 3. Let X be ($p-1$)-connected and Y be ($q-1$)-connected, and let Z be a space such that $\pi_{i} Z=0$ for $i>p+q$. Then there exists a bijection

$$
\Phi:[X \wedge Y \rightarrow Z] \cong \operatorname{Hom}\left(\pi_{p} X \otimes \pi_{q} Y \rightarrow \pi_{p+q} Z\right)
$$

which is a homomorphism if its domain has the natural group structure defined by a suspension structure for X or by an H-structure on Z.

Proof. We shall define a function Φ taking each map

$$
a: X \wedge Y \rightarrow Z
$$

to an appropriate homomorphism; our notation will confuse a map with its homotopy class: if $b: S^{p} \rightarrow X$ and $c: S^{q} \rightarrow Y$, we define $\Phi(a)(b \otimes c)$ to be $a \circ(b \wedge c)$. Clearly Φa is bilinear since the smash product is bilinear and composition is linear on the right; its domain is S^{p+q}, via a fixed homeomorphism from S^{p+q} to $S^{p} \wedge S^{q}$. Furthermore, if Z has an H-structure then pointwise operations in the domain of Φ correspond to the group operation among its values. Thus Φ is also linear in a when $X=S X^{\prime}$ is a suspension because

$$
\left[S X^{\prime} \wedge Y \rightarrow Z\right] \cong\left[X^{\prime} \wedge Y \rightarrow \Omega Z\right]
$$

and ΩZ has an H-structure.
Let $\alpha \in \operatorname{Hom}\left(\pi_{p} X \otimes \pi_{q} Y \rightarrow \pi_{p+q} Z\right)$; we wish to construct a function Θ, an inverse to Φ, so that $\Theta \alpha=a \in[X \wedge Y \rightarrow Z]$. For each of the spaces X, Y and Z we choose a cell structure using E. Brown's representation of the functors π^{X}, π^{Y} and π^{z}, so that, for example, the ($p-1$) -skeleton $X^{(p-1)}=*$, $X^{(p)}$ is the wedge of p-spheres e_{b}^{p} corresponding to generators $b \in \pi_{p} X$, the $(p+1)$-cells are either spheres e_{d}^{p+1} corresponding to generators $d \in \pi_{p+1} X$ or else cells of the form e_{r}^{p+1}, attached by maps on their boundaries which
realize generating relationships r in the kernel of $i_{*}: \pi_{p}\left[X^{(p)}\right] \rightarrow \pi_{p} X$, where $i: X^{(p)} \subset X$, and so on (see [10, pp. 406-410] for details). These cell structures on X and Y in turn visit a cell structure on $X \times Y, X \vee Y$, and so $X \wedge Y$; the cells of least positive dimension in $X \wedge Y$ are those of $X \times Y$ which are not in $X \vee Y$. That is, a cell of smallest positive dimension in $X \wedge Y$ must be of the form $e_{b}^{p} \wedge e_{c}^{q}$, where $b \in \pi_{p} X$ and $c \in \pi_{q} Y$; its dimension is $p+q$. We define $\Theta \alpha=a$ inductively: each cell $e_{b}^{p} \wedge e_{c}^{q}$ of $(X \wedge Y)^{(p+q)}$ is attached by a constant map, and so is a $(p+q)$ sphere; our map a is chosen to be a map of degree 1 from $e_{b}^{p} \wedge e_{c}^{q}$ to $e_{\alpha(b \otimes c)}^{p+q}$, where $\alpha(b \otimes c) \in \pi_{p+q} Z$ (here we may assume that $\alpha(b \otimes c)$ is in the generating set for $\pi_{p+q} Z$ which was used to build Z).

The map a is now extended to the $(p+q+1)$ cells of $X \wedge Y$: let a be constant on each such cell of the form $e_{d}^{p+1} \wedge e_{c}^{q}, d \in \pi_{p+1} X$, or the form $e_{d}^{p} \wedge e_{d}^{q+1}$ $d \in \pi_{q+1} Y$ (these cells have constant attaching maps). The map a may now be extended to a $(p+q+1)$ cell of the form $e_{r}^{p+1} \wedge e_{c}^{q}$ iff the previously defined map a on the ($p+q$) skeleton has a composition with the attaching map

$$
\partial\left(e_{r}^{p+1} \wedge e_{c}^{q}\right) \rightarrow(X \wedge Y)^{(p+q)}
$$

which is nul-homotopic. Express r as $\sum r_{i} b_{i}$, a linear combination in the kernel of

$$
i_{*}: \pi_{p}\left[X^{(p)}\right] \rightarrow \pi_{p} X
$$

since $\pi_{p}\left[X^{(p)}\right] \cong H_{p}\left[X^{(p)}\right]$ is a free group on the generating set for $\pi_{p} X$, we may assume that each b_{i} is in that generating set (of course, additional argument is needed if $p=1$), and so $\sum r_{i} b_{i}$ is an element of $\pi_{p} X$, namely zero. Now

$$
\partial\left(e_{r}^{p+1} \wedge e_{c}^{q}\right)=\left(\partial e_{r}^{p+1}\right) \wedge e_{c}^{q} \cup e_{r}^{p+1} \wedge *=\left(\partial e_{r}^{p+1}\right) \wedge e_{c}^{q}
$$

and the smash product is bilinear. The attaching map, composed with a, is thus

$$
\begin{aligned}
a \circ\left(\left[\sum r_{i} b_{i}\right] \wedge c\right) & =a \circ\left(\sum r_{i}\left[b_{i} \wedge c\right]\right)=\sum r_{i} a \circ\left(b_{i} \wedge c\right) \\
& =\sum r_{i} \alpha\left(b_{i} \otimes c\right)=\alpha\left(\left[\sum r_{i} b_{i}\right] \otimes c\right)=0
\end{aligned}
$$

and a has an extension to $e_{r}^{p+1} \wedge e_{c}^{q}$. An identical argument extends a to cells of the form $e_{b}^{p} \wedge e_{s}^{q+1}$, where s is a relation in $\pi_{q}\left[Y^{(q)}\right]$; hence a may be extended to the $(p+q+1)$ skeleton of $X \wedge Y$. An extension to all of $X \wedge Y$ is now guaranteed, since cells of higher dimension have attaching maps which compose inessentially with an inductively defined map a for dimensional reasons: $\pi_{i} Z=0$ if $i>p+q$.

It is clear from the construction of a that $\Phi a=\alpha$; that is, Φ is onto. But if $\Phi a=\Phi a^{\prime}$ then the restrictions of a and a^{\prime} to $(X \wedge Y)^{(p+q)}$ must be homotopic, say via H, since they are homotopic on each $(p+q)$ cell. This defines a map

$$
a \times 0 \cup H \cup a^{\prime} \times 1
$$

on $(X \wedge Y) \times 0 \cup(X \wedge Y){ }^{(p+q)} \times I \cup(X \wedge Y) \times 1$ into Z, and this map has an extension to all of $(X \wedge Y) \times I$ for dimensional reasons. Therefore, Φ is 1-1; the proof of the lemma is complete.

We remark that the above proof is a thinly disguised computation of the cohomology group $H^{p+q}\left(X \wedge Y, \pi_{p+q} Z\right)$; to see this, replace Z in Lemma 3 by the penultimate stage Z_{p+q-1} in a Postnikov system for Z : each of our maps $a: X \wedge Y \rightarrow Z$ has an inessential composition with $\pi_{p+q-1}: Z \rightarrow Z_{p+q-1}$, so each map a is homotopic to a map into the fiber $K\left(\pi_{p+q} Z, p+q\right)$ of π_{p+q-1}. This suggests a common generalization of our Theorem 2 and Copeland's result, cited above; we omit details.
J. F. Adams has pointed out to us a proof that

$$
H^{p+q}\left(X \wedge Y, \pi_{p+q} Z\right) \cong \operatorname{Hom}\left(H_{p} X \otimes H_{q} Y \rightarrow \pi_{p+q} X\right)
$$

based on the universal coefficient theorem and the Künneth formula. When used in the proof of Lemma 3, this isomorphism becomes the function Φ for which we have given an explicit construction.

Corollary 4 For each abelian group G there exists an abelian topological group Y for which $\pi_{0} \varsubsetneqq Y \cong \pi_{0} \mathcal{F} Y \cong G$.

Proof. Apply Theorem 2 to $Y=S^{1} \times K(G, 2)$.

3. The homomorphism Φ

The values of the homomorphism Φ of Theorem 2 may look somewhat familiar. If Y is, for example, a topological group with product m (which we indicate by juxtaposition, etc.), \bar{m} is the converse of m (so $\bar{m}(y, z)=m(z, y)$), and $m_{b}: \mathfrak{F} \rightarrow \varrho$ is the map defined above Proposition 1 let $f=\left(q^{*}\right)^{-1} \bar{m}_{b}(m)$. This defines $f \circ q(y, z)=y z y^{-1} z^{-1}$, a commutator map which Φ carries to a homomorphism whose value at $b \otimes c \in \pi_{n} Y \otimes \pi_{n} Y$ is the Samelson product $\langle b, c\rangle$. Our definition of $\Phi f, \Phi(f)(b \otimes c)=f \circ(b \wedge c)$, readily extends to elements b, c of every dimension in $\pi_{*} Y$, and with this extension, the values of Φ include all Samelson products. Likewise, our definition of Φ need not be restricted to finite Posnikov systems Y; if it is applied to $Y=S^{3}$ it is easy to see that

$$
\mathfrak{F}\left(S^{3}\right)=\left\{S^{3} \wedge S^{3} \rightarrow S^{3}\right\}
$$

and thus the domain of Φ is $\pi_{0} \mathcal{F}\left(S^{3}\right)=\pi_{6}\left(S^{3}\right)=Z_{12}$; if i_{3} is a generator of $\pi_{3}\left(S^{3}\right)$ and $a \in \pi_{8}\left(S^{3}\right)$ then $\Phi(a)\left(i_{3} \otimes i_{8}\right)=a$, so Φ is onto

$$
\text { Hom }\left(\pi_{3}\left[S^{3}\right] \otimes \pi_{3}\left[S^{8}\right] \rightarrow \pi_{6}\left[S^{8}\right]\right)=Z_{12}
$$

However, James has shown [7] that the Samelson products given by the set of H-structures on S^{3} (or S^{7}) have values at $i_{3} \otimes i_{3}$ (or $i_{7} \otimes i_{7}$) which are the odd members only of Z_{12} or (Z_{120}). Hence the values of Φ give a proper generalization of the Samelson products as geometrically defined homomorphisms

$$
\pi_{q} Y \otimes \pi_{r} Y \rightarrow \pi_{q+r} Y
$$

Phrased in terms of elements h of $\pi_{0} \mathfrak{F}$, the picture is that of nul-homotopies defined by h for the Whitehead products $[b, c]$ over Y : the Samelson product compares these nul-homotopies for a given h and its converse, \bar{h} while Φ offers a comparison of these nul-homotopies for any two elements h and h^{\prime} of $\pi_{0} \mathcal{F C}$. Furthermore, $\pi_{0} \mathcal{F}$ may have a (pointwise) group structure which Φ respects, a concept impossible to phrase in terms of Samelson products.

To continue, we recall that the space Y of Theorem 2 was not required to be an H-space; obviously our function Φ works just as well if \mathfrak{F} is empty. If, for instance, Y is the n-sphere S^{n}, the argument sketched above for S^{3} shows that $\pi_{0} \mathfrak{F}\left(S^{n}\right)=\pi_{2 n}\left(S^{n}\right)$, and that Φ is faithful, since $\Phi(a)\left(i_{n} \otimes i_{n}\right)=a$. Thus to each element of $\left[Y \wedge Y \rightarrow Y\right.$] we associate a bilinear multiplication on $\pi_{*} Y$, just as the Samelson product does for H-spaces Y. There are more of these products even for S^{3} and S^{7}, and they are nontrivial for other spheres.

We now point out that our definition of $\Phi, \Phi(f)(b \otimes c)=f \circ(b \wedge c)$, can be restated as

$$
\Phi(f)(b \otimes c)=\omega \circ(f \wedge b \wedge c)
$$

where $\omega: y^{Y \wedge Y} \wedge Y \wedge Y \rightarrow Y$ is the evaluation map. But, in this form, the definition of Φ is seen to extend to all of $\pi_{*}\{Y \wedge Y \rightarrow Y\}$: if

$$
a: S^{q} \rightarrow\{Y \wedge Y \rightarrow Y\}
$$

then $\Phi(a)(b \otimes c)=\omega \circ(a \wedge b \wedge c)$. This yields a function Φ which is linear in a and whose values are bilinear in b and c, since this smash product is trilinear. If $b \in \pi_{r}(Y)$ and $c \in \pi_{s}(Y)$ then

$$
\Phi(a)(b \otimes c) \in \pi_{q+r+s}(Y):
$$

we shall say that $\Phi(a)$ is a product on $\pi_{*}(Y)$ of degree q. To formally describe the range of Φ, let us define the graded group $\mathfrak{H}(G)$ of products on a graded group G by

$$
\mathfrak{N}_{q}=\sum_{r, s} \operatorname{Hom}\left(G_{r} \otimes G_{s} \rightarrow G_{q+r+s}\right)
$$

Then Φ is a homomorphism from $\pi_{*} \mathfrak{F} Y$ to $\mathfrak{A}_{\pi_{*}} Y$. It is nontrivial: our previous argument generalizes to show that if

$$
a \in \pi_{2 n+q}\left(S^{n}\right)=\pi_{q}\left\{S^{n} \wedge S^{n} \rightarrow S^{n}\right\}
$$

then $\Phi(a)\left(i_{n} \otimes i_{n}\right)=a$, so Φ is monic if $Y=S^{n}$. It is not difficult to prove, more generally, that $\Phi(a)(b \otimes c)=(-1)^{q(r+s)} a \circ S^{q}(b \wedge c)$ when $Y=S^{n}$ and S denotes the suspension functor. We can also calculate Φ partially for finite Postnikov systems.

Theorem 5. Let Y have only a finite number of nonzero homotopy groups, say $\pi_{i} Y=0$ unless $1 \leq n \leq i \leq 2 n+k$ for some integers n, k. Then

$$
\Phi: \pi_{j} \mathfrak{F} Y \cong \mathfrak{A}_{j} \pi_{*} Y
$$

for every integer $j \geq k$. That is,

$$
\Phi: \pi_{k} \mathfrak{F} Y \cong \operatorname{Hom}\left(\pi_{n} Y \otimes \pi_{n} Y \rightarrow \pi_{2 n+k} Y\right)
$$

and $\pi_{j} \mathcal{F} Y=0$ if $j>k$.
Proof. Apply Lemma 3 to $X=S^{j} Y$ and $Z=Y$.
These products of positive degree on $\pi_{*} Y$ remind one of the binary operations of degree n which Browder described [3] for the homology graded groups of the H_{n}-spaces of Araki-Kudo: it can be shown that the Hurewicz homomorphism carries our homotopy product defined by an H_{n}-structure (by use of our Proposition 1) to Browder's homology product via a commutative diagram, giving them a relationship like that of the Samelson and Pontrjagin products in degree zero. In fact, our homomorphism Φ can easily be seen to work for cubical homology as well as for homotopy; it may thus be used to generalize Browder's binary operations to non- H_{n}-spaces (although we have failed to obtain the Araki-Kudo operations of one variable for such spaces).

Let Y be an H-space and consider Φ to be defined on $\pi_{q} \mathcal{F}$ as in the preceding paragraph; it is natural to ask for a geometric picture relating Φ to James' definition of the Samelson product in terms of his separation elements [7]. We view the separation element of two maps $f, g: I^{n}, \dot{I}^{n} \rightarrow X$ which agree on \dot{I}^{n} as a construction applied to a 0 -sphere of nul-homotopies of $f\left|\dot{I}^{n}=g\right| \dot{I}^{n}$ means the boundary of the n-cube I^{n}. (In the case of the Samelson product, $f \mid \dot{I}^{n}$ is the Whitehead product, with f and g the extensions to I^{n} given by an H-structure m and its converse \bar{m} on X.) In general, let $\theta: \dot{I}^{n} \rightarrow X$ be given along with

$$
a: \dot{I}^{q+1} \rightarrow\left\{I^{n} \xrightarrow{f} X: f \mid \dot{I}^{n}=\theta\right\} ;
$$

our q-dimensional separation element is the element of $\pi_{q+n} X$ given by

$$
I^{q+n} \rightarrow \dot{I}^{q+n+1} \cong \dot{I}^{q+1} \times I^{n} \cup I^{q+1} \times \dot{I}^{n} \rightarrow X
$$

here the first two maps are the usual (relative) homeomorphisms of degree one and the third map is $a \cup \theta \circ p_{2}$, where \hat{d} is the associate of a and p_{2} is projection on the second factor. Clearly this specializes to the separation element if $q=0$, and it describes the translation of Φ to $\mathfrak{H C}$ in higher degrees; it may be useful elsewhere.

The function \mathcal{F} is a functor on an appropriate category, and it has a rich structure: a covering map $\rho: \tilde{Y} \rightarrow Y$ induces a $\operatorname{map} \mathfrak{F} Y \rightarrow \mathcal{F} \tilde{Y}$, and there are homomorphisms $\pi_{i} \mathfrak{F} Y \rightarrow \pi_{i+1} \mathfrak{F} \Omega Y, \pi_{i+1} \mathfrak{F} Y \rightarrow \pi_{i} \mathcal{F} S Y$, and $\pi_{i} Y \rightarrow \pi_{i} \mathcal{F} Y$ with good algebraic properties.

References

1. M. Arkowitz, Homotopy products for \boldsymbol{H}-spaces, Michigan Math. J., vol. 10 (1963), pp. 1-9.
2. M. Arkowitz and C. R. Curjel, On the number of multiplications of an \boldsymbol{H}-space, Topology, vol. 2 (1963), pp. 205-208.
3. William Browder, Homology operations and loop spaces, Illinois J. Math., vol. 4 (1960), pp. 347-357.
4. R. Brown, Function spaces and product topologies, Quart. J. Math., Oxford Ser. (2), vol. 15 (1964), pp. 238-250.
5. Arthur H. Copeland, Jr., Binary operations on sets of mapping classes, Michigan Math. J., vol. 6 (1959), pp. 7-23.
6. C. R. Curjel, On the H-space structures of finite complexes, Comment. Math. Helv., vol. 43 (1968), pp. 1-17.
7. I. M. James, On \boldsymbol{H}-spaces and their homotopy groups, Quart. J. Math., Oxford Ser. (2), vol. 11 (1960), pp. 161-179.
8. D. W. Kahn, A note on \boldsymbol{H}-spaces and Postnikov systems of spheres, Proc. Amer. Math. Soc., vol. 16 (1964), pp. 300-307.
9. R. C. O'Neill, On H-spaces that are CW-complexes, Illinois J. Math., vol. 8 (1964), pp. 280-290.
10. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
11. N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J., vol. 14 (1967), pp. 133-152.

Birkbeck College
London
University of California
Irvine, California

[^0]: Received April 5, 1972.
 ${ }^{1}$ This research was supported by a National Science Foundation grant.

