ON THE DENSITY OF CONJUGATE FIXED POINTS OF A CORRESPONDENCE

BY
R. E. MAcRAE ${ }^{1}$
\section*{1. Introduction}

In connection with another investigation the following question arose. Suppose that $P(x, z)$ is an irreducible polynomial in two variables over the finite field $k=G F(q)$. Let the pair (α, β) lie in the graph of P, that is let $P(\alpha, \beta)=0$ where α and β are elements of the algebraic closure \bar{k} of k. We now ask: how often does it occur that α and β are conjugate over k, that is, how often is $\beta=\alpha^{q^{r}}$ for some r ? For example, how often does $\alpha+1=$ $\alpha^{q^{r}}$? It is immediately clear that this situation will arise infinitely often for a given P so the question of "how often" must be answered in terms of a density. To attack this question we will find it useful to consider $P(x, z)$ as a correspondence from the projective line to itself. Then to say that $P(\alpha, \beta)=0$ is to say (with finitely many exceptions) that there are points \mathcal{P}_{1} and \mathcal{P}_{2} on the projective line over k such that $x\left(\mathcal{P}_{1}\right)=\alpha$ and $z\left(\mathcal{P}_{2}\right)=\beta$. To say that α and β are conjugate is equivalent to saying that $\mathcal{P}_{1}=\mathcal{P}_{2}$. More generally, let us replace the projective line by the Riemann surface $X^{K / \kappa}$ for any function field K in one variable in which $k=G F(q)$ is the exact constant field. When P is any prime correspondence from K to K and \odot is in $X^{K / k}$ then we may let P act on \odot and produce an integral divisor \odot^{p} also on K. We are, therefore, interested in the set

$$
A_{p}=\left\{\rho \in X^{K / \kappa} \mid \rho \text { divides } \rho^{P}\right\}
$$

In order to measure the size of A_{P} in $X^{K / k}$ we use the ordinary Dirichlet density $\delta\left(A_{p}\right)$. It is the purpose of this paper to prove the following result.

Theorem. If (i) both degrees of P are one and P is not the diagonal or (ii) the ratio of the degrees of P is not an integral power of q, then $\delta\left(A_{p}\right)=0$.

It seems quite likely that the above theorem is true more generally when P is assumed to be unequal to any power of the Frobenius correspondence or its Rosati adjoint. The methods available to us unfortunately break down when both degrees of P are equal but unequal unity.

The paper will consist of three more sections. The first of these deals with generalities concerned with correspondences and the Dirichlet density. Our treatment of the former is completely algebraic since the basic rationality questions involved make such a treatment more useful than the customary

[^0]geometric one Compare, for example, the algebraic treatment in [2]. Two somewhat non-standard applications of the Dirichlet density are given. The next section deals with an extended form of the theorem of Bézout in which improper intersections are considered. The final section gives a proof of the main theorem stated above.

2. Generalities

In this section we describe the necessary details concerning correspondences and density. The former will be done from an algebraic rather than a geometric point of view since this will suit our purposes better. The reader is assumed familiar with an algebraic treatment of functions fields in one variable including the Riemann-Roch Theorem. See, for example [2]. For the remainder of this section k except where indicated will denote an arbitrary field and K a function field in one variable over k such that k is algebraically closed in K and K is separably generated over $k . \quad K$ is in other words, a regular extension of k. Under these circumstances the ring $K \otimes_{k} k_{1}$ is an integral domain for every field extension, k_{1}, of k.

We begin with several technical propositions.
Proposition 2.1. Let \mathcal{O} be an integrally closed k-algebra and k_{1} a finitely and separably generated extension field of k such that $\mathcal{O} \otimes_{k} k_{1}$ is an integral domain. Then $\mathcal{O} \otimes_{k} k_{1}$ is integrally closed.
Proof. The proof easily reduces to special cases. First, let $k_{1}=k(x)$ be the rational function field in one variable. Then $\mathcal{O} \otimes_{k} k_{1}$ is clearly a localization of the ring $\mathcal{O} \otimes_{k} k[x]=\mathcal{O}[x]$. The latter is, however, well known to be integrally closed when \mathcal{O} is. Second, let k_{1} be a finite, separable extension of k. If $\omega_{1}, \cdots, \omega_{n}$ is a basis for k_{1} over k then $1 \otimes \omega_{1}, \cdots, 1 \otimes \omega_{n}$ is clearly a basis for $\mathcal{O} \otimes_{k} k_{1}$ over \mathcal{O} and for the quotient field, L, of $\mathcal{O} \otimes_{k} k_{1}$ over the quotient field of \mathcal{O}. It is easily seen that $\mathcal{O} \otimes_{k} k_{1}$ is an integral extension of 0 . Now the discriminant of the basis $1 \otimes \omega_{1}, \cdots, 1 \otimes \omega_{\mathrm{n}}$ is in k^{*} so it is a unit in \mathcal{O}. Thus by well-known arguments the conductor of the integral closure of $\mathcal{O} \otimes_{k} k_{1}$ is trivial. In otherwords, $\mathcal{O} \otimes_{k} k_{1}$ is integrally closed.

Proposition 2.2. Let \mathcal{O}_{1} and \mathcal{O}_{2} be integrally closed k-algebras whose quotient fields are finitely and separably generated extensions of k and such that $\mathcal{O}_{1} \otimes_{k} \mathcal{O}_{2}$ is an integral domain. Then $\mathcal{O}_{1} \otimes_{k} \mathcal{O}_{2}$ is integrally closed.

Proof. Observe that $\mathcal{O}_{1} \otimes_{k} \mathcal{O}_{2}=K_{1} \otimes_{k} \mathcal{O}_{2} \cap \mathcal{O}_{1} \otimes_{k} K_{2}$ where K_{i} is the quotient field of $\mathcal{O}_{i}, i=1,2$. Then use Proposition 2.1.

Proposition 2.3. Let K be a function field in one variable over k and assume it to be a regular extension of k. If \mathcal{O} is a k-algebra which is a noetherian, integrally closed, integral domain all of whose maximal ideals are of Krull dimension n and possess a residue class field that is not algebraic over \bar{k}, then $\mathcal{O} \otimes_{k} K$
inherits these properties except that the Krull dimension of the maximal ideals is $n+1$.

Proof. Because of the assumed regularity, $\mathcal{O} \otimes_{k} K$ is an integral domain. By Proposition 2.1, $\mathcal{O} \otimes_{k} K$ is integrally closed. Let x be a transcendental element of K. Then $\mathcal{O} \otimes_{k} K$ is a finitely generated, integral extension of $\mathcal{O} \otimes_{k} k(x)$. Hence it suffices to prove that $\mathcal{O} \otimes_{k} k(x)$ is a noetherian ring all of whose maximal ideals are of Krull dimension $n+1$ and possess a residue class field that is not algebraic over k. However, $\mathcal{O} \otimes_{k} k(x)$ is a localization of $\mathcal{O} \otimes_{k} k[x]=\mathcal{O}[x]$. Thus it is immediately clear that $\mathcal{O} \otimes_{k} k(x)$ is noetherian. Now in $\Theta[x]$ all of the maximal ideals are of Krull dimension $n+1$ and are of the form $\mathcal{P}+(f(x))$ where $\mathcal{\rho}$ is a maximal ideal of \mathcal{O} and $f(x)$ is irreducible modulo \mathcal{P}. Since \mathcal{P} clearly has a void intersection with the nonzero elements of $k[x]$ we need only show that for every maximal ideal \mathcal{P} of \mathcal{O} there is a polynomial $f(x)$ that is irreducible modulo \mathcal{P} and such that $\mathcal{P}+$ ($f(x)$) has a void intersection with the non-zero elements of $k[x]$. Let z be an arbitrary preimage of an element that is transcendental over k modulo \mathcal{P}. Then $z-x$ will clearly serve our purposes.

Now let K_{1} and K_{2} be function fields in one variable over k and assume that both of them are regular extensions of k. It is an immediate consequence of Proposition 2.3 that $K_{1} \otimes_{k} K_{2}$ is a Dedekind domain.

Definition 2.4. The (non-null) fractional ideals of the Dedekind domain $K_{1} \otimes_{k} K_{2}$ are called the correspondences from K_{1} to K_{2}. The prime (resp. integral) ideals of $K_{1} \otimes_{k} K_{2}$ are called prime (resp. integral) correspondences. $\operatorname{Corr}_{k}\left(K_{1}, K_{2}\right)$ will denote the group (written additively) of all fractional ideals of $K_{1} \otimes_{k} K_{2}$.

If we let L be the quotient field of $K_{1} \otimes_{k} K_{2}$ it is clear that L may be regarded as a function field in one variable over both K_{1} and K_{2}. The prime correspondences may then be regarded as the points in common to the Riemann surfaces of L over K_{1} and L over K_{2}. In particular, each prime correspondence (and hence every correspondence) has two degrees;

$$
g_{1}(P)=\left[K_{1} \otimes_{k} K_{2} / P: K_{1}\right] \quad \text { and } \quad g_{2}(P)=\left[K_{1} \otimes_{k} K_{2} / P: K_{2}\right]
$$

Next we may regard P as a homomorphism from the divisor group $D^{K_{1} / k}$ of K_{1} to the divisor group $D^{K_{2} / k}$ of K_{2}. Indeed let \mathcal{P} be a prime divisor on K_{1} and let ($\left.\odot\right)$ be the extension of \odot to $K_{1} \otimes_{k} K_{2} / P=L$ and then set

$$
\mathcal{P}^{P}=N_{L / K_{2}}(\mathcal{P})
$$

Finally, extend this map to $D^{K_{1} / k}$ by linearity in the usual way.
In a similar fashion we may define a product of correspondences as follows. Let K_{1}, K_{2} and K_{3} be function fields in one variable over k and assume that all are regular extensions of k. Moreover let P be a prime correspondence from K_{1} to K_{2} and Q a prime correspondence from K_{2} to K_{3}. Let

$$
L=K_{1} \otimes_{k} K_{2} / P
$$

and denote by Q^{\prime} the ideal in $L \otimes_{k} K_{\mathbf{3}}$ generated by Q. We have

$$
K_{1} \otimes_{k} K_{3} \leq L \otimes_{k} K_{3}
$$

Define $P Q$ to be the norm of Q^{\prime} taken from the quotient field of $L \otimes_{k} K_{3}$ to the quotient field of $K_{1} \otimes_{k} K_{3}$. We may obtain $P Q$ in another way as the following theorem shows.

Theorem 2.5. Let $M=K_{2} \otimes_{k} K_{3} / Q$ and let P^{\prime} be the ideal of $K_{1} \otimes_{k} M$ generated by P. Set R equal to the norm of P^{\prime} taken from the quotient field of $K_{1} \otimes_{k} M$ to the quotient field of $K_{1} \otimes_{k} K_{3} . \quad$ Then $R=P Q$.

Proof. By Proposition 2.3, $\mathfrak{D}=K_{1} \otimes_{k} K_{2} \otimes_{k} K_{3}$ is an integrally closed, noetherian domain all of whose maximal ideals have Krull dimension two. It is easy to see that the ideal S generated by P and Q in \mathfrak{D} can have no prime divisors of Krull dimension one. Thus the primary decomposition $S=\cap Q_{j}$ has the property that each associated prime $\mathfrak{F}_{j}=\sqrt{ } Q_{j}$ is maximal. Let

$$
\mathfrak{P}_{j}=\mathfrak{P}_{j} \cap K_{1} \otimes_{k} K_{\mathbf{z}}
$$

and set $f_{j}=\left[\mathfrak{D} / \mathfrak{\Re}_{j}: K_{1} \otimes_{k} K_{3} / \mathcal{P}_{j}\right]$. It is now easy to see that both R and $P Q$ are equal to $\prod \mathscr{P}_{j}^{e_{j} f_{j}}$ where $e_{j} f_{j}$ equals the length of \mathfrak{D} / Q_{j}.

There is yet another way of looking at the product $P Q$. Indeed let K_{12} be the quotient field of $K_{1} \otimes_{k} K_{2}$ and K_{13} equal to the quotient field of $K_{1} \otimes_{k} K_{3}$. We regard K_{12} and K_{13} as function fields in one variable over K_{1} and observe that both are regular extensions of K_{1}. Now P may be thought of as a point in the Riemann surface $X^{K_{12} / K_{1}}$. We then extend Q to

$$
K_{12} \otimes_{K_{1}} K_{13}
$$

by noting that $K_{12} \otimes_{K_{1}} K_{13}$ is a localization of

$$
\left(K_{1} \otimes_{k} K_{2}\right) \otimes_{K_{1}}\left(K_{1} \otimes_{k} K_{3}\right)=K_{1} \otimes_{k} K_{2} \otimes_{k} K_{3}
$$

which contains an ideal generated by Q. Call this extended ideal Q^{\prime} and note that it need not be prime. However, we can still define P^{Q} in the usual way. The following theorem is clear from various definitions.

Theorem 2.6. $P Q=P^{Q}$.
Theorem 2.7. Let K_{1}, K_{2}, K_{2} be function fields in one variable over k and assume all are regular over k. If P and Q are prime correspondences from K_{1} to K_{2} and K_{2} to K_{3}, respectively, then $\odot^{P Q}=\left(\odot^{P}\right)^{Q}$ for every \odot on the Riemann surface for K_{1}.

Proof. Let $L=K_{1} \otimes_{k} K_{2} / P$ and $M=K_{2} \otimes_{k} K_{3} / Q$. Moreover let $\sum e_{j} R_{j}$ be factorization of the extension of Q to $L \otimes_{k} K_{3}$. If \mathfrak{P} is a point on the Riemann surface for L we set a_{j} equal to the divisor on M obtained by extending \mathfrak{P} to $L \otimes K_{3} / R_{j}$ and then taking the norm to M. Likewise let a be the divisor on M obtained by taking the norm of \mathfrak{B} to K_{2} and then extending to M. We claim $\mathbb{Q}=\Pi \mathfrak{Q}_{j}^{e_{j}}$. Indeed let \mathcal{P} be the point of K_{2}
below \mathfrak{P} and let $\mathcal{O}_{\mathcal{P}}$ be the associated valuation ring. Let $\mathfrak{D}_{\mathcal{P}}$ be the integral closure of $\mathcal{O}_{\mathcal{\rho}}$ in L. Then $\mathfrak{F}=\pi \mathfrak{D}_{\mathcal{\rho}}$ for suitable choice of π. We have

$$
N_{L / K_{2}} \mathfrak{B}=N_{L / K_{2}} \pi \mathcal{O}_{\mathcal{P}}
$$

Let $\mathfrak{D}_{\mathcal{P} j}^{\prime}$ be the integral closure of $\mathcal{O}_{\mathcal{P}}$ in $L \otimes_{k} K_{3} / R_{j}=T_{j}$ and let $\mathcal{O}_{\mathcal{P}}^{\prime}$ be the integral closure of $\mathcal{O}_{\mathcal{P}}$ in M. Then $\mathbb{Q}=N_{L / K_{2}} \pi \mathfrak{D}_{\mathcal{\beta}}^{\prime}$ and $\mathfrak{a}_{j}=N_{\boldsymbol{T}_{j} / M} \pi \mathfrak{D}_{\mathcal{P}}^{\prime}$. Hence it suffice to show that $N_{L / K_{2}} \pi$, considered as an element of M, equals $\Pi\left(N_{T_{j} / M} \pi\right)^{e_{j}}$. This, however, follows by applying [6, II, §11, Chap. V, Lemma 1] to the pair of Dedekind domains $L \otimes_{k} K_{3}$ and $K_{2} \otimes_{k} K_{3}$. Next let Q_{j} be the prime ideal of $K_{1} \otimes_{k} K_{3}$ that lies below R_{j} and let f_{j} be the residue class degree. Then, by definition, $P Q=\sum e_{j} f_{j} Q_{j}$. If \mathcal{P} is a point on the Riemann surface for K_{1}, then it is clear that $\mathcal{P}^{f_{j} Q_{j}}$ equals the divisor obtained by extending ρ to $T_{j}=L \otimes_{k} K_{8} / R_{j}$ and then taking the norm to K_{3}. By the remarks above $\Pi\left(\rho^{f_{j} Q_{j}}\right)^{e_{j}}$ equals $\left(\rho^{P}\right)^{Q}$ so the theorem is proved.

Theorem 2.8. Let K_{1}, K_{2}, K_{3} and K_{4} be function fields in one variable over k and assume all are regular extensions of k. If P, Q and R are correspondences from K_{1} to K_{2}, K_{2} to K_{3} and K_{3} to K_{4}, respectively, then $(P Q) R=P(Q R)$.

Proof. By Theorem 2.6, $(P Q) R=\left(P^{Q}\right)^{R}$ and $P(Q R)=P^{Q R}$. Hence $(P Q) R=\left(P^{Q}\right)^{R}=P^{Q R}=P(Q R)$ by Theorem 2.7.

Theorem 2.9. If K is a function field in one variable over k and a regular extension of k, then $\operatorname{Corr}_{k}(K, K)$ forms an associative ring with identity and there is a ring homomorphism of $\operatorname{Corr}_{k}(K, K)$ into the endomorphism ring of the divisor group $D^{K / k}$.

Proof. All except the existence of an identity element is contained in preceding results. We consider the exact sequence $O \rightarrow D \rightarrow K \otimes_{k} K \rightarrow$ $K \rightarrow 0$ given by sending $a \otimes b$ onto $a b$. The correspondence D is called the diagonal and it is clear that $D A=A D=A$ for every correspondence A in Corr $_{k}(K, K)$.

Let us now regard P as a curve in its own right and determine the effect the singularities on the curve have. Let $\mathcal{O}_{\mathfrak{P}_{1}}$ and $\mathcal{O}_{\mathfrak{Q}_{2}}$ be valuation rings of K_{1} and K_{2}, respectively, and observe that $K_{1} \otimes_{k} K_{2}$ is a localization of $\mathcal{O}_{\mathfrak{P}_{1}} \otimes_{k} \mathcal{O}_{\mathcal{P}_{2}}$. Hence there is a unique prime ideal in $\mathcal{O}_{\mathfrak{P}_{1}} \otimes_{k} \mathcal{O}_{\mathfrak{P}_{2}}$ whose localization is P. We denote this ideal by P also. We have

$$
\mathcal{O}_{\mathfrak{P}_{1}} \otimes_{k} \mathcal{O}_{\mathfrak{P}_{2}} / P=\mathcal{O}_{\mathfrak{P}_{1}} \mathcal{O}_{\mathfrak{P}_{2}} \quad \text { in } \quad L=K_{1} \otimes_{k} K_{2} / P .
$$

Theorem 2.10. Except for a finite set of point pairs $\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{O}_{\mathcal{P}_{1}} \mathcal{O}_{\mathcal{Q}_{2}}$ is the integral closure of ${\mathcal{\mathcal { Q } _ { 1 }}}$ and ${\mathcal{\mathcal { P } _ { 2 }}}$ in L. (We assume here that $K_{1}=K=K_{2}$.)

Proof. Let x be a separating element of K over k and let \mathfrak{D} be the integral closure of $k[x]$ in K. First note that $\mathfrak{D} \otimes_{k} k[x]=\mathfrak{D}[x]$ is an integrally closed noetherian domain of Krull dimension two and that $\mathfrak{D} \otimes_{k} \mathfrak{D}$ is a finitely
generated (as a module) integral extension of $\mathfrak{D}[x]$. Hence $\mathfrak{D} \otimes_{k} \mathfrak{D}$ is a noetherian domain of Krull dimension two. By Proposition 2.2, $\mathfrak{D} \otimes_{k} \mathfrak{D}$ is integrally closed as well. Now since $K \otimes_{k} K$ is a localization of $\mathfrak{D} \otimes_{k} \mathfrak{D}$ there is a unique prime ideal of $\mathfrak{D}_{k} \otimes \mathfrak{D}$ whose localization is P. Call this prime P as well. Now $\mathfrak{D} \otimes_{k} \mathfrak{D} / P$ is a noetherian domain of Krull dimension one but not necessarily integrally closed. By localizing away a finite set of non-zero prime ideals of $\mathfrak{D} \otimes_{k} \mathfrak{D} / P$ we get a Dedekind domain. We can, therefore, find a finite set of maximal ideals of \mathfrak{D} such that by localizing them away using a multiplicative set M we have $\mathfrak{D}_{M} \otimes_{k} \mathfrak{D}_{M} / P_{M}$ as a Dedekind domain. The result now follows immediately.

We turn now to the notion of the Rosati adjoint. When P is a prime correspondence from K_{1} to K_{2} we may reverse the roles of K_{1} and K_{2} and get a prime correspondence P^{*} from K_{2} to K_{1} which is called the Rosati adjoint of P. It is clear that $P=P^{* *}$. One extends the adjoint operation to any correspondence from K_{1} to K_{2} by linearity in the customary way.

Theorem 2.11. Let P be a correspondence from K_{1} to K_{2} and Q a correspondence from K_{2} to K_{3}. Then $(P Q)^{*}=Q^{*} P^{*}$.

Proof. This is an immediate consequence of Theorem 2.5.
When $k=G F(q)$ there is a special correspondence that we need to consider. We will assume that K is a function field in one variable over k and that k is exact in K and thus K is a regular extension of k since k is perfect.

Definition 2.12. Let the exact sequence $0 \rightarrow F_{q^{+}} \rightarrow K \otimes_{k} K \rightarrow K \rightarrow 0$ be defined by sending $a \otimes b$ onto $a b^{q^{r}}$. One calls $F_{q^{r}}$ a Frobenius correspondence.

It is clear that $F_{q}^{r}=F_{q^{r}}$ and the degrees of $F_{q^{r}}$ are 1 and q^{r}. When $k_{n}=G F\left(q^{n}\right)$ and $K_{n}=K \otimes_{k} k_{n}$ we may extend $F_{q^{r}}$ to K_{n} by considering the ideal of $K_{n} \otimes_{k_{n}} K_{n}$ generated by $F_{q^{r}}$.

Lemma 2.13. $\quad F_{q^{r}}$ remains prime in $K_{n} \otimes_{k_{n}} K_{n}$.
Proof. $\quad 0 \rightarrow F_{q^{r}} \rightarrow K \otimes_{k} K \rightarrow K \rightarrow 0$ implies

$$
0 \rightarrow\left(F_{q^{r}}\right) \rightarrow K \otimes_{k} K \otimes_{k} k_{n} \rightarrow K_{n} \rightarrow 0
$$

exact. However, $K \otimes_{k} K \otimes_{k} k_{n}=K_{n} \otimes_{k_{n}} K_{n}$.
We will denote the extension of $F_{q^{r}}$ to K_{n} by $F_{q^{r}}$ as well.
Theorem 2.14. If P is a prime correspondence from K_{n} to K_{n}, then $P F_{Q^{r}}$, $F_{q^{r}} P, P F_{q^{r}}^{*}$ and $F_{q^{r}}^{*} P$ are all of the form $p^{e} Q$ where Q is a prime and p is the characteristic of k.

Proof. By use of the Rosati adjoint we need only consider $P F_{q^{r}}$ and $P F_{q^{r}}^{*}$. In order to compute $P F_{q^{r}}^{*}$ we consider P as a prime ideal in $K_{n} \otimes_{k_{n}} k_{n} K_{n}^{q^{r}}$. Since $K_{n} \otimes_{k_{n}} K_{n}$ is a purely inseparable extension of $K_{n} \otimes_{k_{n}} k_{n} K_{n}^{q^{r}}$ there is but one prime that lies above P. Call it Q. Thus $P F_{q^{r}}^{*}=p^{e} Q$. The computation of $P F_{q^{r}}$ is entirely similar.

We turn, finally, to the Dirichlet density. Here k will be the finite field $G F(q)$ and K a function field in one variable over k in which k is exact.

Definition 2.15. The infinite series $Z_{K / k}(u)=\sum u^{o(Q)}$, where the sum is taken over all integral divisors \mathbb{Q} on K, will be called the Zeta Function of K over k.

By a simple application of the Riemann-Roch Theorem one obtains the following pair of standard results.

Theorem 2.16. $Z_{K / k}(u)$ converges absolutely and uniformly inside the complex disc $|u|<1 / q$. Moreover, inside this disc $Z_{K / k}(u)=\Pi\left(1-u^{o(P)}\right)^{-1}$ where the product is taken over all points \mathcal{P} on the Riemann surface for K.

Theorem 2.17. There is a polynomial $P_{\text {K/k }}(u)$ of degree $2 g$ (g equals the genus of K) with integral coefficients, constant term 1 and leading coefficient q^{g} such that $Z_{K / k}(u)=P_{K / k}(u) /((1-u)(1-q u))$ inside the disc of radius $1 / q$. Moreover, $P_{K / k}(1)=h$ and $P_{K / k}(1 / q)=h / q^{g}$ where h is the projective class number of K.

We can now define several Dirichlet densities of a subset of the Riemann surface of K.

Definition 2.18. Let A be a subset of the Riemann surface of K and let A_{n} equal the number of points in A of degree n. Set

$$
A(u)=\left(\sum A_{n} u^{n} /(-\log (1-q u))\right)
$$

Let $\delta(A)=\lim \sup A(u), \underline{\delta}(A)=\lim \inf A(u)$ and $\delta(A)=\lim A(u)$ where the limits are taken as u approaches $1 / q$ along the real axis from the left. We call $\delta(A), \underline{\delta}(A)$ and $\delta(A)$ the upper, lower and ordinary Dirichlet densities of A, respectively.

By virtue of the preceding two theorems and the Riemann-Roch Theorem we have the following result whose proof is easy and is left to the reader.

Theorem 2.19. For every subset A of the Riemann surface for $K, \bar{\delta}(A)$ and $\underline{\delta}(A)$ exist and $0 \leq \underline{\delta}(A) \leq \delta(A) \leq 1$. Moreover $\sigma(A)$ exists if and only if $\bar{\delta}(A)=\underline{\delta}(A)$ in which case $\delta(A)=\delta(A)=\underline{\delta}(A)$.

The following two variants of the Dirichlet density theorem will be used later.

Theorem 2.20. Let $k=G F(q)$ and K a function field in one variable which contains k as exact constant field. Let $n=p_{1} \cdots p_{r}$ be a product of distinct primes. Set $k_{n}=G F\left(q^{n}\right)$ and $K_{n}=K \otimes_{k} k_{n}$. If A consists of the set of points on the Riemann surface for K that remain totally inert in K_{n} then

$$
\delta(A)=\prod_{j=1}^{r}\left(1-p_{j}^{-1}\right)=\varphi(n) / n
$$

Proof. K_{n} is an unramified cyclic extension of K. Denote the Artin
reciprocity map as usual by ($K_{\mathrm{n}} / K / \mathcal{P}$) where \mathcal{P} is a point on the Riemann surface for K. Now \mathcal{P} is totally inert if and only if ($K_{\mathrm{n}} / K / \mathcal{P}$) generates the Galois group. Hence $\left(K_{\mathrm{n}} / K / \mathcal{P}\right)$ can take on any of $\varphi(n)$ values. Thus by the usual density theorem $\delta(A)=\varphi(n) / n$. See [1].

Theorem 2.21. Let $k=G F(q)$ and K a function field in one variable which contains k as exact constant field. Let L be a finite extension field of K in which k remains exact. If A is the set of all points on the Riemann surface for L that have residue class degree exceeding one over K, then $\delta(A)=0$.

Proof. We have the equality $\sum u^{g(\mathcal{P})}=\sum_{j=2}^{n}\left(\sum t_{j, \mathfrak{B}} u^{j g(\mathcal{P})}\right)$ where $n=[L: K], \mathfrak{B}$ ranges over the non-ramified pointts in A and the points \mathcal{P} are those in the Riemann surface for K that lie below these points. Since $0 \leq t_{j, \mathcal{Q}} \leq n$ for each j and \mathcal{P}, it is clear that $\sum t_{j, \mathcal{P}} u^{j g(\mathcal{P})}, j=2, \cdots, n$ converges at $u=1 / q$. Hence

$$
\begin{aligned}
\lim _{u \rightarrow 1 / q}\left(\sum u^{g(\mathcal{P})} /\right. & (-\log (1-q u))) \\
& =\sum_{j=2}^{n} \lim _{u \rightarrow 1 / q}\left(\sum t_{j, \mathcal{P}} u^{j g(\mathcal{P})} /(-\log (1-q u))\right)=0 .
\end{aligned}
$$

That is to say, $\delta(A)=0$.

3. An extension of Bézout's Theorem

The customary form of Bézout's Theorem gives very exact information on the number of points in what one might call a proper intersection. We will need less exact information on the number of points in an improper intersection. I am indebted to I. Fischer for suggesting the key step in the following theorem.

Theorem 3.1. Let k be an algebraically closed field and let f_{1}, \cdots, f_{m} be homogeneous polynomials in $k\left[x_{0}, \cdots, x_{r}\right]$. If f_{1}, \cdots, f_{m} have only finitely many common zeros, the number of distinct such zeros is at most the product of the degrees of f_{1}, \cdots, f_{m}.

In order to prove this result we begin with some preliminaries. Let k be an arbitrary field.

Definition 3.2. If \mathfrak{a} is a homogeneous ideal in $k\left[x_{0}, \cdots, x_{r}\right]$ then

$$
\chi(Q, n)=\operatorname{dim}_{k}\left(k\left[x_{0}, \cdots, x_{r}\right]_{n} Q_{n}\right)
$$

is the characteristic function of \mathbb{Q}.
By the well-known theory [3, §3.24] $\chi(a, n)=\sum_{j=0}^{d} e_{j}\binom{n}{j}$ for all sufficiently large n where e_{0}, \cdots, e_{d} are rational integers and e_{d} is positive. Moreover d is the projective dimension of \mathbb{Q} and e_{d} is called the degree of \mathbb{Q} and when $\mathbb{Q}=(f)$ the degree of \mathfrak{a} is the ordinary degree of f. The main technical result is the following [3, §3.24].

Proposition 3.3. Let a be a homogeneous ideal of $k\left[x_{0}, \cdots, x_{r}\right]$ and let f
be a homogeneous polynomial that is not a zero divisor modulo a. Then

$$
\operatorname{deg}(Q+(f))=\operatorname{deg}(f) \operatorname{deg}(Q)
$$

We now make a non-standard definition which marks the first departure from the usual theory.

Definition 3.4. Let \mathbb{Q} be a homogeneous ideal in $k\left[x_{0}, \cdots, x_{r}\right]$. We set $\operatorname{Deg}(\mathbb{Q})=\operatorname{deg}(\sqrt{ } \mathbb{Q})$.

By virtue of $[3, \S 3.24]$ we have the following.
Proposition 3.5. (i) $\operatorname{Deg}(\mathbb{Q}) \leq \operatorname{deg}(\mathbb{Q})$ and (ii) $\operatorname{Deg}(\mathbb{Q})=\sum \operatorname{deg}\left(\mathcal{P}_{i}\right)$ where \mathcal{P}_{i} ranges over the isolated prime divisors of \mathbb{Q}.

Theorem 3.6. Let \mathfrak{a} be a homogeneous ideal of $k\left[x_{0}, \cdots, x_{r}\right]$ generated by the homogeneous polynomials f_{1}, \cdots, f_{m}. Then

$$
\operatorname{Deg}(Q) \leq \operatorname{deg}\left(f_{1}\right) \cdots \operatorname{deg}\left(f_{m}\right)
$$

Proof. The proof is clear when $m=1$. Let B be the ideal generated by f_{1}, \cdots, f_{m-1}. We assume by induction that

$$
\operatorname{Deg}(ß) \leq \operatorname{deg}\left(f_{1}\right) \cdots \operatorname{deg}\left(f_{m-1}\right)
$$

Let $\mathcal{P}_{1}, \cdots, \mathcal{P}_{s}$ be the isolated prime divisors of \mathbb{B} and let $\mathfrak{P}_{1}, \cdots, \mathfrak{B}_{t}$ be the isolated prime divisors of $Q=\beta+\left(f_{m}\right)$. Clearly each \mathfrak{B}_{i} is an isolated prime divisor of some $\rho_{j}+\left(f_{m}\right)$. Hence

$$
\operatorname{Deg}(\mathfrak{Q})=\sum \operatorname{deg}\left(\mathfrak{P}_{i}\right) \leq \sum \operatorname{Deg}\left(\mathscr{P}_{j}+\left(f_{m}\right)\right)
$$

Now if f_{m} is in \mathscr{P}_{j} we see that

$$
\operatorname{Deg}\left(\odot_{j}+\left(f_{m}\right)\right)=\operatorname{deg}\left(\odot_{j}\right) \leq \operatorname{deg}\left(f_{m}\right) \operatorname{deg}\left(\odot_{j}\right)
$$

On the other hand, when f_{m} is not in \mathscr{P}_{j}, it is not a zero divisor modulo \mathscr{P}_{j}, so

$$
\operatorname{Deg}\left(\odot_{j}+\left(f_{m}\right)\right) \leq \operatorname{deg}\left(\mathscr{P}_{j}+\left(f_{m}\right)\right)=\operatorname{deg}\left(f_{m}\right) \operatorname{deg}\left(\mathscr{P}_{j}\right)
$$

Putting all of this together yields
$\operatorname{Deg}(\mathbb{Q}) \leq \operatorname{deg}\left(f_{m}\right) \sum \operatorname{deg}\left(\mathcal{P}_{j}\right)=\operatorname{deg}\left(f_{m}\right) \operatorname{Deg}(ß)$

$$
\leq \operatorname{deg}\left(f_{m}\right) \operatorname{deg}\left(f_{m-1}\right) \cdots \operatorname{deg}\left(f_{1}\right)
$$

It is obvious that Theorem 3.1 is a special case of Theorem 3.6.

4. Main results

In this section k will denote the finite field $G F(q)$ and K will be a function field in one variable in which k is the exact constant field. Since k is perfect, K is, of course, a regular extension of k. By P we will mean a prime correspondence from K to itself. That is to say, P is a non-zero prime ideal of the Dedekind ring $K \otimes_{k} K$. When $L=K \otimes_{k} K / P$, we denote by K_{1}
and K_{2} the two copies of K contained in L and set $m=\left[L: K_{1}\right]$ and $n=\left[L: K_{2}\right]$. Let $X^{K / k}$ be the Riemann surface for K over k. Finally let

$$
A_{P}=\left\{\rho \in X^{K / k} \mid \odot \text { divides } \rho^{P}\right\}
$$

Theorem 4.1. If (i) $m=n=1$ and P is not the diagonal or (ii) m / n is not an integral power of q, then $\delta\left(A_{P}\right)=0$.

The proof will be broken into a number of component propositions. Let us first dispose of case (i) of the theorem.

Theorem 4.1.1. If $m=n=1$ and P is not the diagonal, then $\delta\left(A_{P}\right)=0$.
Proof. In this case P may be regarded as an automorphism of K over k. Moreover $A_{P}=\left\{\odot \in X^{K / k} \mid \odot=\rho^{P}\right\}$. Let L be the fixed field of P. We claim that $[K: L]$ is finite. It suffices to show that the automorphism group of K over k is finite. When the genus of K is greater than or equal to two, the group is finite by the Schwartz-Klein Theorem [5, theorem on p. 66]. Suppose the genus of K is zero or one. We know there is a divisor a on K of degree one [1, Chap. 5, Theorem 5]. By the Riemann-Roch Theorem and the assumption on the genus, one has $\operatorname{dim}(a) \geq 1$. Hence there is a k-rational point in $X^{K / k}$. When the genus of K is zero, $K=k(x)$ and the automorphism group is $P G L_{2}(k)$ which is, of course, finite when k is. When the genus of K is one, the automorphism group is, except for a possible exceptional finite part, isomorphic to the group of k-rational points in $X^{K / k}$ and this is finite when k is. See [2, Chap. IV, §2.2]. Putting this all together we see that A_{P} is precisely the set of points in the Riemann surface for K that are totally inert over L. By Theorem 2.21, $\delta\left(A_{P}\right)=0$.

We next prove case (ii) with certain additional assumptions which will be removed later.

Theorem 4.1.2. Let m / n be unequal to any integral power of q. If P is absolutely irreducible (that is, k is exact in $\left.L=K \otimes_{k} K / P\right)$ and $q>\max \{m, n\}$, then $\delta\left(A_{P}\right)=0$.

Proof. It is easily seen that \mathcal{P} is in A_{P} if and only if there is a point \mathfrak{B} in $X^{L / k}$ that lies over \mathcal{P} in both K_{1} and K_{2}. By Theorem 2.10, $g(\mathfrak{P})=g(\mathcal{P})$ for almost all such \odot. We let

$$
B_{P}=\left\{\mathfrak{B} \epsilon X^{L / k} \mid N_{L / K_{1}} \mathfrak{B}=N_{L / K_{2}} \mathfrak{P}\right.
$$

and \mathfrak{B} is of relative degree one over K.
It clearly suffices to show $\delta\left(B_{P}\right)=0$. Let $B_{r}=\left\{\right.$ all $\left.\mathfrak{P} \in B_{P} \mid g(\mathfrak{P})=r\right\}$ and set $\left|B_{r}\right|$ equal to the number of elements of B_{r}. We next let

$$
\begin{gathered}
C_{P}=\left\{\text { all integral divisors } \mathbb{Q} \text { on } L \mid N_{L / K_{1}} \mathbb{Q}=N_{L / K_{2}} \mathfrak{Q}\right\}, \\
C_{r}=\left\{\text { all } \mathbb{Q} \in C_{P} \mid g(Q)=r\right\}
\end{gathered}
$$

and $\left|C_{r}\right|$ equal the number of elements of C_{r}. Clearly $\left|B_{r}\right| \leq\left|C_{r}\right|$. Hence it suffices to show $\lim _{u \rightarrow 1 / q}\left(\sum\left|C_{r}\right| u^{r} /(-\log (1-q u))=0\right.$. For this limit to vanish it in turn suffices to show that $\lim _{u \rightarrow 1 / q} \sum\left|C_{r}\right| u^{r}$ exists and is finite. Thus if we can show that there is a positive constant c such that $\left|C_{r}\right| \leq c n^{r}$ for all r we are done since $n<q$ by hypothesis (we are here assuming without loss that $m \leq n$). In order to show the above inequality, let \mathbb{Q} be in C_{r} and let $\omega_{1}, \cdots, \omega_{s}$ be a k-basis for $L(\mathbb{Q})$. Next let $\circledast=N_{L / K 1} \mathfrak{Q}=N_{L / K_{1}} \mathfrak{a}$ and let $\eta_{1}, \cdots, \eta_{t}$ be a k-basis for $L(\mathbb{B})$. It is easily seen that $N_{L / K_{1}}(L(\mathbb{Q})) \leq L(ß)$ for $i=1,2$. Now if $\sum a_{j} \omega_{j} \mathfrak{Q}$ is in $L(\mathbb{Q})$, then one has

$$
N_{L / K_{1}}\left(\sum a_{j} \omega_{j} \mathbb{Q}\right)=\sum F_{j}\left(a_{1}, \cdots, a_{s}\right) \eta_{j}
$$

and

$$
N_{L / K_{2}}\left(\sum a_{j} \omega_{j} \mathbb{Q}\right)=\sum G_{j}\left(a_{1}, \cdots, a_{s}\right) \eta_{j}
$$

where the F_{j} and G_{j} are homogeneous polynomials of degrees m and n, respectively. It is clear that $\sum a_{j} \omega_{j} Q$ is in C_{P} if and only if there is an element a in k^{*} such that

$$
a F_{j}\left(a_{1}, \cdots, a_{s}\right)=G_{j}\left(a_{1}, \cdots, a_{s}\right) \text { for } j=1, \cdots, t
$$

We wish to count the number of solutions for this system in k. Since we will need only an upper estimate it suffices to estimate the number of solutions in \bar{k} (the algebraic closure of k) of the system

$$
a_{0}^{n-m} F_{j}\left(a_{1}, \cdots, a_{s}\right)-G_{j}\left(a_{1}, \cdots, a_{s}\right)=0, \quad j=1, \cdots, t
$$

Let us explicitly note at this point that $n-m \neq 0$ since m / n is not a power of q and, in fact, $n-m>0$ by assumption. We first claim that the above system of equations has only a finite number of solutions. Indeed if it did not then there would be a solution on the hyperplane $a_{0}=0$. But this means that the system

$$
G_{j}\left(a_{1}, \cdots, a_{s}\right)=0, \quad j=1, \cdots, t
$$

possesses a non-trivial solution. But this says that $N_{L / K_{2}}\left(\sum a_{j} \omega_{j}\right)=0$ (we have passed here to $\bar{L}=L \otimes_{k} \bar{k}$ and $\bar{K}=K \otimes_{k} \bar{k}$.) But then $\sum a_{j} \omega_{j}=$ 0 and each $a_{j}=0$. Finally by the Extended Bézout Theorem 3.1, the number of solutions of the system is at most n^{t}. Now $t=\operatorname{dim}(ß)=r+1-g_{k}$ for all r sufficiently large (g_{k} is the genus of K). Next note that there are at most h linearly inequivalent elements of C_{r} where h is the projective class number of L. Thus for all sufficiently large $r,\left|C_{r}\right| \leq h n^{r+1-g_{k}}$ and there then clearly exists a positive constant c such that $\left|C_{r}\right| \leq c n^{r}$ for all r.

It is now necessary to remove the special hypotheses that were used in Theorem 4.1.2.

Proposition 4.2. Let m / n be unequal to any integral power of q. If P is not absolutely irreducible and $\delta\left(A_{P}\right) \neq 0$ then there is a finite extension
$k_{r}=G F\left(q^{r}\right)$ of k and a prime correspondence Q on $K_{r}=K \otimes_{k} k_{r}$ such that $\delta\left(A_{Q}\right) \neq 0, Q$ is absolutely irreducible and the ratio of the degrees of Q is unequal to any integral power of q^{r}.

Proof. Let k_{r} be the algebraic closure of k in $L=K \otimes_{k} K / P$. Then two copies of K_{r} are contained in L in an obvious way. Call them $K_{1 r}$ and $K_{2 r}$. We have the exact sequence $0 \rightarrow P_{r} \rightarrow K_{r} \otimes_{k_{r}} K_{r} \rightarrow L \rightarrow 0$. Now for almost all \mathcal{P} in A_{P} there is a point \mathfrak{P} on the Riemann surface for L that lies over \mathcal{P} in both K_{1} and K_{2} and such that $g(\mathfrak{P})=g(\mathcal{P})$. Hence \mathcal{P} must decompose completely in K_{r} since the latter is an unramified abelian extension of K. Say \mathcal{P} splits into $\mathcal{P}_{1}, \cdots, \mathcal{P}_{r}$ in K_{r}. Then $\mathcal{P}_{1}^{P_{r}}$ is divisible by some \mathcal{P}_{i}. Let F_{q} be the Frobenius correspondence in K and denote by F_{q} as well the extension of F_{q} to K_{r}. Then \mathscr{P}_{j} divide $\mathscr{P}_{j}^{P r}{ }^{r} q^{a}, j=1, \cdots, r$ for a suitable $a<r$. Thus $\delta\left(P_{r} F_{q} a\right) \neq 0$ for some $a<r$. Now $P_{r} F_{q} a$ need not be prime but it is at worst of the form $P_{r} F_{q} a=p^{b} Q$ where Q is prime and p is the characteristic of k. Note that the degrees of Q are $K / r p^{b}$ and $n q^{a} / r p^{b}$ and their ratio is certainly not a power of q^{r}. Moreover, $\delta\left(A_{Q}\right)$ is not zero since $\delta\left(P_{r} F_{q} a\right) \neq 0$. In order to see that Q is absolutely irreducible we note that Q is obtained by considering P_{r} in $K_{r} \otimes_{k_{r}} K_{r}$ and observing that Q lies beneath P_{r} in $K_{r} \otimes_{k_{r}} k_{r} K_{r}^{q^{a}}$. Now k_{r} is exact in $K_{r} \otimes_{k_{r}} k_{r} K_{r}^{q^{a}} / Q$ since it is exact in the larger field $K_{r} \otimes_{k_{n}} K_{r} / P_{r}=L$ by hypothesis.

Finally we eliminate the remaining extraneous hypothesis.
Proposition 4.3. Let m / n be unequal to any integral power of q and assume that P is absolutely irreducible. If $\delta\left(A_{P}\right) \neq 0$, then there is a finite extension $k_{r}=G F\left(q^{r}\right)$ of k such that the extension P_{r} of P to $K_{r}=K \otimes_{k} k_{r}$ is absolutely irreducible, $\delta\left(A_{P_{r}}\right) \neq 0, q^{r}$ is greater than both degrees of P_{r} and the ratio of those degrees is unequal to any integral power of q^{r}.

Proof. For the sake of argument assume $m<n$. If $n<q$ we are clearly done. Suppose that $m<q \leq n$. Let p_{1} be the smallest rational prime such that $n<q^{p_{1}}$. Moreover let $p_{1}<p_{2}<\cdots$ be the rational primes bigger than p_{1} written in order. Let $A_{P}=B_{s} \quad$ u C_{s} where C_{s} consists of all \mathcal{P} in A_{P} that are totally inert in $k_{r} \otimes_{k} K$ where $r=p_{1} \cdots p_{s}$ and let B_{s} be the complement of C_{s} in A_{P}. By Theorem 2.20,

$$
\bar{\delta}\left(C_{s}\right) \leq \prod_{j=1}^{s}\left(1-p_{j}^{-1}\right)
$$

We claim $\delta\left(B_{s}\right) \neq 0$ for some s. If this were not the case we would have $\bar{\delta}\left(A_{P}\right)=\bar{\delta}\left(C_{s}\right)$ for all s. However, $\bar{\delta}\left(C_{s}\right)$ can be made arbitrarily small when s is sufficiently large since the dominating product $\prod_{j=1}^{s}\left(1-p_{j}^{-1}\right)$ is a partial product of the reciprocal of the Riemann Zeta function evaluated at one. Let us assume, therefore, that s has been selected so that $\delta\left(B_{s}\right) \neq 0$. Now $B_{s}=\bigcup_{j=1}^{s} D_{j}$ where D_{j} consists of all \mathcal{P} in B_{s} such that \mathcal{P} is totally decomposed in $k_{p_{j}} \otimes_{k} K$. Hence $\delta\left(D_{j}\right) \neq 0$ for some j. We call p_{j} simply p. Let $K_{p}=K \otimes_{k} k_{p}$ and $L_{p}=L \otimes_{k} k_{p}$ and recall that L_{p} is a field since P
is absolutely irreducible ($L=K \otimes_{k} K / P$.) Let \odot be an element of $D=D_{j}$ and let $\odot_{1}, \cdots, \rho_{p}$ be the primes of K_{p} that lie above it. Moreover, denote by P_{p} the extension of P to K_{p}. Now \mathscr{P}_{1} divides $\mathscr{P}_{i}^{P_{p}}$ for some i. Thus for some $a<p, \mathcal{P}_{j}$ divides

$$
\mathscr{P}_{j}^{P_{p} F_{q}^{*} a}, \quad j=1, \cdots, p
$$

where F_{q}^{*} is the Rosati adjoint of the Frobenius correspondence (extended to K_{p}.) One sees that $\delta\left(A_{p} F_{q^{a}}^{*}\right) \neq 0$ for some $a<p$. Now $P_{p} F_{q^{a}}^{*}$ may not be prime but because of pure inseparability $P_{p} F_{q^{a}}^{*}=p_{0}^{d} Q$ where Q is prime and p_{0} is the characteristic of k. Clearly $\delta\left(A_{Q}\right) \neq 0$. The degrees of Q are $m_{0}=m q^{a} / p_{0}^{e}$ and $n_{0}=n / p_{0}^{e}$. Hence m_{0} / n_{0} is not an integral power of q^{p}. Moreover, $m_{0} \leq m q^{a}<q^{p}$ and $n_{0} \leq n<q^{p}$. Finally we must show that Q is absolutely irreducible. To this end we consider P_{p} as a prime ideal of $K_{p} \otimes_{k_{p}} k_{p} K_{p}^{q^{a}}$ and observe that Q is the prime of $K_{p} \otimes_{k_{p}} K_{p}$ that lies above it. Since k_{p} is exact in $K_{p} \otimes_{k_{p}} k_{p} K_{p}^{q^{a}} / P_{p}=L_{p}$ and $K_{p} \otimes_{k_{p}} K_{p}^{q^{a}} / Q$ is a purely inseparable extension of L_{p}, k_{p} must remain exact since it is a perfect field. Returning now to the hypothesis made at the beginning of the proof we see that we are reduced to the case that $q \leq m<n$. In order to handle this case repeat the argument above using F_{q} instead of F_{q}^{*}. As above we obtain $m_{0} \leq m<q^{p}$ and $n_{0} \leq n q^{a}$. If $n_{0}<q^{p}$ we are done and if $q^{p} \leq n_{0}$ we are back in the first case. The only substantial difference in the argument occurs when we seek to prove Q absolutely irreducible. Here P_{p} is a prime in $K_{p} \otimes_{k_{p}} K_{p}$ and Q is the prime that lies below it in $K_{p} \otimes_{k_{p}} k_{p} K_{p}^{\mathbf{q}^{a}}$. Thus

$$
k_{p}=K_{p} \otimes_{k_{p}} k_{p} K_{p}^{q^{a}} / Q \leq K_{p} \otimes_{k_{p}} K_{p} / P_{p}=L_{p}
$$

and since k_{p} is exact in L_{p} it remains exact in the smaller field.
The proof of Theorem 4.1 is now complete. It is, of course, natural to conjecture that the hypotheses (i) and (ii) in P are excessive. We should have simply that $\delta\left(A_{p}\right)=0$ when P is not a power of either F_{q} or F_{q}^{*}. The reader may easily verify that the case $m=n$ is the only substantial impediment to a proof for this conjecture. Since the case $m=n=1$ has been taken care of some sort of inductive argument would seem indicated but none has yet appeared.

References

1. E. Artin and J. Tate, Class field theory, Benjamin, New York, 1967.
2. M. Eichler, Introduction to the theory of algebraic numbers and functions, Academic Press, New York, 1966.
3. W. Krull, Idealtheorie, Chelsea, New York, 1948.
4. R. E. MacRae, On unique factorization in certain rings of algebraic functions, J. Algebra, vol. 17 (1971), pp. 243-261.
5. P. Samuel, Lectures on old and new results on algebraic curves, Tata Institute, Bombay, 1966.
6. O. Zariski and P. Samuel, Commutative algebra, vols. I and II, Van Nostrand, New York, 1958 and 1960.

[^0]: Received March 7, 1972.
 ${ }^{1}$ This work was supported in part by a grant from the National Science Foundation.

