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1. Introduction

In connection with another investigation the following question arose.
Suppose that P (x, z) is an irreducible polynomial in two variables over the
finite field k GF (q). Let the pir (a, ) lie in the graph of P, that is let
P (a, ) 0 where a and are elements of the algebraic closure/ of k. We
now ask: how often does it occur that a and/ are coniugate over k, that is,
how often is/ a

qr for some r? For example, how often does a q- 1
a? It is immediately clear that this situation will rise infinitely often for
given P so the question of "how often" must be answered in terms of a density.
To attack this question we will find it useful to consider P (x, z) as a corre-
spondence from the proiective line to itself. Then to say that P (a, ) 0
is to say (with finitely many exceptions) that there are points 1 and p.
on the proiective line over k such that x(l) c and z(cp) . To say
that and are conjugate is equivalent to saying that ( (.. More
generally, let us replace the proiective line by the Riemann surface XK for
any function field K in one variable in which k GF (q) is the exact constant
field. When P is any prime correspondence from K to K and is in XK/

then we may let P act or and produce an integral divisor also onK. We
are, therefore, interested in the set

X/A { I divides PP}.
In order to measure the size of Ap in X/ we use the ordinary Dirichlet density
(A). It is the purpose of this paper to prove the following result.

TaEOaEt. If (i) both degrees of P are one and P is not the diagonal or (ii)
the ratio of the degrees of P is not an integral power of q, then (A,) O.

It seems quite likely that the above theorem is true more generally when P
is assumed to be unequal to any power of the Frobenius correspondence or
its Rosati adjoint. The methods available to us unfortunately break down
when both degrees of P are equal but unequal unity.
The paper will consist of three more sections. The first of these deals with

generalities concerned with correspondences and the Dirichlet density. Our
treatment of the former is completely algebraic since the basic rationality
questions involved make such a treatment more useful than the customary
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geometric one Compare, for example, the algebraic treatment in [2]. Two
somewhat non-standard applications of the Dirichlet density are given. The
next section deals with an extended form of the theorem of Bout in which
improper intersections are considered. The final section gives a proof of
the main theorem stated above.

2. Generalities

In this section we describe the necessary details concerning correspondences
and density. The former will be done from an algebraic rather than a geo-
metric point of view since this will suit our purposes better. The reader is
assumed familiar with an algebraic treatment of functions fields in one vari-
able including the Riemann-Roch Theorem. See, for example [2]. For the
remainder of this section k except where indicated will denote an arbitrary
field and K a function field in one variable over/ such that k is algebraically
closed in K and K is separably generated over k. K is in other words, a
regular extension of k. Under these circumstances the ring K (R)k 1 is an
integral domain for every field extension, kl, of k.
We begin with several technical propositions.

PROPOSITION 2.1. Let 0 be an integrally closed -algebra and kl a finitely
and separably generated extension field of such that 0 (R) is an integral
domain. Then 0 (R) kl is integrally closed.

Proof. The proof easily reduces to special cases. First, let kl k(x)
be the rational function field in one variable. Then 0 (R) kl is clearly a local-
ization of the ring 0 (R) k[x] 0[x]. The latter is, however, well known to
be integrally closed when 0 is. Second, let kl be a finite, separable extension
of k. If 1,’", n is a basis for kl over k then 1 (R)1,..., 1 (R)n is
clearly a basis for 0 (R) kl over 0 and for the quotient field, L, of 0 (R)k kl
over the quotient field of 0. It is easily seen that 0 (R) kl is an integral ex-
tension of 0. Now the discriminant of the basis 1 (R) ,..., 1 (R) n is
in k* so it is a unit in . Thus by well-known arguments the conductor of
the integral closure of 0 (R) kl is trivial. In otherwords, 0 (R) kl is integrally
closed.

PROPOSITION 2.2. Let 0 and 02 be integrally closed ]-algebras whose quotient
fields are finitely and separably generated extensions of k and such that 01 (R) 02
is an integral domain. Then 01 (R)k 02 is integrally closed.

Proof. Observe that 01 (R)k 0 K (R) 05 n %_ (R)k Ks where K is the
quotient field of 0, i 1, 2. Then use Proposition 2.1.

:PROPOSITION 2.3. Let K be a function field in one variable over ]c and assume
it to be a regular extension of k. If 0 is a k-algebra which is a noetherian, in-
tegrally closed, integral domain all of whose maximal ideals are of Krull dimen-
sion n and possess a residue class field that is not algebraic over , then 0 (R) K
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inherits these properties excep tha the Krull dimension of he maximal ideals is
nWl.

Proof. Because of the assumed egularity, 0 @ K is an integral domain.
By Proposition 2.1, 0 (R) K is integrally closed. Let x be a transcendental
element of K. Then (9 (R) K is a finitely generated, integral extension of
0 (R) k (x). Hence it suffices to prove that 0 (R) k (x) is a noetherian ring
all of whose maximal ideals are of Krull dimension n -t- I and possess a residue
class field that is not algebraic over k. However, 0 (R) k (x) is a localization
of (R) k[x] O[x]. Thus it is immediately clear that 0 (R) k (x) is noether-
Jan. Now in O[x] all of the maximal ideals are of Krull dimension n - I and
are of the form (P - (f (x)) where ( is a maximal ideal of 0 and f(x) is irre-
ducible modulo (. Since ( clearly has a void intersection with the non-
zero elements of k[x] we need only show that for every maximal ideal (P of O
there is a polynomial f (x) that is irreducible modulo ( and such that (P -t-
(f (x)) has a void intersection with the non-zero elements of k[x]. Let z be an
arbitrary preimage of an element that is transcendental over k modulo (.

Then z x will clearly serve our purposes.
Now let K and K. be function fields in one variable over ] and assume that

both of them are regular extensions of k. It is an immediate consequence
of Proposition 2.3 that K (R) K. is a Dedekind domain.

DEFINITION 2.4. The (non-null) fractional ideals of the Dedekind domain
K (R) K are called the correspondences from K to K. The prime (resp.
integral) ideals of K (R) K are called prime (resp. integral) correspondences.
Corr (K, K) will denote the group (written additively) of all fractional
ideals of K (R) K..

If we let L be the quotient field of K (R) K it is clear that L may be re-
garded as a function field in one variable over both K and K. The prime
correspondences may then be regarded as the points in common to the Rie-
mann surfaces of L over K and L over K.. In particular, each prime cor-
respondence (and hence every correspondence) has two degrees;

g (P) [K (R) K/P:K] and g (P) [K (R) K/P:K].

Next we may regard P as a homomorphism from the divisor group Dr
of K to the divisor group D of K. Indeed let ( be a prime divisor on
K and let (() be the extension of (P to K (R) K/P L and then set

(ev N(().

Finally, extend this map to D’ by linearity in the usual way.
In a similar fashion we may define a product of correspondence as follows.

Let Kx, K and K be function fields in one variable over k and assume that
all are regular extensions of k. Moreover let P be a prime correspondence
from K to K and Q a prime correspondence from K to K. Let

L K@K/P
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and denote by Q’ the ideal in L (R) K generated by Q. We have

K (R)K _< L (R)K.

Define PQ to be the norm of Q’ taken from the quotient field of L (R) K to
the quotient field of K (R) K. We may obtain PQ in another way as the
follong theorem shows.

THEOREM 2.5. Le$ M K @ K/Q a le P’ be $he ideal of K @ M
generated by P. Se$ R equal o he norm of P’ taken from the quotien$ field of
K @ M o he quotient field ofK @ K Then R PQ.

Proof. By Proposition 2.3, K @ K @K is an integrally closed,
noethean domain all of whose maximal ideals have Krull dimension two.
It is easy to see that the ideal S generated by P and Q in can have no prime
disors of Kmll dimension one. Thus the primary decomposition S Q
h the propey that each associated prime Q is maximal. Let

oK@K
and set f [/:K @ K/]. It is now easy to see that both R and
PQ are equal to n where ef equals the length of /Q.
There is yet another way of looking at the product PQ. Indeed let K

be the quotient field of K @ K and K equal to the quotient field of
K @ K. We regard K and K as function fields in one variable over K
and obsee that both are regular extensions of K. Now P may be thought
of as a point in the Riemann surface X. We then extend Q to

K @ K
by noting that K @ K is a localization of

(K @ K) @, (K @ K) K, @ K @ K
which contains an ideal generated by Q. Call this extended ideal Q’ and note
that it need not be prime. However, we can still define Po in the usual way.
The follong theorem is clear from various definitions.

THEORE 2.6. PQ Po.
THEOREM 2.7. Let K K K be function fields in one variable over k and

asme all are regular over k. If P and Q are prime correspondences from K o
K and K to K, respectively, then (e) for every on he Rienn
surface for K.

Proof. Let L K @ K/P and M K @ K/Q. Moreover let
e R be factorization of the extension of Q to L @ K. If is a point

on the Riemann surface for L we set a equal to the divisor on M obtained
by extending to L @ K/R and then taking the norm to M. Likese
let a be the disor on M obtained by taking the norm of to K and then
extending to M. We claim a a. Indeed let be the point of K



below and let 9e be the associated valuation ring. Let e be the integral
closure of in L. Then r)e for suitable choice of v. We have

and let be theLet 3 be the integral closure of in L (R) K/R T
integral closure of Ve in M. Then a N/e and a. Nr/r.
Hence it suffice to show that N/ , considered as an element of M, equals
IX (Nr/ r). This, however, follows by applying [6, II, 11, Chap. V,
Lemma 1] to the pair of Dedekind domains L (R) Ka and K (R) K. Next
let Q be the prime ideal of K (R) K that lies below R and let f. be the resi-
due class degree. Then, by definition, PQ ef Q. If (P is a point
on the Riemann surface for K, then it is clear that ; equals the divisor
obtained by extending (P to T. L (R) K/R and then taking the norm to
Ka. By the remarks above IX (P)’ equals (Pe) so the theorem is
proved.

THEOREM 2.8. Let K K Ka and K be function fields in one variable over
k and assume all are regular extensions of k. If P, Q and R are correspondences
from Kto K K. to K and Ka to K respectively, then (PQ)R P(QR).

Proof. By Theorem 2.6, (PQ)R (P)" and P(QR) P. Hence
(PQ R (P) P P(QR by Theorem 2.7.

THEORE 2.9. If K is a function field in one variable over to and a regular
extension of to, then Corr,(K, K) forms an associative ring with identity and
there is a ring homomorphism of Corr,(K, K) into the endomorphism ring of
the divisor group D.

Proof. All except the existence of an identity element is contained in
preceding results. We consider the exact sequence 0 --* D --* K (R) K --K --* 0 given by sending a (R) b onto ab. The correspondence D is called the
diagonal and it is clear that DA AD A for every correspondence A in
Corr (K, K).
Let us now regard P as a curve in its own right and determine the effect

the singularities on the curve have. Let Oa and ee be valuation rings of
K and K, respectively, and observe that K (R) K is a localization of
tg, (R) O. Hence there is a unique prime ideal in O (R) whose locali-
zation is P. We denote this ideal by P also. We have

0 (R) O/P O O in L K(R)K/P.

THEORE 2.10. Except for a finite set of point pairs 6’, 6., 0o, 0 is
the integral closure of Ox and O, in L. (We assume here that Kx K K .)

Proof. Let x be a separating element of K over k and let be the integral
closure of k[x] in K. First note that @, k[x] )[x] is an integrally closed
noetherian domain of Krull dimension two and that 3 (R), 3 is a finitely
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generated (as a module) integral extension of [x]. Hence ) @ is a
noetherian domain of Krull dimension two. By Proposition 2.2, ) (R)
is integrally closed as well. Now since K (R) K is a localization of ) (R) )
there is a unique prime ideal of (R) ) whose localization is P. Call this
prime P as well. Now ) (R) k )/P is a noetherian domain of Krull dimension
one but not necessarily integrally closed. By localizing away a finite set of
non-zero prime ideals of ) (R) )/P we get a Dedekind domain. We can,
therefore, find a finite set of maximal ideals of such that by localizing them
away using a multiplicative set M we have (R) M/PM as a Dedekind
domain. The result now follows immediately.
We turn now to the notion of the Rosati adjoint. When P is a prime cor-

respondence from K1 to K. we may reverse the roles of K1 and K. and get a
prime correspondence P* from K. to K1 which is called the Rosati adjoint of
P. It is clear that P P**. One extends the adjoint operation to any
correspondence from K1 to Ks by linearity in the customary way.

THEOREM 2.11. Let P be a correspondence from K to K and Q a corre-
spondence from Ks to Ks. Then (PQ)* Q’P*.

Proof. This is an immediate consequence of Theorem 2.5.
When k GF (q) there is a special correspondence that we need to consider.

We will assume that K is a function field in one variable over k and that k
is exact in K and thus K is a regular extension of k since k is perfect.

DEFINITION 2.12. Let the exact sequence 0 -- Fq, --* K (R)k K --. K -- 0
be defined by sending a (R) b onto abqr. One calls Fqr a Frobenius corre-
spondence.

It is clear that F Fqr and the degrees of Fq are 1 and qr.
When k,, GF (q’) and Kn K (R) k we may extend Fq to Kn by con-
sidering the ideal of K (R), K generated by Fq.

LEMMA 2.13. Fq remains prime in K,, (R) K,,

Proof. 0 -- Fqr ---, K (R) K ---. K ---. 0 implies

0 --, (Fq) --. K (R) K @ k, -. K --. 0

exact. However, K (R) K (R) k K (R) K.
We will denote the extension of Fq, to K by Fq, as well.

THEOREM 2.14. If P is a prime correspondence from K,, to K,, then PFq
Fq P, PF, and Fq* P are all of the form peQ where Q is a prime and p is the
characteristic of k.

Proof. By use of the Rosati adjoint we need only consider PFq and PF*q,.
In order to compute PF*qr we consider P as a prime ideal in K @ k K’.
Since K (R) K. is a purely inseparable extension of K (R). kK there is
but one prime that lies above P. Call it Q. Thus PF*q peQ. The com-
putation of PFq is entirely similar.
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We turn, finally, to the Dirichlet density. Here k will be the finite field
GF (q) and K a function field in one variable over k in which k is exact.

DFNTON 2.15. The infinite series Zl(u) = u(a), where the sum
is taken over all integral divisors a on K, will be called the Zeta Function of
K over k.

By a simple application of the Riemann-Roch Theorem one obtains the
following pair of standard results.

THEOREM 2.16. ZK/ (u) converges absolutely and uniformly inside the com-
plex disc u < 1/q. Moreover, inside this disc Z/ (u) II (1 u(e))-where the product is taken over all points 6 on the Riemann surface for K.

Tv,OEM 2.17. There is a polynomial PKg,(u) of degree 2g (g equals the
genus of K) with integral coeffcients constant term 1 and leading coecient
q such that Z/(u) P/(u)/ (1 u)(1 qu)) inside the disc of radius
1/q. Moreover, P(1) h and P/ (l/q) h/q where h is the projective
class number of K.

We can now define several Dirichlet densities of a subset of the Riemann
surface of K.

DEFINITION 2.18. Let A be a subset of the Riemann surface of K and let
A equal the number of points in A of degree n. Set

A (u) ( A,,u*/(-log (1 qu))).

Let (A) lim sup A (u), . (A) lim inf A (u) and (A) lim A (u) where
the limits are taken as u approaches 1/q along the real axis from the left.
We call (A), (A) and (A) the upper, lower and ordinary Dirichlet densities
of A, respectively.

By virtue of the preceding two theorems and the Riemann-Roch Theorem
we have the following result whose proof is easy and is left to the reader.

THEORE 2.19. For every subset A of the Riemann surface for K, (A)
and . (A exist and 0 <_ . (A <_ (A <_ 1. Moreover a (A ) exists if and only
if (A . (A in which case (A (A . (A ).

The following two variants of the Dirichlet density theorem will be used
later.

THV,ORE 2.20. Let k GF (q) and K a function field in one variable which
contains k as exact constant field. Let n p p, be a product of distinct
primes. Set k,, GF (q’*) and K, K (R) k,,. If A consists of the set of
points on the Riemann surface for K that remain totally inert in K,, then

(A) II-i (1- p71) (n)/n.

Proof. Kn is an unramified cyclic extension of K. Denote the Artin
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reciprocity map as usual by (K,/K/5)) where ( is a point on the Riemann
surface for K. Now (P is totally inert if and only if (Kn/K/) generates the
Galois group. Hence (K,/K/) can take on any of (n) values. Thus by
the usual density theorem (A) (n)/n. See [1].

THEOREM 2.21. Let t GF (q) and K a function field in one variable which
contains k as exact constant field. Let L be a finite extension field of K in which
k remains exact. If A is the set of all points on the Riemann surface for L that
have residue class degree exceeding one over K, then (A O.

Proof. We have the equality ug() -( t. u’g(e)) where
n [L :K], ranges over the non-ramified pointts in A and the points (P

are those in the Riemann surface for K that lie below these points.
0

_
t.,

_
n for each j and (P, it is clear that tj. u’g(), j 2,

converges at u 1/q. Hence

lim-l/ ( ug()/(- log (1 qu) ))
E?-. lim=.,/ (E tj., u)/(-log (1 qu))) O.

Since

That is to say, (A) 0.

3. An extension of Bzout’s Theorem
The customary form of Bzout’s Theorem gives very exact information

on the number of points in what one might call a proper intersection. We will
need less exact information on the number of points in an improper inter-
section. I am indebted to I. Fischer for suggesting the key step in the fol-
lowing theorem.

THEOREM 3.1. Let be an algebraically closed field and let f, f,, be
homogeneous polynomials in k[Xo, x]. If fl, f,,, have only finitely
many common zeros, the number of distinct such zeros is at most the product of
the degrees of fl f,

In order to prove this result we begin with some preliminaries.
be an arbitrary field.

Let k

DEFINITION 3.2. If ( is a homogeneous ideal in k[Xo, ...,Jx] then

x (a, n) dim (k[x0, x]. a.)

is the characteristic function of a.

By the welbknown theory [3, 3.24] x (a, n) =0 e() for all suffi-
ciently large n where e0, e are rational integers and e is positive. More-
over d is the projective dimension of a and e is called the degree of a and
when a (f) the degree of a is the ordinary degree of f. The main technical
result is the following [3, 3.24].
PROPOSITION 3.3. Let ( be a homogeneous ideal of k[xo, x,] and let f



be a homogeneous polynomial that is not a zero divisor modulo 6. Then

deg (6 q- (f)) deg (.f) deg (6).

We now make a non-standard definition which marks the first departure
from the usual theory.

DwFIITmN 3.4. Let a be a homogeneous ideal in k[xo,..., xr]. We
set Deg (6) deg (/a).

By virtue of [3, 3.24] we have the following.

PROPOSiTiON 3.5. (i) Deg(a)_< deg(et) and (ii) Deg(a)= deg((P)
where 6’ ranges over the isolated prime divisors of 6.

Tv.oR.M 3.6. Let ( be a homogeneous ideal of k[xo,..., xr] generated
by the homogeneous polynomials fl f,, Then

Deg (6) _< deg (fl)... deg (f).

Proof. The proof is clear when m 1. Let 6 be the ideal generated by
f, f_. We assume by induction that

Deg (6) _< deg (f)... deg (f-).

Let (el, (P, be the isolated prime divisors of (B and let , ,
be the isolated prime divisors of a (B q- (f). Clearly each is an iso-
lated prime divisor of some (e q- (f). Hence

Deg (6) deg (,) _< Deg ((e q- (f)).

Now if f is in ( we see that

Deg ((P-t- (f)) deg ((e) _K deg (f) deg ((e.).

On the other hand, whenf is not in (e, it is not a ,ero divisor modulo (, so

Deg ((P q- (f)) _K deg ((P q- (f)) deg (f) deg ((p).

Putting all of this together yields

Deg (6)

_
deg (f) deg ((P) deg (f) Deg ((B)

_K deg (f)deg (f_)... deg (f).

It is obvious that Theorem 3.1 is a special case of Theorem 3.6.

4. Main results
In this section k will denote the finite field GF (q) and K will be a function

field in one variable in which k is the exact constant field. Since k is perfect,
K is, of course, a regular extension of k. By P we will mean a prime cor-
respondence from K to itself. That is to say, P is a non-zero prime ideal
of theDedekindringK (R)K. WhenL K (R),K/P, we denote byK
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and Ks the two copies of K contained in L and set m [L :K1] and n [L: K2].
Let X be the Riemann surface for K over/. Finally let

Ap { X (p divides

THEOREM 4.1. If (i) m n 1 andPisnot the diagonal or (ii) m/n
is not an integral power of q, then (Ap) O.

The proof will be broken into a number of component propositions. Let
us first dispose of case (i) of the theorem.

THEOREM 4.1.1. If m n 1 and P is not the diagonal, then (Ap) 0.

Proof. In this case P may be regarded as an automorphism of K over
MoreoverAp {eXK/ I (pe}. LetL be the fixed field of P. We
claim that [K:L] is finite. It suffices to show that the automorphism group
of K over k is finite. When.the genus of K is greater than or equal to two,
the group is finite by the Schwartz-Klein Theorem [5, theorem on p. 66].
Suppose the genus of K is zero or one. We know there is a divisor a on K
of degree one [1, Chap. 5, Theorem 5]. By the Riemann-Roch Theorem and
the assumption on the genus, one has dim (a) >_ 1. Hence there is a k-ra-
tional point in XE/. When the genus of K is zero, K k (x) and the auto-
morphism group is PGL,. (k) which is, of course, finite when k is. When the
genus of K is one, the automorphism group is, except for a possible exceptional
finite part, isomorphic to the group of k-rational points in XE/ and this is
finite when k is. See [2, Chap. IV, 2.2]. Putting this all together we see
that Ap is precisely the set of points in the Riemann surface for K that are
totally inert over L. By Theorem 2.21, (Ap) 0.
We next prove case (ii) with certain additional assumptions which will be

removed later.

THEOREM 4.1.2. Let rain be unequal to any integral power of q. If P is
absolutely irreducible (that is, k is exact in L K (R)k K/P) and q > max {m, n},
then (A, O.

Proof. It is easily seen that (P is in Ap if and only if there is a point
in XL/ that lies over (P in both K1 and Ks. By Theorem 2.10, g() g((P)
for almost all such re. We let

XLI,

and is of relative degree one over K}.

It clearly suffices to show 8(Be) 0. Let B, {all e Be g() r}
and set B, equal to the number of dements of B,. We next let

Ce {all integral divisors (t on L NLI
C, {all (te Ce g(e) r}
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and C equal the number of elements of C. Clearly B < C I. Hence
it suffices to show lim (_.,IC lug (-log (1 qu)) O. For this
limit to vanish it in turn suffices to show that lim_.l C u exists and
is finite. Thus if we can show that there is a positive constant c such that
C < cn for all r we are done since n <: q by hypothesis (we are here as-

suming without loss that m < n). In order to show the above inequality,
let a be in C and let ol,..., be a k-basis for L(a). Next let
53 N,I a N,I a and let /, be a k-basis for L(53). It is
easily seen that Yr/K (L (a)) <_ L (53) for i 1, 2. Now if at o. a is
in L (a), then one has

N/r:, (_, as cot
and

NL/r:(_ as cos a)
where the Fs and Gs are homogeneous polynomials of degrees m and n, re-
spectively. It is clear that ascos a is in Cp if and only if there is an element
a in k* such that

aFs(al,...,a,) G(a,...,a,) for j 1,...,t.

We sh to count the number of solutions for this system in k. Since we 11
need only an upper estimate it suffices to estimate the number of solutio in

(the algebraic closure of k) of the system- a)- G(a a,)= 0, j 1, t.ao F(a ,..
Let us explicitly note at this point that n m 0 since m/n is not a power
of q and, in fact, n m > 0 by assumption. We first claim that the above
system of equations has only a finite number of solutions. Indeed if it did
not then there would be a solution on the hyperplane a0 0. But this
means that the system

G(a, a,) O, j 1,

possesses a non-trivial solution. But ts says that N/(a) 0
(we have passed here to L L @ and K @ .) But then a
0 and each a 0. Finally by the Extended B6zout Theorem 3.1, the number
of solutions of the system is at most nt. Nowt dim ($) r 1 g,
for all r sufficiently large (g, is the genus of K). Next note that there are
at most h linearly inequivalent elements of C where h is the projective class
number of L. Thus for all sufficiently large r, ]C hn+- and there
then clearly exists a positive constant c such that C cn for aH r.

It is now necessary to remove the special hypotheses that were used in
Theorem 4.1.2.

PROPOSITION 4.2. Let m/n be unequal to any integral power of q. If P is
not absolutely irreducible and $(Ae) 0 then there is a finite extension
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kr GF (qr) of k and a prime correspondence Q on Kr K (R) k, such that
(A) O, Q is absolutely irreducible and the ratio of the degrees of Q is unequal

to any integral power of qr.
Proof. Let k be the algebraic closure of k in L K (R) KIP. Then two

copies of K are contained in L in an obvious way. Call them K and Kr.
We have the exact sequence 0 -- P -K (R), K --, L --, 0. Now for almost
all ( in Ar there is a point on the Riemann surface for L that lies over (
in both K and K and such that g() g((). Hence ( must decompose
completely in K since the latter is an unramified abelian extension of K.
Say ( splits into (P, ( in Kr. Then ("" is divisible by some (.
Let Fq be the Frobenius correspondence in K and denote by F as well the
extension of Fq to K. Then (PC divide (,rq, j 1, r for a suitable
a < r. Thus (PFa) 0 for somea < r. NowPFa need not be
prime but it is at worst of the form P Fq a pQ where Q is prime and p is
the characteristic of k. Note that the degrees of Q are K/rp and nq/rp
and their ratio is certainly not a power of q. Moreover, (Ao) is not zero
since (P F a) 0. In order to see that Q is absolutely irreducible we
note that Q is obtained by considering P in Kr (R) K and observing that Q

qalies beneath P in K (R)r k Kq,. Now k is exact in Kr (R) k K/Q since
it is exact in the larger field K (R) K/Pr L by hypothesis.

Finally we eliminate the remaining extraneous hypothesis.

PROPOSITION 4.3. Let m/n be unequal to any integral power of q and assume
that P is absolutely irreducible. If (A,) O, then there is a finite extension

GF (q) of such that the extension P, of P to K K (R) k, is absolutely
irreducible, (Ap,) O, qr is greater than both degrees of P and. the ratio of
those degrees is unequal to any integral power of q.

Proof. For the sake of argument assume m < n. If n < q we are clearly
done. Suppose that m q _< n. Let pl be the smallest rational prime such
that n ql. Moreover let pl < p2 be the rational primes bigger
than pl written in order. Let Ap Ba u C, where C consists of all 5) in
Ae that are totally inert in k (R) K where r pl"’p, and let B, be the
complement of C, in Ap. By Theorem 2.20,

<
We claim (B,) 0 for some s. If this were not the case we would have
(Ap) (C,) for all s. However, (C,) can be made arbitrarily small when

s is sufficiently large since the dominating product H-- (1 p:l) isa partial
product of the reciprocal of the Riemann Zeta function evaluated at one. Let
us assume, therefore, that s has been selected so that (B,) 0. Now
Be U_ID where D consists of all ( in B, such that ( is totally decom-
posed in k (R) K. Hence (D) 0 for some j. We call p. simply p.
Let K K (R) k and L L (R) ] and recall that L is a field since P



is absolutely irreducible (L K (R) K/P.) Let ( be an element of D Dj
and let (Pl, ( be the primes of K that lie above it. Moreover, denote
by P the extension of P to K. Now (1 divides (9 for some i. Thus for
some a < p, (. divides

(, j 1,...,p

where F* is the Rosati adjoint of the Frobenius correspondence (extended
to K .) One sees that (A Fq*o) 0 for some a < p. Now P Fq* may
not be prime but because of pure inseparability P F, p Q where Q is
prime and p0 is the characteristic of k. Clearly (A) 0. The degrees
of Q are mo mqa/p and no n/p. Hence too/no is not an integral power
of q. Moreover, mo <_ mqa < q’ and no _< n <: q. Finally we must show
that Q is absolutely irreducible. To this end we consider P as a prime ideal
ofK (R) kK and observe that Q is the prime ofK (R)K that lies above

qa qait. Since k is exact in K @ k,K,/P, L, and K @ K,/Q is a
purely inseparable extension of L, k must remain exact since it is a perfect
field. Returning now to the hypothesis made at the beginning of the proof
we see that we are reduced to the case that q _< m < n. In order to handle
this case repeat the argument above using Fq instead of F*. As above we
obtainm0_< m < qandn0_< nq. If no < q we are done and if q _< no
we are back in the first case. The only substantial .difference in the argument
occurs when we seek to prove Q absolutely irreducible. Here P is a prime
in K (R) K and Q is the prime that lies below it in K @ kK". Thus

qak, K, (R) k, K,/Q <_ K, (R) K,/P, L
and since k is exact inL it remains exact in the smaller field.
The proof of Theorem 4.1 is now complete. It is, of course, natural to

conjecture that the hypotheses (i) and (ii) in P are excessive. We should
have simply that (A) 0 when P is not a power of either Fq or F*. The
reader may easily verify that the case m n is the only substantial impedi-
ment to a proof for this conjecture. Since the case m n 1 has been taken
care of some sort of inductive argument would seem indicated but none has
yet appeared.
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