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1. Introduction
Let 1 be the group of linear fractional transformations

w---* (aw T b)/ (cw W d)

of the upper half plane into itself with integer coefficients and determinant 1.
r is isomorphic to the 2 X 2 modular group; i.e., the group of 2 X 2 matrices
with integer entries and determinant 1 in which a matrix is identified with its
negative. Let r (n), the principal congruence subgroup of level n, be the
subgroup of r consisting of those elements for which a d 1 (mod n) and
b -= c 0 (mod n). G is called a congruence subgroup of level n if G con-
tains r (n) and n is the smallest such integer. G has a fundamental domain
in the upper half plane which can be compactified to a Riemann surface and
then the genus of G can be defined to be the genus of the Riemann surface.
H. Rademacher has conjectured that the number of congruence subgroups of
genus 0 is finite. D. McQuillan [7] has shown that the coniecture is true if
n is relatively prime to 2.3.5 and . Dennin [1, 2] has shown that the con-
jecture is true if n 2, 3 or 5. In this paper we show that the number of
subgroups of prime power level of genus g is finite for any g. We may assume
g 0 since the case g 0 is done.

2. Preliminary results and definitions
Consider Mr(.), the Riemann surface associated with r (n). The field of

meromorphic functions on Mr(n) is called the field of modular functions of
level n and is denoted by K (n). If j is the absolute Weierstrass invariant,
K (n) is a finite Galois extension of C (j) with r/r (n) for Galois group. Let
SL (2, n) be the special linear group of degree two with coefficients in Z/nZ
and let LF (2, n) SL (2, n)/-4..I. Then r/r (n) is isomorphic to LF (2, n).
If F (n) c G c r and H is the corresponding subgroup of LF (2, n), then by
Galois theory H corresponds to a subfield F of K (n) and the genus of F equals
the genus of G.

The following notation will be standard. A matrix

will be written -(a, b, c, d).

T= q-(0,--1,1,0); S= q-(l, l, O, l); R- d= (O, --l, l, l).
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T and S generate LF (2, n) and R TS. F will be a subfield of K (n) con-
taining C (j) and H the corresponding subgroup of LF (2, n). g(H) the
genus of H and h or H the order of H. [A] or [+/- (a, b, c, d)] will denote
the group generated by A or =t= (a, b, c, d) respectively.
We now concentrate on LF (2, p’), p > 2, whose order is pS,,-,.(p 1)/2.

The case p 2 will be considered in the last section. McQuillan [7] obtained
the following formula for the genus of H.

Let r, and s (pr) be the number of distinct cyclic subgroups of H generated
by a conjugate in LF (2, p’) of R, T and Svr respectively where I <_ pr < p’.
Then

(2.1) g(H) 1 + p’-(p- 1)(p"- 6)/24h- p,,-l(p_
(-3/p)) r/3h p,,-1 (p (_ 1/p))t/4h p’-" (p 1)W/4h

where W s(pr). One immediate consequence of this is that if two
groups are conjugate, they have the same genus.
We now collect some basic facts about subgroups of LF (2, p’) and conju-

gates of Sr, R and T which we will use later. First we have three proposi-
tions which are found in Gierster [4]. Let ] be the natural homomorphism
from LF(2, p’*) to LF(2, p’), 0 < r < n, given by reducing an element
rood p’. The kernel of this homomorphism is denoted by K’ aad has order

PROIOSITION 2.1. If H a K-I is the identity, H a K is the identity for
r= 1, ...,n- 2.

PROPOSITION 2.2. If ,,-1 p, then H n is cyclic and

IHnK,, ,-i

PROPOSitiON 2.3. ,_ p, then H n K is generated by two
transformatis U and U of order p’- and p’-* respectively and

H n K= p’--" _< p’-.
In Proposition 2.2, H n K’ [U] where

U +/- (u - pr, pr,,, pp, u p)

with not all of , , p 0 (mod p) and u -t- p( -t- p) 1 (mod p’).
Following Gierster, we make the selection of u unique by choosing u 1
(mod p) and we write U b(, , p). The order of U is then p’-r and

[U] U (, , ,)}

where u and are given inductively by the formulas

(2.2) us =- u_u -{- }_ (u 1), } --=- _u -{- u_ (mod p’)

where u u and 1 [2]. From Proposition 2.3, let

U b(, , p), and U (’, ’,
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Then [U] n [U] {I} and

HnK {VV}

’f/u + p fu + p+’f(.’ .’),

p fpu W p mu T p+’ff(

uu p fu P’m’u + P+’(’ + ’p))}

where 1 p’-’ and 1 p’-’. The power of p diding
determines to which K U and U belong.
We use the groups K to define the concept of level for H. H is of level r

if H contains K and does not contain K,,. Silarly we say a subfield F
of K (p’) is of level r if F is a subfield of K (p’) and not a subfield of K
Note that F is of level r if and only if its Galois group is of level r. Silarly
we 11 use the pase "at the r-th level" to mean in
A conjugate of S" has the form (1 p’ac, p’a, -p’c, 1 +/ac). The

follong proposition simplifies the task of counting groups conjugate to
IS"] [1].

POeOSTON 2.4. Any group A conjugate to [S’], where

(1 p’ac, p’a, --p’c, 1 + p’ac)

is an element of A and (a, p’) 1, contains one and only one element of the
form (x, p’, y, z) and itis conjugate to S’.

So under the proper conditions, to calculate s(p’) for H, it is scient to
count the number of elements of the form (1 p’c, p’, -p’c, 1 + p’c) in
H. Unless otherse indicated, the phrase "a conjugate of S’’’ 11 mean one
in %s form. If U (1 p’-c, p’-*, -p’-c, 1 + p’-*c) is conjugate of
S’-" and V is a conjugate of S’-* such that U V, then

V (1 p’-* (c + xp’-’), p’-, -p’- (c + 2cxp’-’), 1 + p’- (c + xp’-’) )

where0_< x <p.
The following proposition simplifies the calculation of the number of con-

jugates .of T and R in H.

PROPOSITION 2.5. Let H be a subgroup of LF (2, p’) and I be its image in
LF (2, p) If (respectively [ in 1 has k pre-images in H conjugate to T (R
then each conjugate of ([ in i has 0 or k pre-images conjugate to T (R in H.

Proof. Suppose in/ has UTU-{ T, UT U[, ..., UT U- as its
pre-images in H conjugate to T. Suppose , is conjugate to in/ and that

has at least one pre-image conjugate to T so that we may assume T, is
conjugate to T. Then there is a B in LF (2, p’) such that BTB- T in H
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and so//- in//. Then, for i 1, ..., k,

(B (U,T UT)B-)
so that T has at least k pre-images conjugate to T in H. Suppose

(UTU-) and UTU-lB (U TU-)B- for any i 1, ..., k.

Then B- (UTU-)B U TU’ for any i and yet (B- (UTU-)B)in B which is a contradiction. Therefore has at most k pre-images in H
conjugate to T. A similar argument works for R and R.
By conjugating H, we may assume that T is an element of H. By Proposi-

tion 2.5, it is sufficient to count the number of elements in H coniugate to T
which are in (H n K). T. By Gierster [4], for p > 2, T in LF (2, p’) is
conjugate to T if and only if the trace of T is congruent to 0 mod p’. Let
U (, , p). Then

U. T ::t:: (p",, u prt, u p, p"p)

which has trace 0 if and only if p( p) 0 (mod p’) if and only if-- p (mod p’-’)where 1

_
, p

_
p-’.

DEFINITION 2.1. U (, , p), has property A if and only if p
(mod p’-’).

We will want to calculate the number of elements in H with property A.
Similarly, by conjugating H, we may assume that R is an element of H and

again by Proposition 2.5, it is sufficient to count the number of elements in H
conjugate to R which are in (H a K’).R. By Gierster [4], for p > 3, R in
LF (2, p) is conjugate to R if and only if the trace of R is congruent to
+/-1 mod

U.R -+-(p",, -u p"tt -{- p",, u p"#, u p"tt p"p)

which has trace congruent to u -t- p( t p) mod p’.

DEFINITION 2.2. U (#, , p), has property B if and only if

u-t-p(-- p) -= 1 (mod

It it sufficient to count the U with property B in H since the previous as-
sumption that u --- 1 (rood p) implies that p divides 1 u. But if

u-p(- - p) 1 (modp’),

then p divides (1 -t- u) so that p divides (1 u) - (1 -t- u) 2, a con-
tradiction. Here we have used the -l- sign in front of the matrix; using the
sign would have given all the relevant matrices trace -1.

First we are going to show that it is enough to consider LF (2, p’) for a
fixed p. In doing this and later in applying Proposition 1.5, it is necessary to
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have a list of subgroups of LF (2, p). The possibilities are [3, 7]"

(1) a cyclic group C of order m where m p, m divides (p 1)/2 or
(p -}- 1)/2;

(2) a dihedral group D.. of order 2n where n divides p 1 or p 1;
(3) a metacyclic group M, of order pu where u divides (p 1)/2;
(4) a tetrahedral group 5 for each p, an octahedral group (9 if p

(mod 8) or an icosahedral group if p +/-1 (mod 5).

PROPOSITION 2.6. Fix g > O. There exists a po such that if p >_ po, then
K (p) has no subfields of genus g.

Proof. D. McQuillan has formulas for the genus of subgroups of LF (2, p),
p > 5 [7]. Using them we see that

(1) g(I) 1 - (p- 6)(p- 1)/24,
(2) g(5) >_ 1+ (pa- 6p- p-{-6)/288- (p- 1)/9- (p-t-1)/16,
(3) g(o) >_ 1 -t- (p 6p p -t- 6)/576 (p -t- 1)/18 3(p -t- 1)/32,
(4) g(C) (p- 12p -t- 85)/24,
(5) g(C,) >__ 1 - (p - e)((p 6)(p )/12 7/6)/2m,
(6) g(D) >_ 1 + (p + ) ((p 6)(p e)/48 1/6- (p - 1)/4)/n,
(7) g(M,,) >_ 1 - (p- 11)/12- 7/6,
(8) g() >_ 1 -t- (p 6p p - 6)/1440 (p T 1)/18 (p -t- 1)/16,

where e +/-1. So lim g(H) where H is a proper subgroup of LF
(2, p). Further g(LF(2, p)) 0. So for p sufficiently large, LF(2, p) con-
tains no subgroups of genus g and hence K (p) has no subfields of genus g.
To show that the same result is true for K (p), n >_ 2, we need the follow-

ing fact.

LEM 2.7. If F is a subfield of L, then g (F) <_ g (L).

Proof. By the relative genus formula,

2 g(L) 2 (2 g(F) 2)[L’F] -}- d(D,,)

where d (D]) is the degree of the discriminant of L over F. But [L" F] >_ 1
and d(D,,) >_ 0 so that 2 g(L) 2 >_ 2 g(F) 2 which implies that
g(L) >_ g(f).

THEOREM 1. Fix g > O. There exists a po such that if p >_ po, then K (p
has no subfields of genus g.

Proof. We proceed by induction on n. By Propositioa 2.6, there is a po
such that if p >_ p0, K (p) has no subfields of genus less than or equal to g
except for C (j) which has genus 0. Suppose F is a subfield of K (p’) of genus
g. Then by Lemmu 2.7, F F n K(p’-) which is a subfield of F has genus
g _< g. By the induction hypothesis, K (p’-) has no subfield of genus less
than or equal to g except C(j) so that F C(j). Let H G(K(p")/F).
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Then H(mod p"-") G(K(p"-)/F) LF(2, p’*-) since F O(j). So
H contains K

_
[7] implying that F K (p"-) So by induction, F C (j)

and g(F) 0 g, a contradiction.

3. LF(2, p’),p > 3

By Theorem 1, we may assume that p is a fixed prime and we continue to
assume that p > 2. Fix g > 0. We will show that

{El F __. K (p") for some n, g (F) g}

is finite by showing that there is an r0 such that for r >_ r0 there are no fields
of level r and genus g in K (p"), n > r. So we must show that any subfield of
K (p") of genus g is already a subfield of K (p). Therefore it is enough to
assume that F is a subfield of K (p") and is not a subfield of K (p"-) and show
that g(F) > g. In terms of the associated subgroup H of LF(2, p"), this
means there are three cases to consider:

(1) Hng_ {I}, (2) gnKX_,] p, (3) ]HnK_,I P
since if H n K_ P, then K_

___
H and so F K (p"-).

The first case is easy and is done in the following proposition.

PaoosITIO 3.1. There exists an n such that if n >_ n and H n K’*,_ {I},
then g (H) > g.

Proof. Suppose H n K_ {I}. By Proposition 2.1, H n K {I}.
Then _< 15, r _< 10 and h <_ (p 1)/2 _< p. To see this, apply f, whose
kernel is K’, to H and then count the appropriate elements in the image of H
in LF(2, p). Further W 0 since any conjugate of a power of S raised to
some power is in K". Therefore, by formula (2.1)

g (H) >_ 1 -i- {p’- (p" 1) (6p- -t- 80p- (p -t- 1)

-t- 90p"- (p -t- 1 )}/24p

1 +/(n)

where lim,., f(n) oo. So there is an n such that for n >_ n, g(H) > g.
For the second case we use the bounds on r, and W given in the following

lemma.

LEi 3.2. Suppose IHnK_ p. Then W <_ n, <_ 15p+ and
r _< 20p".

Proof. Since H n K_ p, by Proposition 2.2, H n K is cyclic with
]HnK’I _< p"-. If W 0, conjugateH sotha S-’ is inH. Then
W <_ n 1 + s (1). Suppose U and V are conjugates of S such that U V.
Then

u= +/-(1-c, 1,-c,1+c)
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and

V -+- (1 (c -I- xp"-l), 1, (c -{- 2cxp"-l), 1 -I- (c -I- xp-l)
where 1 _< x < p and p divides c since U’-1 S-1. Then

U-1V 4-(1 xp’-1, -xp’-1, O, 1 -I- xp"-1)
is inHnK:_l. ButHnK,"_l {4- (1, yp’-l, 0, 1)[0 <_ y <_ p.-1}. So
s(1) _< 1 and W _< n. To calculate and r we use Proposition 2.5. From
McQuillan [7], we see that in LF(2, p) <_ 15(p -t- 2) and r _< 20p. Since

t_< 15(p +2)p-1_ 15p+1 nd r_< 20p.
Povosxo 3.3. There exists an n such that ifn >_ n and H n K_I P,

then g(H) > g.

Proof. By Lemm 3.2, W _< n, _< 15p+1 nd r _< 20p. Since

LF(2, P) P(P-" 1)/2 _< p &nd

h _< p+. So by formul (2.1),
g(H) >_ 1 + {p-2(p2 1) (6(p 1)p- 4- 160p-l(p -l- 1)

-{- 90p (p -t- 1) + 6np

1 -{-f(n)

where f(n) p"-4(ap’ bn- c) with a > 0, b and c constants. But
lim,f(n) so that there is an n such that for n >_ n, g(H) > g.

In the case ]H n K_ p, we will use the following notation from
Gierster [4]. Let U (, , p) and set r + p. Then K,_" contains
3 different conjugacy classes of groups of order p’

(1) (p + 1)G,(/) determined by 0 (mod p), e.g. [4-(1, p.-1, 0, 1)],
(2) p(p + 1)/2 G,(II) determined by Or/p) 1, e.g. [4-(1 + p.-1, 0,

0, 1 p-l)],
(3) p(p 1)/2 G,(III) determined by (v/p) -1, e.g. [4-(1, p’-v,

p-l, 1) where (v/p) 1.

Similarly the subgroups of order p in K_ divide into 3 conjugacy classes"

(1) (p + 1)G, (I) containing 1G, (I) and pG, (II),
(2) p (p + 1)/2 G, (iI) containing 2 G, (I), (p 1)/2 G, (iI) and

(p 1)/2 G (/H),
(3) p(p 1)/2 G, (IiI) containing (p + 1)/2 G, (II) and (p + 1)/2

We now give a series of propositions which give bounds on W, and r in the
case]HnK._l P-
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Paoeoso 3.4. Suppose H K_ is conjugate to G, (II). Then

W <_ 2(n-p- 1).

Proof. By coniugating H, we can assume the G (H) is generated by

S’-’ +/- (1, p’-, 0, 1) and S =i= (1 p’-, p’-, -p’-, 1 -t- p’-)
and so a typical element in G (II) is

=t= (1 ip’-, p’- (i + j), -ip’-, 1 + ip’*-).

Suppose U (1 pc, p, -p, 1 pc) and V are conjugates of S,
r>_ 1, U VandUisinH. Then

V =i= (1 p" (c - xp’--), p’, -p( - 2cxp’-’-), 1 + p (c + xp’-’-)
with (p, x) 1. If V is in H, then

U-V =t= (1 xp"-, O, 2cxp’*-, 1 xp’*-)
is in H K_. But the only elements in H a K_ with 0 in the upper right
corner are

-+- (1 ip-, O, in-, 1 + ip’-

So 2cx =- x (mod p) which implies that 1 --- 2c (mod p). But U’-’- S-or S so that c --- 0 or 1 (mod p) and hence 1 2c (mod p). So each level
from 1 to n 1 has at most two groups coniugate to S" and so

W

_
2(n- 1) W s(1).

But s (1)

_
2p since each of the two coniugates to S has at most p p-th roots

conjugate to S and so W _< 2 (n 1) -t- 2p.

LMM 3.5. Suppose H K;_ is generated by

S- and +/-(1Wp-,0,0,1-p-).

Consider all the conjugates of powers of S in H and let m be the smallest integer
such that there is a Co with p"-co 0 (mod p"). Suppose m < ]n 1/2 and
lets (m-l- 1)/2andrbesuchthatn + 1 <_ r <_ ]n 1/2. Consider U},
a set of conjugates of S, such that the p’-th powers of any two are the smallest
powers which are equal. Then at ost two of the U are in H.

Proof. A typical element in H K_ is +/- (1 -t- ip"-, jp-, O, 1 ip"-)
where 0 _< i, j

_
p 1. m is odd since p- [1 c. U, a conjugate of S in

H, has p dividing c since U- has 0 in the lower left corner. Conjugate H
so that S" is in H for each r for which S has some conjugate in H. Then

S’ =i= (1 -t- P"-’%o, --p-co, 1 p"-Co)

which equals =t=(1 p-’Co, p"- p"-", p’-’c, 1 - p’-’%o) since p divides



254 JOSEPH B. DENNIN, JR.

Co, is in . Then

where (x-1, p) (y, p) 1 is in and so

(S’. S’) U’ (1 p-’, p-x, p-xy, 1 + p-’)

with (xy, p) 1 is in H. Let

U (1 + p-c, p-, -p- d, 1 p-c)

be in H and suppose

V (1 +p ,p-, _p , 1 p-)

with m + 1 r n . Then U’ V’ if and only if c (mod p-’)
and the p’-th powers of U and V are the smallest wch are equal if and oy
if c tp where (t, p) 1. {U} in the hypothesis is a subset of {U
and V’s in H obtained by derent choices of 7}. Then

U V (1 + p- (c + k) + p-k(c )

-p’-" +
1 p’-" (c + k) p’-’kc(c --)).

Suppose p c and let a r (m 1). Then U" has lower left corner
equal to

if and only if 2l m 1. But by choice of m, -p’-(-)c 0 (rood p’) so
thatl (m- 1)/2 s- 1. Sop*rdesc. Letk= p’-- lsothat

U. V (1 + tp’-’, p’-, 2p’-tc*, 1 tp-’)
since p’- $des c, r E In and s r/2. Now if V is in H, then

U’. U. V (1, p’- (1 + x), p’-xy + 2c’t, 1)

is in H K_ and so xy + 2c*t 0 (rood p). If p des c*, i.e. ff p’ des
c, then xy + 2c*t xy 0 (rood p) so that V is not in H. If p does not
diode c*, then (xy) (2c*)- (rood p) and so there is exactly one choice
for for wch V belongs to H. So at most two from the set {U,} e in H.
PROPOSO 3.6. Suppose H K_ is a G (I). Then W p’+ for

n>9.

Proof. Conjugate H so that H a K_ is generated by

S’- and (1+p-,0,0,1 -p’-).
If H can be conjugated so that all the conjugates of S" have 0 in the lower
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left corner, then each conjugate of "- in H has p dividing c and so

W _< 1 -t- 2 --/-1 p, -t- P"/" 1 -[- 2p (pn/2-1 1 / (p 1) -I- P
if n is even and

W <_ 1 -2p(p("-)/- 1)/(p- 1)

if n is odd both of which are less than p"/o+ for n >_ 9.
If H can not be so conjugated, let m be the smallest integer such that

p"-% # 0 (mod p")

for some co and suppose m _< ]n 1/2. Now if U in H is conjugate to S
and V in H is a conjugate of S’- such that V U, then there are p conju-
gates V of S’- in H such that Vf U and these are given by

V V. :i: (1 ip"-, O, O, 1 + ip"-)
since p divides the c for V. At the (m 1)-st level, since p-Z divides c

Spn--( m--1)there are at most p’-)/ conjugates of in H so that at the m-th
level there are at most p’ conjugates of S- in H and at the (m -{- 1)-st
level, there are at most p’+ conjugates of S-(+)

in H. These p’+ conju-
gates can be partitioned into p sets of p elements each where if c determines
one element in a set, then c kp-" where (k, p) 1 determine the others.
By Lemma 3.5, H contains at most two elements from each of these sets and
so s(p"-(’+)) <_ 2p*. Continuing this argument, one sees that

s(p"-’+) <_ 2p" for m -t-i _< n 1/2.

Let x be the greatest integer less than or equal to ]n . Then for r x,

So
s(p"-) <_ p.s(p"-+).

p p" -’ 2 2-p ,-

1 + 2p(p’-- 1)/(p- 1) + p’(2-+ 2)

+ 2-’p’+ (p’- 1)/(p 1)

1 T P"/+ W P"/-m’2"/-’+ 2"/-’P’+P
sincel s= (mW1)/2n/3--]. But2"/a= (2)/ < (3) "/ p"/
so that

LEMMA 3.7. Suppose U (u, , p), s property A, U’ (’, ’, ),
does not ve property A and [U] n [U’] {I}. Then if U-’-’ and U
have property A, p does not divide ((’ p’) 2’).

Proof. Since U’’-’-’ has property A, ’ p’ (mod p). Recall we are
assung that not all of , P and p (and u’, ’ and p’) are divisible by p. There
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are four cases to consider. Suppose p does not divide . Then, by taking an
appropriate power of U, we can assume that

p 1 (mod

(1) If p divides ’, then p divides p’ and so p does not divide ’. So p does
not divide 2’ and divides (’ - p’) so that p does not divide the sum. (2)
If p does not divide ’, then p does not divide p’ and wemay assume ’ p’ =- 1
(mod p). Since [U] [U’] {I}, it is false that

=- c’, --- c’, p =-- cp’ (modp)
for any c. So

’ (modp) and (’-p’) 2’ - 2(- ’) 0 (modp).

Suppose p divides and p. Then p does not divide . (3) If p divides ’and p’, then p does not divide ’. So for some c 0 (mod p)-- c’, , c,’ - O, p cp’ 0 (modp)

which is a contradiction. (4) If p does not divide ’ and p’, then

(’ -I- p’) 2’ 2’ 0 (rood p)

since ’ --- p’ (mod p).

PROPOSITION 3.8. Suppose H a K_ P. The number of elements in
H rK with property A is bounded by (n 1)p’*+.

Proof. Let a denote the number of elements with property A in H K.
Suppose r is the smallest number such that H nK contains an element with
property A. Let U (, , p) and U (’, ’, p), be generators of
H nK with s >__ r and U having property A. Then [U] [U] {I} and
{UU} is as described in Section 2. Now p’--- (p 1) of the and
p-’-- (p 1) of the are divisible by precisely p since and determine
which K, U and U belong to. Suppose U. also has property A. We want
the number of elements in "UU} such that

(3.1) pu + p’,’u - p+’(’ ,’)

which is true if and only if

(3.2) 2 ,(’ ,’) 0 (mod p’--).

We claim that ’ ’ (mod p). Since U and U. have property A,
p and ,’ p’ (mod p). There are 3 cases to consider: (1) Suppose p

does not divide , p, and p. Then, as in Lemma 3.7, we can assume
, p ,’ p’ 1 (mod p). But then ’ (mod p) since there is no c
such that

,=- c’, p=- cp’, =-- c’ (modp)
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so g’ ’ # ’ (mod p). (2) Suppose p divides all of , p, ’ and p’.
Then U U for some , sible by p’-- and p’-’- respectively
wch is a contraction to [U] [U] {I}. (3) Suppose m p m 1 (mod p)
and p divides ’ and p’. Then p does not diode ’ and so
(rood p). Therefore the solutions (, ) to (3.2) are the same as the solu-
tions to

(3.3) 0 (mod p"--).

If p’- des , there is one choice for and p-* choices for since can
be chosen arbitrarily. If p’-- ] where I x s, there exist p- (p 1)
choices for and p’-’ choices for since can be chosen arbitrarily. If
p’-- ][ where s + 1 x n r, there exis p- (p 1) choices for
and p’- choices for since p-’ has to de i. So

a p’-" + p-’(=p- (p 1) ) + :+ p’- (p 1)

p-’ + (p- 1)(p’-’(p’- 1)/(p- 1) + (n- r- s- 1)p"-)
< p’+ np"- < (n 1)p"+.

Now suppose U does not have property A. We wan the number of ele-
ments such that

(3.4) p’ ’u W P+*,(’ ’)
p’ p’u + p’+’(’ p’) (mod

wch is true if and only if

(3.5) p’y u,(v’ p’) + p’+’i 0 (mod p’)

where ( + p’) 2’v. However by Lemma 3.7, p does not diode
Letp[ (’ p’). Thenx lsincev’ p’ (modp). Nowx n- s
since 1 < v’, p’ p’-’ and we may assume r s < n since otherse the
number of elements in {U U} is bounded by p and so a p. Equation
(3.5) becomes

(3.6) p+’i ui y + p’+’ 0 (mod p’)

where (y, p) (, p) 1. Now if x < r, then p-’- has o diode and
so a is bounded by p.p’-" p’. So assume r x n s and let Pl[
where 0 n- s. There are p-’-- (p 1) choices for gi. Suppose
0 n- s- r. Then equation (3.6) becomes

(3.7) p-’y’ + " 0 (mod p’-’-’-)

where (y’, p) (", p) 1. So, mod p’-’-’-, there is a unique solution
for and so there are p-’-(’-’-’-) p’+ choices for wch gives
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elements with propertyA. Supposen- s- r_< l_< n- 8- 1. Then
there are p’-’-- (p 1) choices for and p’- choices for since can be
chosen arbitrarily. For n s, there is one choice for and p- choices
for . So

a < p’- -- p’- ’-’- p-----,-.- (p- 1) - (n- s--r)p’-(p- 1)
_
p’- -p’-(p’-- 1)(p- 1) - (n- s- r)p’-(p- 1)

< (n- s- r - 2)p"+ < (n -t- 1)P"+.
L:EMM, 3.9. Let p > 3. Suppose U (t, ’, p) and U

with r

_
s < hi2 and [U] [U’] {I}. Then if U and U both have property

B, U and U can not generate a group of order

Proof. Since [U] n [U’] {I}, there is no c such that

/ c/’, =--c’ and p--- cp’ (modp).

We know that

(3.8) u pr (, T p) --- 1 and u’ p(’ - ’p’) 1 (rood p’)

with u, u’ - 1 (mod p). Since U and U have property B,

(3.9) u-t-p(--p-) 1 and u’-l-p’(’-p’-’)-l (modp).

So by (3.8), p"r divides 1 u and p’ divides 1 u’. Together with (3.9),
this implies p" divides - p- and pe divides ’- p’-/’. Hence- p-t-/ (modp) and ’-p’-t-’ (modp).

If U and U’ generate a group of order p’--’, then

" -b "p" ----0 (mod

where #" (p’ ,’p)/2, ’ ’ ’ nd p’ p’ p’ [4]. So

"* / "" 0 (rood p)

since r -t- s < n. Now/" - ( (p -/)p’ (p’ +/’)p)/2 p"/2 (rood p).
Similarly " -= p" (mod p). So 0 --- 3p"/4 (rood p) which implies that
p" - 0 (mod p). So p’ =- p’ (rood p). Suppose p divides p. Then p
divides p’ or . If p divides , then 0 - -t- p (rood p) so that p also
divides . Hence p divides all of , and p, a contradiction. If p divides
p’, then p =- cp’ (mod p) for any c. Pick c so that -= c (mod p). Then

=-- I " p cl’ "t" cp’ c(’ + p’) c’ (mod p).

So we have c/’, c’ and p =- cp’ (mod p), a contradiction. Suppose
p does not divide p. Then ’ (p-lp,) (mod p). Certainly
(mod p). Finally

’ ---- /z’ -" p’ ---- (p-lp,) (/

_
P) (p-lp,) (rood p).
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So again there is a c such that cr, v - cv and p cp (mod p), a contra-
diction.

PROPOSITION 3.10. Suppose p > 3 and lHn K_I p. The number of
elements in H nK with property B is less than

Proof. Suppose n is even. Since H n K;[ 2n 2r, then if r n/2,
the number of elements in H K th property B is at most n. Suppose
r < n/2. The p-(+)(p 1) elements at the (n r)-th level can be
partitioned into p 1 sets of p’-(+ elements each where U and U are in
the same set if and only if U’-- U--. By Lemma 3.9, if U has
property B, then any other element V th property B has to be such that

so that [U] n IV] {I}. So, at the (n r)-th level,
there are at most (p 1) p’-s(+) elements with property B. Therefore the
number of elements in H n K th property B is bounded by

A similar argument in the case where n is odd yields the bound

p,+l + (p 1) (.-)2 p,+(2-) (p,- + p,+2)/(pi=1

PROPOSITION 3.11. Suppose p > 3. There exists an
and HaK:_l[ p2, then g(H) > g.

Proof. If H a K:_I is a G (iii), then W 0. Otherse by Proposi-
tions 3.4 and 3.6, for n 9, W p’+. By Proposition 2.5, to calculate
we need to ow the number of elements in H K th property A and the
number of elements of order 2 in H mod p. By Proposition 3.8, the number
of elements in H K with property A is at most (n
Qllan [7], the number of elements of order 2 in H rood p is bounded by
p + 2 if p 15 or 15 if p < 15. So E (p + 2)(n + 1)p"+ or
15 (n + 1)p’+. Similarly we calculate r. By Proposition 3.10, the number
of elements in H K with property B is less than p2.-a. By McQuillaa [7],
the number of distinct groups in H mod p generated by a conjugate of R is
bounded by 2p. So r 2p’-2. Finally h E p.-l(p_ 1). So

g (H) 1 + {p.-2 (p2_ 1)(p. 6) 8p"-l(p + 1)2p2"-

6p-l(pW2)(n+ 1)p

(p

For n 9, p(n + 1)(p + 2) p9+t. So

g(S) 1 + a(dp- (b + 1)p’/9 c)

where a 1/24(p p), b 6(p 1), c
and d p- 17p- 16 > 0 since p 5. But

m,. 1 T a(dp- (b + 1)p’9 c)
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and therefore there is an n8 such that if n >_ ns, g (H) > g. For p < 15, the
only adjustment in the calculation is that the term p (n -b 1 (p -b 2) becomes
15p (n -b 1). But 15p (n -b 1) is still less than p7,/9+ for n >_ 9.

THEOREM 2. Suppose p > 3.
and H is of level n, then g (H) > g.

Then there exists an n4 such that if n >_ n4

Proof. m max In1, n, n} where nl, n, n are as in Propositions 3.1, 3.3
and 3.11 respectively works.

z. LF(2, 3") ond LF(2, 2-)
Finally we must consider the cases p 2 and 3. We first consider p 3.

The propositions leading to bounds for and W are valid for p 3 so we only
have to obtain bounds for r. For p 3, it is still true that if R is conjugate
to R, then R has trace =t=l. Therefore an upper bound on the number of
elements of trace =i=l still yields an upper bound on the number of conjugates
of R. So as before we wish to calculate the number of elements in H n K’
with property B.

LMx 4.1.
bounded by 3.
in HnK.

Suppose the number of elements in H n K",_ with property B is
Then, if n >_ 4, there are less than 3"-4 elements with property B

Proof.
B where

Suppose U (, v, p) has property B. Then U. V has property

if and only if V has property B since

U. V :t: (u + 3" + 3"-’u, 3"-’u + 3,
3p -b 3"-p’u, u- 3 3"-’u)

and
u-l-3(v--p) d-3"-u(v’-’- p’) 1 (rood3")

if and only if 3 divides v’ ’ p’ since u + 3 (v p) -= 1 (mod 3").
Suppose

U (, v, )
is in K_. Then U has property B since

u-b3(v-- p) 1-b3.3"--’.3y=- 1 (mod3")

since 3"--’ divides , 3 divides v p and u 1.
H nK _< 3"- and H n K’ can be partitioned into one set of at most

9 elements consisting of H n K_I and 8 sets of at most (3"- 9)/8 ele-
ments each as follows" Suppose U and U, not in K_,, are such that U and
U’ are in K"_. Then U and U are in the same set in the partition if and
oMy if U u By the second observation, only 2 of these sets contain
elements with property B. Consider one of these sets nd cll it M. M cn be
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partitioned into (3-2 9)/8.9 sets of at most 9 elements each where the
other elements in the set containing an element U are U. V where V is in

By the first observation, at most 3 of these elements can have
So the total number of elements in H nK with property B is

for n > 4.
2.3. (3-2 9)/8.9 -t- 9 < 32-

LEMMA 4.2. Suppose U (t, , p) has property B, 9 1 u and n >_ 4.
Then U’ O(t, , p)r with 3 not dividing has property B only if=- 1 (mod9).

Proof. Supposeu’ 3(- p- t) 1 (mod3). Then

1 --u’= 3(-- p-- ) (1 --u) (mod3).

Also (u’- 1) -= 9}(g -t- vp)/(u’-4- 1) (mod 3"). So

(u’ -t- 1) (1 u) } }2 (- 9 (g2 -t- p) (mod 3).
Therefore

(4.1) (u’-4-1)(1- u)}= (1- u)(l+u)} (mod3).

Since 3 does not divide } and 9 (1 u), congruence (4.1) becomes

(u’ -t- 1) }(u + 1) (mod3=-:).
But since both u and u’ are congruent to 1 rood 9, u’ -t- 1 u -t- 1 (rood 9)
and since n 2 > 2, this gives 1 } (rood 9).
Now K_, has 9 elements with property B and the elements with property

B in H n K_, form a subgroup of H n K_ so that if H n K_, has more than
3 elements with property B, then

H n K_1 -4- (1 -4- 3-g, 3-, 3-p, 1 3-’g)}

with ( g p) - 0 (rood 3) which contains only 1Gv (I), namely

= (1 3-, 3-1, 3-’, 1 -}- 3-’) ].

Suppose U (g, , p) is in H n K. Then U (}g, }v, }p) is in H n K_,
for some x and if 3 divides g2 -t- p, then U is in the Gv (I) since (g -{- p)
0 (rood 3) implies that U generates a Gv (I) [4].

LEMMA 4.3. Suppose H n K_ contains 9 elements with property B. Then
H nK has at most 3’- -4- 3’- elements with property B.

Proof. If H n K <- 32-a, we are done so that we may assume

]Hn K 3-.
Consider

M {UI U is in K K and Ua- is not in the Gv (I)}.
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M 32"-2 32"-s and each element in M has order 3"-1. So there are

32"-‘ (2)/3-2 (2) 3"-’
distinct cyclic groups of order 3"- whose generators are in M. Let

[v (, , p)]

be such a cyclic group and, if possible, select U with property B. Then by
the assumptions on M, 3 does not divide p2 .}. p so that 9 11 v-p- p.

Then, by Lemma 4.2, the other elements in M n [U] with property B have
=- 1 (mod 9) where 1 <_ < 3"-1. So the number of such elements is at

most 3"- So the number of elements in H n K" with property B is bounded
by

3"-3 (3"-) W 3’"- 2.32"-4 32"-4 .. 32"-3.
LE 4.4. Suppose H (mod 3) 5, the etrahedral group, and $hat H

contains R. Then r 4.32"-4.

Proof. The elements generating groups conjugate to [R] in LF (2, 3) 5
are R,

R :t:(0, 1, --1, 1), R2 :i:(--l, 1, 0, --1), R :i=(--1, 0, 1, --1).

Consider a fixed R. There is an A in LF (2, 3) such that ARA- R and
since H mod p LF(2, 3), there is an A in H such that A. Then
(A RA-*) R and A, RA- is conjugate to R in H. So each conjugate of
R in LF (2, 3) has a pre-image in H which is conjugate to R. If H n K_ con-
tains at most 3 elements with property B, then we are done by Lemma 4.1
and Proposition 2.4. Suppose H n K,"_ has 9 elements with property B.
Consider R’ in H such that R’ is conjugate to R and/’ R. Then

R’ U.::I=(O, 1, --1, 1)
-+-(--3", u + 3" + 3,--u -t- 3,, u + 3"p- 3)

where U @(, , p) is some fixed element of K" such that

u-t-3(p-- ) --- 1 (mod3).

p’). This will be conjugate to R’ ifConsider U’ R’ where U’ (u’, ’,
and only if

1 --u’3v 3+’,’v 3’v’u "t- 3+’ "t- 3p’u 3+’p 3+’vp

(4.2) + u’u + u’3p u’3/ 3+’/Zp 3’/’u + 3+’’
u’ + 3’u(’ ’ ’) + 3+’ (’ ’ --/’ + ’ + p’ + ’)

(mod 3")

since u -t- 3 (p ) =- 1 (mod 3"). If U’ satisfies congruence (4.2), we
say U has property C. Suppose V (x, y, z) is in K,"_. Then V. U’ has
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property C if and only if V does since

u’ W u3" (p’ ,’ ’ "t" 3"-’-1u (z x y) )

+ 3+(, , , + ’ + ’ + ’)

1 (mod 3")
if and only if 3 divides (z x y) if and only if V has property C. Also
if U’ has property C and U’ (’, ’, p’) is in K_, then U’ has prop-
erty C. Since all the elements in H n K,_ have property B, at most 3 ele-
ments in H n K,_ have property C. Arguing as in Lemma 4.1, we see that
R has at most 3’- pre-images in H conjugate to R and so by Proposition 2.5,
each of R, R, R2 andR has at most 3- such pre-images. Hence r _< 4.3’-.
TEOaEM 3. There exists an n such that if n >_ n and H is of level n in

LF(2, 3), m >_ n, then g(H) > g.

Proof. From Lemma 3.2 and Propositions 3.4 and 3.6, W <: 3’+ for
n >_ 9; from Proposition 3.8, the number of elements with property A is at
most (n - 1)3"+. Now if H mod3 5, then r <_ 4.3’- and
t_< 3.(nW 1)3"+a. So

g(U) >_ 1 -t- 3’-{3+ -t- 6 (3" -t- 54 - 32.3- -t- 24. (n - 1).3

+ 24.3+}/12.3
1 -t- a{3"-(81 9 32) b(n - 1) c.3+’- d}

1 + f(n)

where a, b, c and d are constants. But lim,f(n)
then r _< 3- - 3- and <_ (n -t- 1)3"+ so that

g(U) >_ 1 -t- 3-{3+ 6 (3" - 54 -t- 8"3-’ -t- 8"3--t- 24(n - 1)3 + 24.3+}/12.3-
1 + a{3-(81 9 24 8) b(n - 1) c.3’+’ d}

1 -f(n)

where a, b, c and d are constants. But lim.. fl (n) . So in either case,
there is an n5 such that for n >_ n5 and H of level n, g (H) > g.
For the case p 2, refer to the lower bounds for g (H) given in Propositions

4.1, 4.4, 4.5 and 4.6 in [2]. Observe that in each case, the lower bound oa
g (H) -- as n- . Hence we have the following theorem which completes
our proof that the number of fields of a fixed genus in K (p’), all p and n,
is finite.
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THEOREM 4. There exists an n such that if n >_ n and H is of level n in
LF (2, 2), m >_ n, then g (H) > g.
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