THE GENUS OF SUBFIELDS OF K(p*)

BY
Josepa B. DENNIN, JR.

1. Introduction
Let T be the group of linear fractional transformations

w— (aw + b)/ (cw + d)

of the upper half plane into itself with integer coefficients and determinant 1.
T is isomorphic to the 2 X 2 modular group; i.e., the group of 2 X 2 matrices
with integer entries and determinant 1 in which a matrix is identified with its
negative. Let T'(n), the principal congruence subgroup of level n, be the
subgroup of T' consisting of those elements for whicha = d = 1 (mod n) and
b=c¢=0 (mod n). Gis called a congruence subgroup of level = if G con-
tains I' (n) and n is the smallest such integer. G has a fundamental domain
in the upper half plane which can be compactified to a Riemann surface and
then the genus of G can be defined to be the genus of the Riemann surface.
H. Rademacher has conjectured that the number of congruence subgroups of
genus 0 is finite. D. McQuillan [7] has shown that the conjecture is true if
n is relatively prime to 2:3-5 and J. Dennin [1, 2] has shown that the con-
jecture is true if n = 2™, 3™ or 5. In this paper we show that the number of
subgroups of prime power level of genus g is finite for any g. We may assume
g # 0 since the case ¢ = 0is done.

2. Preliminary results and deflnitions

Consider My, the Riemann surface associated with I'(n). The field of
meromorphic functions on My, is called the field of modular functions of
level n and is denoted by K (n). If j is the absolute Weierstrass invariant,
K (n) is a finite Galois extension of C () with T'/T (n) for Galois group. Let
SL (2, n) be the special linear group of degree two with coefficients in Z/nZ
and let LF (2, n) = SL(2,n)/=+I. Then I'/T (n) is isomorphic to LF (2, n).
If I'(n) € G C T and H is the corresponding subgroup of LF (2, n), then by
Galois theory H corresponds to a subfield F of K (n) and the genus of F equals
the genus of G.

The following notation will be standard. A matrix

a b
*(c d)
will be written =+ (a, b, ¢, d).
T==+x0-1,10); S==+1,1,0,1); BR= =+£(, —1,1,1).

Received August 1, 1972.
246



THE GENUS OF SUBFIELDS OF K(p») 247

T and S generate LF (2, n) and R = T'S. F will be a subfield of K (n) con-
taining C'(j) and H the corresponding subgroup of LF (2, n). ¢(H) = the
genus of H and hor | H | = the order of H. [A] or [ (a, b, ¢, d)] will denote
the group generated by A or = (a, b, ¢, d) respectively.

We now concentrate on LF (2, p"), p > 2, whose order is p*" 7 (p* — 1)/2.
The case p = 2 will be considered in the last section. McQulllan [7] obtained
the following formula for the genus of H.

Let r, t and s(p”) be the number of distinct cyclic subgroups of H generated
by a conjugate in LF (2, p”) of R, T and S”” respectively where 1 < p" < p".
Then
@1 9E) =1+p""0" = )" - 6)/24h — p""(p - .

(—=3/p)) r/3h — " (p — (—1/p))t/4h — p™ " (p — 1)*W/4h

where W = D s(p"). One immediate consequence of this is that if two
groups are conjugate, they have the same genus.

We now collect some basic facts about subgroups of LF (2, p") and conju-
gates of 8”', R and T which we will use later. First we have three proposi-
tions which are found in Gierster [4]. Let fr be the natural homomorphism
from LF (2, p™) to LF(2, p), 0 < r < m, given by reducing an element
mod g) The kernel of this homomorphism is denoted by K, and has order

P

8(n—
ProrositioNn 2.1. If Hn K,y is the identity, Hn Ky 1is the identity for
r=1,-,n—2.
Prorosition 2.2. If |Hn K5 1| = p, then Hn K s cyclic and
|Hn K7 | < p™*

ProrosiTioN 23. If |HnKny| = p°, then Hn K{ is generated by two
transformations Uy and U, of order p™" and p™* respectively and

| |HnK1 I = 2n—r—s < p2n—2.
In Proposition 2.2, Hn K1 = [U] where
U= =@+ pwpv,peu—pu

with not all of g, », p = 0 (mod p) and ¥’ + p”" (4> + »p) = 1 (mod p").
Following Gierster, we make the selection of 4 unique by choosing u = 1
(mod p) and we write U = ¢ (u, », p)». The order of U is then p"" and

[U] = {(U* = ¢(uks, vks, pki)}
where u; and £; are given inductively by the formulas
(2.2) i = wiqu + Ea (W — 1), E= Ew 4+ uia (mod p™)
where s = v and & = 1 [2]. From Proposition 2.3, let
= ¢, v, p)r and Uz = ¢/, V', p')..
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Then [Ui]n [U;] = {I} and
HnKi = (UiU})
= (= (uwj + p'Eawu; + p'Ew'us + PGk (' + w0,
Pt ui + pEou; + pVEE (W — why),
p'tiou; + p'éi'ui + 07 (ou — o'u),
ity — Py — pEw'us + 9 (i + Vp)))
where 1 < £ < p" " and 1 < ¢ < p™°. The power of p dividing £; and £;
determines to which Ki U; and U} belong.

Weuse the groups K, to define the concept of level for H. H is of level r
if H contains K, and does not contain K,—;. Similarly we say a subfield F
of K (p™) is of level r if F is a subfield of K (p") and not a subfield of K (p"™).
Note that F is of level r if and only if its Galois group is of level ». Similarly
we will use the phrase “at the r-th level” to mean in K;_, — K7_¢_p.

A conjugate of S”" has the form = (1 — p'ac, p'd’, —p'c’, 1 + p'ac). The

following proposition simplifies the task of counting groups conjugate to
(8”7 1.

ProposITION 2.4. Any group A conjugate to [S"], where
== (1 - prac’ pra2, —prc2, 1+ Prac)

s an element of A and (a, p") = 1, contains one and only one element of the
form %= (z, p’, y, 2) and itis conjugate to S*".

So under the proper conditions, to caleulate s(p") for H, it is sufficient to
count the number of elements of the form == (1 — p'c, p", —p'c’, 1 + p'c) in
H. Unless otherwise indicated, the phrase “a conjugate of S*"” will mean one
inthisform. U = £ (1 — p" ¢, p™, —p'¢’, 1 + p"¢) is a conjugate of
S?""* and V is a conjugate of 8" such that U? = V?, then

Vex@Q-—p"Cc+2p" ), —p (¢ + 2c2p™ "), 1 +p 7 (c +2p" 7))

where 0 < z < p.

The following proposition simplifies the calculation of the number of con-
jugates of T and R in H.

ProposiTioN 2.5. Let H be a subgroup of LF (2, p") and H be its image in
LF2,p). IfT (respectively R) in H has k pre-images in H conjugate to T (R),
then each conjugate of T (R) in H has 0 or k pre-images conjugate to T (R) in H.

Proof. Suppose T in A has UyTUT* = T, U,T U3', ---, UT Ui* asits
pre-images in H conjugate to T. Suppose T is conjugate to T in A and that
T, has at least one pre-image conjugate to T so that we may assume T} is
conjugate to 7. Then there is a B in LF (2, p") such that BTB™ = Tyin H
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and so BTB™ = Tyin A. Then, fori =1, .-, k,
BUTUMNBY =T
so that T, has at least k pre-images conjugate to T in H. Suppose
(UTU™)™ =T, and UTU'#B(U;TU;)B'foranyi =1, ---, k.

Then B (UTU™)B % U,; TU;" for any ¢ and yet (B(UTU)B)™ = T
in A which is a contradiction. Therefore T; has at most k pre-images in H
conjugate to 7. A similar argument works for R and R.

By conjugating H, we may assume that T is an element of H. By Proposi-
tion 2.5, it is sufficient to count the number of elements in H conjugate to T
which arein (Hn K7)-T. By Gierster [4], for p > 2, Ty in LF (2, p") is
conjugate to 7 if and only if the trace of T} is congruent to 0 mod p”. Let
U = ¢(u, », p)r. Then

UT=z=x=0@v—u—puu—>pu —ph)
which has trace 0 if and only if p"(» — p) = 0 (mod p") if and only if
v = p (mod p"") where 1 < »,p < p™™".

DeriniTiOoN 2.1. U = ¢(u, », p), has property A if and only if » = »
(mod p™ ™).

We will want to calculate the number of elements in H with property 4.

Similarly, by conjugating H, we may assume that R is an element of H and
again by Proposition 2.5, it is sufficient to count the number of elements in H
conjugate to B which are in (H n K7')-R. By Gierster [4], for p > 3, R, in
LF (2, p™) is conjugate to R if and only if the trace of R; is congruent to
+1 mod p".

UR==x@% —u—9u+0v u—0u u—1pu— b
which has trace congruent to v + p"(» — u — p) mod p".
DeriniTiON 2.2. U = ¢(u, v, p), has property B if and only if
u+p(v—u—p)=1 (modp").

It it sufficient to count the U with property B in H since the previous as-
sumption that ¥ = 1 (mod p) implies that p divides 1 — u. But if

u+p (v —pu—p)=—1 (modp"),

then p divides — (1 4+ u) so that p divides (1 — %) + (1 4+ ) = 2, a con-
tradiction. Here we have used the + sign in front of the matrix; using the —
sign would have given all the relevant matrices trace —1.

First we are going to show that it is enough to consider LF (2, p") for a
fixed p. In doing this and later in applying Proposition 1.5, it is necessary to
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have a list of subgroups of LF (2, p). The possibilities are [3, 7]:

(1) a cyclic group Cu of order m where m = p, m divides (p — 1)/2 or
@+ 1)/2;

(2) a dihedral group Dy, of order 2n where n divides p — 1 or p + 1;

(8) a metacyclic group M. of order pu where u divides (p — 1)/2;

(4) a tetrahedral group 3 for each p, an octahedral group 0 if p = =1
(mod 8) or an icosahedral group d if p = =1 (mod 5).

ProrosiTion 2.6. Fix g > 0. There exists a po such that if p = po, then
K (p) has no subfields of genus g.

Proof. D. McQuillan has formulas for the genus of subgroups of LF (2, p),
p > 5[7]. Using them we see that

1) gd)=1+4+ (p— 6)(" — 1)/24,

@) g@) =1+ @ —6p"—p+6)/288 — (p +1)/9 — (p + 1)/16,
B) g(©) =1+ (@ —6p’—p+6)/576 — (p+1)/18 — 3(p +1)/32,
@) ¢(Cp) = @ — 12p + 35)/24,

() glCm) =1+ @+ &) ((p— 6)(p — /12 — 7/6)/2m,

6) gDum) =1+ (@+e)((@—6)(p—e)/48—1/6 — (p +1)/4)/n,
(7)) gMm) =1+ (p— 11)/12 — 7/6,

8) g(s) =1+ (p*—6p*—p +6)/1440 — (p + 1)/18 — (p + 1)/16,

where ¢ = 1. So lim,., g(H) = « where H is a proper subgroup of LF
(2, p). Further g(LF(2, p)) = 0. 8o for p sufficiently large, LF(2, p) con-
tains no subgroups of genus ¢ and hence K (p) has no subfields of genus g.

To show that the same result is true for K (p"), n > 2, we need the follow-
ing fact.

LemMa 2.7. If F is a subfield of L, then g(F) < g(L).
Proof. By the relative genus formula,

2¢9(L) —2= @2gF) — 2)[L:F] + d(Dyr)

where d (Dy,r) is the degree of the discriminant of L over F. But [L:F] > 1
and d(Drr) = 0 so that 2 g(L) — 2 > 2 ¢g(F) — 2 which implies that
g(L) = g(F).

TaEOREM 1. Fix g > 0. There exists a po such that if p > po, then K (p™)
has no subjields of genus g.

Proof. We proceed by induction on n. By Proposition 2.6, there is a po
such that if p > py, K (p) has no subfields of genus less than or equal to g
except for C () which has genus 0. Suppose F is a subfield of K (p") of genus
g. Then by Lemma 2.7, F; = Fn K(p"™) which is a subfield of F has genus
¢ < ¢g. By the induction hypothesis, K (p*') has no subfield of genus less
than or equal to g except € (j) so that F; = C(j). Let H = G(K (p")/F).
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Then H (mod p™ ™) = GK (p")/F1) = LF (2, p") since F; = C(j). So
H contains Kj_; [7] implying that F € K (p™™). So by induction, F = C(j)
and g(F) = 0 # g, a contradiction.

3. LF(2,p"),p > 3

By Theorem 1, we may assume that p is a fixed prime and we continue to
assume that p > 2. Fixg > 0. We will show that

{F|F < K(p") for some n, g(F) = g}

is finite by showing that there is an 7, such that for r > r, there are no fields
of level r and genus g in K (p”), n > r. So we must show that any subfield of
K (p™) of genus g is already a subfield of K (p™). Therefore it is enough to
assume that F is a subfield of K (p™) and is not a subfield of K (p™ ) and show
that g(F) > g. In terms of the associated subgroup H of LF (2, p"), this
means there are three cases to consider:

(1) HnK:,=1{I}, @)|HnK::|=p, @) |HnKi,| =71
sinceif | Hn K| = p’, then Kn_y C Handso F S K(p"™).
The first case is easy and is done in the following proposition.

ProposiTION 3.1.  There exists an ny such that if n > nyand Hn Kny = {I},
then g(H) > g¢.

Proof. Suppose Hn Kp—y = {I}. By Proposition 2.1, Hn K7 = {I}.
Thent < 15,r < 10and h < (p* — 1)/2 < p. To see this, apply fr, whose
kernel is K7, to H and then count the appropriate elements in the image of H
in LF (2, p). Further W = 0 since any conjugate of a power of S raised to
some power is in Ky. Therefore, by formula (2.1),

gH) 21+ {p@ — 1) — 6" +80p" " (p + 1)
+ 90p™ " (p + 1))}/24p°
=14 f(n)

where limy.., f(n) = «. So there is an n; such that for n > m, g(H) > g.
For the second case we use the bounds on r, ¢t and W given in the following
lemma.

Lemma 3.2. Suppose |HnKny| = p. Then W < n, ¢t < 15p"" and
r < 20p".

Proof. Since | HnK7_3| = p, by Proposition 2.2, Hn K1 is cyclic with
|HnK?| < p™*. If W = 0, conjugate H so that 87" is in H. Then
W<n—1+ s(l) Suppose U and V are conjugates of S such that U” = V*.
Then

U==x(0—-c¢1, - 14¢)
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and

V=x0=(c+ap")1 —( +2mp""), 1 + (c + 2p"™))
where 1 < z < p and p divides ¢ since U™ = 8" '. Then
UV =x=0—ap"", —2p" 0,1 + ap™™)

isin HnKy1.. But HnKn i = {1, 9" 0,1) |0 <y < p" "} So
s(1) £ 1and W < n. To calculate ¢ and r we use Proposition 2.5. From
McQuillan [7], we see that in LF (2, p) ¢ < 15(p + 2) and r < 20p. Since

|Hn K7 | < p"7,
t<15(p + 2)p™™" < 15p™™ and r < 20p™.

ProrosiTioN 3.3.  There exists an ny such that if n > npand | Hn Kny | = p,
then g(H) > g.

Proof. By Lemma 3.2, W < n,¢t < 15p"" and r < 20p”. Since
|LF(2,p)| =p(@ — 1)/2<p" and |HnK7|<p"",
h < p"*. So by formula (2.1),
gH) 21 + ("0 — 1) — 66" — 1)p™™" + 160p" (0 + 1)
+90p" (0 + 1) + 6™ (@ — 1)°)}/24p™"
1+ f(n)

where f(n) = p"*(ap"” — bn — ¢) with @ > 0, b and ¢ constants. But
limy.. f(n) = o so that there is an n, such that for n > ng, g(H) > g.

In the case | HnKn_;| = p’, we will use the following notation from
Gierster [4]. Let U = ¢ (u, », p) andset # = u* + vp. Then K_; contains
3 different conjugacy classes of groups of order p:

1) (P + 1)G,(I) determined by = = 0 (mod p), e.g. [+ (1, "7, 0, 1)],

2) p(z; + 1)/2 G,(II) determined by (z/p) = 1, e.g. [-=(1 + p" 7, 0,
O: 1- p”— )]’

(B) p(p — 1)/2 G,(IIT) determined by (x/p) = —1, eg. [=(, p" 7,
p" ™, 1)] where (v/p) = —1.

Similarly the subgroups of order p* in K_; divide into 3 conjugacy classes:

@) (» + 1)Gp2 (I) containing 1G, (I) and pG, (II),

@) plp + 1)/2 Gpe (IT) containing 2 @, (I), (p — 1)/2 G (II) and
(@ — 1)/2 G, I1I),

(B) p(p — 1)/2 Gp2 (III) containing (p + 1)/2 G, (II) and (p + 1)/2
G, (IT1).

‘We now give a series of propositions which give bounds on W, ¢ and r in the
case |HnKny| = p
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ProrosiTion 3.4. Suppose H n K5_y is conjugate to G2 (II). Then
W<2n+p-—1).

Proof. By conjugating H, we can assume the Gp: (II) is generated by
&= (1, p"™0,1) and 8= £ — p" 7, p", —p" 1 + 9™
and so a typical element in G,2 (IT) is

£ — " " 6@+ 5), —ip™ T 1 + ™).
Suppose U = (1 — p'c, p", —p'¢’, 1 + pc) and V are conjugates of S™,
r>1,U°=V?and Uisin H. Then
V=2%@0=pC+ap"™™),p, =0+ 2p" "), 1+ (c +2p"77))
with (p,z) = 1. If Visin H, then

UW =+ —a2p"" 0, —2cxp™, 1 + 2p™™)

isin Hn K»_;. But the only elements in H n K5_; with 0 in the upper right
corner are

=1 — " 0, —ip"7, 1 + ip"7).
So 2z = z (mod p) which implies that 1 = 2¢ (mod p). But U™ "' = 8"
or 8y so that ¢ = 0 or 1 (mod p) and hence 1 # 2¢ (mod p). So each level
from 1 to n — 1 has at most two groups conjugate to S8*" and so
W< 2mn—1) 4+ s().

But s(1) < 2p since each of the two conjugates to S” has at most p p-th roots
conjugate to Sand so W < 2(n — 1) + 2p.

Lemma 3.5. Suppose Hn K, _y is generated by
Spn_l and =+ (1 + Pnﬂl, 0, 0, 1- pn_l)'

Consider all the conjugates of powers of S in H and let m be the smallest integer
such that there is a co with p™ "cs 5% 0 (mod p"). Suppose m < %n — % and
leds= (m+1)/2 and r be such thatm + 1 < r < %n — %. Consider {U},
a set of conjugates of S* , such that the p°-th powers of any two are the smallest
powers which are equal. Then at most two of the U are in H.

Proof. A typical elementin Hn Kn_yis &= (1 + ¢p" 7, p" 0,1 — ip™™)
where 0 < 4,7 < p — 1. m is odd since p™ ™ || ¢5. U, a conjugate of S*" in
H, has p dividing ¢ since U”""" has 0 in the lower left corner. Conjugate H
so that S*" is in H for each r for which S?" has some conjugate in H. Then

S = :i:(]. + pn-—mco, pn—m, _pn—-mcg’ 1 — pn—mco)pm'1—1’

which equals =1 — p" "¢, p" 7 — p" ", p" "ct, 1 + p™ "cy) since p divides
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¢, isin H. Then
S8 = (1 = p™ ™ p™ Y p™ Ny, 1 4+ p™ Y
where (27, p) = (y, p) = 1isin H and so
(S-8)Y =U" =0 —p" ", p" 2, p" 2y, 1 + p")
with (zy, p) = lisin H. Let
U — :l:(l + pn-—fc’ pn—-r’ _pn-r 02, 1 — pn—rc)
be in H and suppose
V==2@0+p"yp"", =", 1= p"™)

withm +1<r < 2n — 3%, Then U*” = V*'if and only if ¥ = ¢ (mod p"™)
and the p*-th powers of U and V are the smallest which are equal if and only
ify = ¢ — tp"" where (t, p) = 1. {U} in the hypothesis is a subset of {U
and V’s in H obtained by different choices of y}. Then

UVP= 20U +p" "€+ k) + 0" kv —v),
p" (k4 1) + 0" k(e — v),
—p" (¢ + by — p*"eky (e — v),
1—p" "+ ky) — p" ke(c — 7).
Suppose p' || c and let @ = » — (m — 1). Then U” has lower left corner
equal to

n—r-+r—(m-—1) c2 = _ o n—(m=1+2]

—p P y=0 (modp")

if and only if 20 > m — 1. But by choice of m, —p" ™ = 0 (mod p™) so
that 1> (m — 1)/2 = s — 1. Sop ' dividesc. Let k = p"™ — 1 so that

U'Vk = :t(l + tpn—a, pn—-l’ 2pn—1tc*, 1 — tpn—c)
since p** divides ¢, r < 2n — 3 and s < r/2. Now if V is in H, then
U-U-V*==(,p" (1 + ), p""zy + 2c*, 1)

isin Hn Kp_yand so zy + 2¢*t = 0 (mod p). If p divides ¢*, i.e. if p° divides
¢, then 2y + 2¢* = xy % 0 (mod p) so that V is not in H. If p does not
divide ¢*, then t = — (zy) (2¢*)™ (mod p) and so there is exactly one choice
for v for which ¥V belongs to H. So at most two from the set {U,} are in H,

Prorosttion 3.6. Suppose Hn Koy is a Gps (I). Then W < p™°** for
n > 9.

Proof. Conjugate H so that Hn K5, is generated by
8" and £(1+9"70,0,1 —p").
If H can be conjugated so that all the conjugates of S* have 0 in the lower
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left corner, then each conjugate of 8** " in H has p" dividing ¢’ and so
WL1+2 X +p™ =14+ 200" = 1)/(p — D+ p™

if » is even and
W<1+200"" -1/ - 1)
if n is odd both of which are less than p’™*** for n > 9.
If H can not be so conjugated, let m be the smallest integer such that
p" "o # 0 (mod p™)

for some ¢, and suppose m < %@l — 4. Now if U in H is conjugate to S*
and Vin H is a_tlzonjugate of 8”7 such that V? = U, then there are p conju-
gates V; of 8*  in H such that V? = U and these are given by

Vi=V-x(1 —ip"0,0,1 4+ ip"™)

since p divides the ¢ for V. At the (m — 1)-st level, since p™* divides ¢’
there are at most p™ " conjugates of §” " " in H so that at the m-th
level there are at most p° conjugates of S** " in H and at the (m + 1)-st
level, there are at most p'** conjugates of 8"~ ""” in H. These p*** conju-
gates can be partitioned into p° sets of p elements each where if ¢ determines
one element in a set, then ¢ — kp™* where (k, p) = 1 determine the others.
By Lemma 3.5, H contains at most two elements from each of these sets and
so s(p™ ™) < 2p'. Continuing this argument, one sees that

s(p" ™) < 2 form + 4 < n — .
Let z be the greatest integer less than or equal to 4n — 4. Then for r > z,

s(@") < p-slp™M).
So

W<14+22mp +p" 2Er2 + 277 i
<1420 —-1)/(p—1) +p' @™ - 2)
+ 27 (" - 1)/(p — 1)
<1 + pnl3+1 + pn/3—2/3.22n/8—c+l + 22n18—ap¢+1pn/3+1

sincel <s= (m+1)/2<n/3—3% But2™ =" < 3" < p**
so that

w S 1 + pn/3+1 + pSn/9—2/3p4n/9 + ptn/9+lp8n/9+1 S p7n/9+4.

Lemma 3.7. Suppose U = ¢ (u, v, p), has property A, U’ = o, v, _p’_);
does not have property A and [Uln [U’] = {I}. Thenif U™ and U™""
have property A, p does not divide (u(v' + p') — 2u'v).

Proof. Since U™ """ has property A, »' = o’ (mod p). Recall we are
assuming that not all of u, » and p (and u’, ¥’ and p’) are divisible by p. There
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are four cases to consider. Suppose p does not divide ». Then, by taking an
appropriate power of U, we can assume that

v=p=1 (modp"™).

(1) If p divides ', then p divides p’ and so p does not divide u’. So p does
not divide 2u’v and divides u (v + p') so that p does not divide the sum. (2)
If p does not divide »’, then p does not divide p’ and wemay assume »' = p' =1
(mod p). Since [U]n [U’] = {I}, it is false that

=c, v=o', p=cp (mod p)
for any ¢. So

p#p (modp) and p( + o) — 2u'v = 2(u — ') # 0 (mod p).

Suppose p divides » and p. Then p does not divide u. (3) If p divides »’
and p’, then p does not divide u’. So for some ¢ # 0 (mod p)

p=cy, v=0'=0, p=cf = (mod p)
which is a contradiction. (4) If p does not divide »' and p’, then
p( +p') — 2y = 2w # 0 (mod p)

since v = p’ (mod p).

ProrostTioN 3.8. Suppose | HnKny| = p

H n K} with property A is bounded by (n + 1)p™*.

Proof. Let a denote the number of elements with property A in H n Ky
Suppose r is the smallest number such that H n K, contains an element with
property A. Let Uy = ¢(u, v, p)» and Ux = ¢ (', v/, p')s be generators of
Hn K{i with s > r and U having property A. Then [Uy]n [Us] = {I} and
{U1U3} is as described in Section 2. Now p" " '(p — 1) of the & and
" (p — 1) of the &; are divisible by precisely p® since £; and ¢; determine
which K7, Uz and U; belong to. Suppose U also has property A. We want
the number of elements in {U1U3} such that

The number of elements in

(3.1) P'Evu; + pEivus + 0 EE (o — Vi)
= p'§'us + p'Evu; + 975 (W — W'y)  (mod p”)

which is true if and only if
(3.2) 288w — w') =0 (modp™ ™).

We claim that vy’ 5% uw' (mod p). Since U; and U, have property A,
v=pand v = o’ (mod p). There are 3 cases to consider: (1) Suppose p
does not divide », p, »" and p’. Then, as in Lemma 3.7, we can assume
v=p=v =p =1 (modp). Butthen ' #£ u (mod p) since there is no ¢
such that

v=or, p=cf, p=cy (mod p)
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sow = u # p= w (mod p). (2)Suppose p divides all of », p, »' and p'.
Then U} = U$ for some &, &; divisible by p™ " and p™™ respectively
which is a contradiction to [Ui] n [U:] = {I}. (3) Supposer = p=1 (mod p)
and p divides »" and p’. Then p does not divide u’ and so u'v £ 0 = w'
(mod p). Therefore the solutions (&;, £;) to (3.2) are the same as the solu-
tions to

(3.3) gE£;=0 (modp" ™).

If p™ " divides £, there is one choice for £; and p"~* choices for £; since £; can
be chosen arbitrarily. If p" || £; where 1 < 2 < s, there exist p* " (p — 1)
choices for £ and p"° choices for £; since £; can be chosen arbitrarily. If
p" || & where s + 1 < z < n — r, there exist p° ' (p — 1) choices for &
and p™” choices for £; since p”° has to divide ;. So
a<p" +p T (iapT 0 — 1) + XiSup" (o — 1)
="+ @-DEE -)/@-1)+®m—-r—s—1)p")
< pn+3 + npn—l < (n + l)pn+8.

Now suppose U, does not have property A. We want the number of ele-
ments such that

(3.4) Pt v'us + p Tk (' — v’

' = p't;p'us + p" k£ (o’ — p'w)  (maod p”)
which is true if and only if
(3.5) pEius( — o) + 9 EkiE =0 (mod p")

where § = u(v’ + p') — 2u'v. However by Lemma 3.7, p does not divide ¢.
Let p° || (' — p’). Then z > 1 since v/ = p’ (mod p). Nowaz < n — s
since 1 <+, o’ < p™* and we may assume r + s < n since otherwise the
number of elements in {U; U3} is bounded by p” and so a < p". Equation
(8.5) becomes

(3.6) p"PEiuiy + p Pt e =0 (mod p™)

where (y, p) = (&, p) = 1. Now if z < r, then p" "™ has to divide &; and
50 a is bounded by p*-p™ " < p". Soassumer < 2 < n — sand let p' || &
where 0 < 1 < n — s. There are p" " (p — 1) choices for ;. Suppose
0<1<mn—s—r7r. Then equation (3.6) becomes

@) PV = 0 (mod p

where (¢, p) = (", p) = 1. So, mod p" "', there is a unique solution
for £ and so there are p™ """ = p** choices for ¢ which gives

pn—n—l—1p0+l(p . 1) = pn—l(p - 1)
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elements with property A. Supposen — s —r <1< n— 8 — 1. Then
there are p"™* " (p — 1) choices for £; and p™ choices for ¢; since ¢; can be
chosen arbitrarily. For ! = n — s, there is one choice for £; and p"™" choices
for & So

a< P+ P i T T e - 1)+ (n— s—r)p"(p — 1)
<P 4P -1 —-1)+ (—s—rp"(p—1)
<(n—s—r+2)p"™" < (n+1)p"*

Lemma 8.9. Letp > 3. Suppose U = ¢(u, v, p)rand U’ = ¢, v, 0')s
withr < s < n/2 and [Uln [U'] = {I}. Then if U and U’ both have property

2n—r—8

B, U and U’ can not generate a group of order p
Proof. Since [U]n [U’] = {I}, there is no ¢ such that
’

p=cy, v=c¢cv and p=cp’ (mod p).

We know that
(3.8) W=p"W+w) =1 and u?—p"W+ ) =1 (modp")
with %, 4’ = 1 (mod p). Since U and U’ have property B,
B9) u+p(r—p—wu)=1 and v +p'(V'—p' —u)=1 (modp").
So by (3.8), p”" divides 1 — u and p” divides 1 — w’. Together with (3.9),
this implies p” divides » — p — u and p° divides »’ — o’ — u’. Hence
v=p+p (modp) and » =, + 4 (mod p).
If U and U’ generate a group of order p** "™, then
”riﬁ + o p” =0 (mod pn—r—t)

where p” = (vp' — V'p)/2,v" = w' — w'vand p” = pu’ — ' [4]. So

”//2 + vl/p” =0 (mod p)
sincer +s <n. Noww” = ((o + w)o — (o' + u')p)/2 = —p"/2 (mod p).
Similarly »” = —p” (mod p). So0 = —3p”*/4 (mod p) which implies that
o’ = 0 (mod p). So pu’ = p’u (mod p). Suppose p divides p. Then p
divides p’ or u. If p divides u, then 0 = u + p = » (mod p) so that p also
divides ». Hence p divides all of u, » and p, a contradiction. If p divides
o', then p = ¢p’ (mod p) for any ¢. Pick ¢ so that u = cu’ (mod p). Then

v=pt+p=cy +cf =cl +p)=c¢' (modp).

So we have u = cu/, » = ¢’ and p = ¢p’ (mod p), a contradiction. Suppose
p does not divide p. Then y’ = (o p)r (mod p). Certainly o’ = (o 0" )p
(mod p). Finally

V== ()u+e)= (o) (modp).
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So again there is a ¢ such that u = cu’, v = ¢’ and p = ¢p’ (mod p), a contra-
diction.
ProrosiTion 3.10. Supposep > 3 and | HnKa_y| = p’. The number of

2n—3

elements in H n K1 with property B is less than p

Proof. Suppose n is even. Since | Hn Ky | < 2n — 2r, then if r = n/2,
the number of elements in H n K, with property B is at most n. Suppose
r < n/2. The p™ 2" (p* — 1) elements at the (n — r)-th level can be
partitioned into p* — 1 sets of """ * elements each where U and U’ are in
the same set if and only if U* " = U”"""'. By Lemma 3.9, if U has
property B, then any other element V with property B has to be such that
V"7 = [U”"7"] so that [U]n[V] = {I}. So, at the (n — r)-th level,
there are at most (p — 1) p*" > " elements with property B. Therefore the
number of elements in H n K with property B is bounded by

pn + (p _ 1) :i%—2 p2n—m—2i) = (p2n—2 + pn+1)/ (p + 1) < p2n—8.
A similar argument in the case where n is odd yields the bound
pn-!-l + (p _ 1) Y g:-l-.-S)/Z pn+(2i—-1) - (p2n—2 + pn+2)/ (p + 1) < p2n—3.

ProrosiTioN 3.11. Suppose p > 3. There exists an ng such that if n > ns
and |HnKn_y| = p’, then g(H) > g.

Proof. If Hn Ky yisa Gy (III), then W = 0. Otherwise by Proposi-
tions 3.4 and 3.6, for n > 9, W < p'™**, By Proposition 2.5, to calculate ¢
we need to know the number of elements in H n K7 with property A and the
number of elements of order 2 in H mod p. By Proposition 3.8, the number
of elements in H n K7 with property A is at most (n 4+ 1)p"™. By Me-
Quillan [7], the number of elements of order 2 in H mod p is bounded by
p+2ifp>150r15ifp <15 Sot < (p+ 2)(n + 1p"*® or
15(n + 1)p"*®. Similarly we calculate r. By Proposition 3.10, the number
of elements in H n K7 with property B is less than p**°. By McQuillan [7],
the number of distinct groups in H mod p generated by a conjugate of R is
bounded by 2p. Sor < 2p™ % Finally h < p™ (" — 1). So

gH) > 14+ ("0 = 1) (" — 6) — 8" (p + N2p™"
—6p" " (p + 2) (0 + 1)p"™
— 6p™ 2 (p — 1)%p™*MY /24p 7 (p* — 1).
Forn>9,p°(n+1)(p +2) < p™*™ 8o
gH) > 1 +a@d"™ — 0+ 1)p™"™* —¢)

where @ = 1/24(@* — p), b = 6(p — 1)%, ¢ = 6" + 6(p — 1)°
andd = p* — 17p — 16 > O since p > 5. But

limpawl +a@dp™™ — b0+ 1™ ™ —¢) =
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and therefore there is an ng such that if n > ns, g(H) > g. For p < 15, the
only adjustment in the calculation is that the term p*(n + 1) (p + 2) becomes
15p°(n + 1). But 15p° (n + 1) is still less than p"™* forn > 9.

TuEOREM 2. Suppose p > 3. Then there exists an ny such that if n = ng
and H is of level n, then g(H) > g.

Proof. ns4 = max {n, ng, ng} Where ny, ng, 13 are as in Propositions 3.1, 3.3
and 3.11 respectively works.

4. LF(2,3" and LF(2, 2")

Finally we must consider the cases p = 2 and 3. We first consider p = 3.
The propositions leading to bounds for ¢ and W are valid for p = 3 so we only
have to obtain bounds for r. For p = 3, it is still true that if B, is conjugate
to R, then R, has trace = 1. Therefore an upper bound on the number of
elements of trace =1 still yields an upper bound on the number of conjugates
of B. 8o as before we wish to calculate the number of elements in H n K
with property B.

LemMA 4.1.  Suppose the number of elements in H n Ky_y with property B is
bounded by 3. Then, if n > 4, there are less than 3 elements with property B
in Hn K7.

Proof. Suppose U = ¢ (u, v, p). has property B. Then UV has property
B where

V= ¢(I"" l/a p,)n—l
if and only if ¥ has property B since

UV =@+ 3u+3"wu, 3" Vu + 37,
3 + 3" p'u, u — 3'u — 3" 'u)
and
u+8@—p—p)+8 U@ -y —p)=1 (mod3")

if and only if 8 divides v’ — u’ — p’ since u + 8" (v — u — p) = 1 (mod 3").
Suppose
U’ = d’(eﬂ" fv; EP)

isin K»_3. Then U® has property B since
Us + 8t —p—p)=14+33"13y=1 (mod3")

since 3" divides £, 3 divides » — p — pand u, = 1.

|Hn K7 | < 8" and Hn K{ can be partitioned into one set of at most
9 elements consisting of Hn Kn_; and 8 sets of at most (3°* — 9)/8 ele-
ments each as follows: Suppose U and Uy, not in Ky, are such that U* and
Ut arein K»_y. Then U and U are in the same set in the partition if and
only if U™ = Ui. By the second observation, only 2 of these sets contain
elements with property B. Consider one of these sets and call it M. M can be
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partitioned into (3" — 9)/8-9 sets of at most 9 elements each where the

other elements in the set containing an element U are U-V where V is in
Hn K5 ;. By the first observation, at most 3 of these elements can have
property B. So the total number of elements in H n K; with property B is
bounded by

2-3-(3""%*-19)/8-9 +9 < 3"
for n > 4.

Lemma 4.2. Suppose U = ¢ (u, v, p)1 has property B, 9| 1 — u and n > 4.
Then U' = ¢(u, Ev, £0), with 3 mot dividing & has property B only if
£ =1 (mod9).

Proof. Suppose ' 4+ 3:(v — p — u) = 1 (mod 3"). Then
1—w=80@—p—un =t01—u) (mod3").
Also (W — 1) = 98 (W’ + »)/ @ + 1) (mod 3™). So

W +1)A —wi= (-9 + »)) (mod3").
Therefore

4.1) W+1DA—-wit= 10 —uw)d+wE (mod3™).
Since 3 does not divide £ and 9 || (1 — u), congruence (4.1) becomes
W + 1) =tw+1) (mod3"™).

But since both u and ' are congruent to 1 mod 9, ' + 1 = v 4+ 1 (mod 9)
and since n — 2 > 2, this gives 1 = £ (mod 9).

Now K5_1 has 9 elements with property B and the elements with property
B in H n K,_; form a subgroup of H n K,_; so that if H n K;_; has more than
3 elements with property B, then

HoKp,={x@0 433", 3, 1—3")}
with (» — u — p) = 0 (mod 3") which contains only 1G,(I), namely
=@ —3",3", =3", 1 +3" ).

Suppose U = ¢ (u, v, p)1isin Hn Ki'. Then U° = ¢ (¢u, &v, £p) isin Hn Kpy
for some z and if 3 divides u* + vp, then U” is in the G, (I) since (u* + »p) =
0 (mod 3) implies that U" generates a G,(I) [4].

Lemma 4.3. Suppose Hn Ky_y contains 9 elements with property B. Then
H n K7 has at most 3" + 3*"™* elements with property B.

Proof. If | Hn K7 | < 3%, we are done so that we may assume

|Hn K7 | = 3"
Consider

M = {U|Uisin K} — K7 and U is not in the G, (I)}.
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| M| = 3% — 3 ® and each element in M has order 3", So there are
32n—8 (2)/3n—2 (2) = 31;—1
distinet cyclic groups of order 3" whose generators are in M. Let

(U = ¢(u,», P)1]

be such a cyclic group and, if possible, select U with property B. Then by
the assumptions on M, 3 does not divide u* 4 vp so that 9| » — p — 4.
Then, by Lemma 4.2, the other elements in M n [U] with property B have
£¢=1 (mod9) where 1 < ¢ < 3", So the number of such elements is at
most 3", So the number of elements in H n K with property B is bounded
by

313—3 (371—-1) + 327;-—4 + 2_32n—4 — 327»-4 + 327»—8.

Lemma 4.4, Suppose H (mod 3) = 3, the tetrahedral group, and that H
contains R. Thenr < 4-3°"*,

Proof. The elements generating groups conjugate to [R] in LF(2,3) = 3
are R,

Ri=4+0,1-1,1), R = =*(-1,1,0, —-1), Ry = x=(-1,0,1, —1).
Consider a fixed R;. There is an 4 in LF (2, 3) such that ARA™ = R; and
since H mod p = LF (2, 3), there is an A, in H such that 4; = A. Then
(A1 RATY)™ = R; and A; RA:" is conjugate to R in H. So each conjugate of
Rin LF (2, 3) has a pre-image in H which is conjugate to B. If Hn K;_; con-
tains at most 3 elements with property B, then we are done by Lemma 4.1

and Proposition 2.4. Suppose Hn K;_; has 9 elements with property B.
Consider R’ in H such that R’ is conjugate to R and B’ = R;. Then

R =U=+(01,—1,1)
= +(—8v,u+3u+38v, —u+3uu-+3p— 3%
where U = ¢ (u, », p). is some fixed element of K7 such that
u+3(@—p—vr)=1 (mod3").

Consider U’-R’ where U’ = ¢ (', v/, p’)s. This will be conjugate to R’ if
and only if

1= —u'3v — 3""””"” — 3%'u + 3""',“/ + 38p1u + 3r+aMp1 + 3r+oyp,

(4.2) + wu + w3 — wdu — 3w — uu + 3w
=u +3ul — v — )+ 3 (W —wv— o+ u’ + v+ un)
(mod 3™)

sinceu + 8" (0 — u — ») = 1 (mod 3"). If U’ satisfies congruence (4.2), we
say U’ has property C. Suppose V = ¢(z, y,2) isin Kz.s. Then V-U’ has
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property C if and only if V" does since
wAud@ — v — W +3"WGe -z —y))
+ 8™ (' — w'y — wo 4w + v + W)
+ 3" (uy — v — 2p + pz + vz + au)
=1 (mod3")

if and only if 3 divides (2 — 2z — y) if and only if V has property C. Also
if U’ has property C and U’" = ¢ (u'§, v'¢, p'£) is in K54, then U’ has prop-
erty C. Since all the elements in H n K_; have property B, at most 3 ele-
ments in H n K3 have property C. Arguing as in Lemma 4.1, we see that
R has at most 3°"* pre-images in H conjugate to R and so by Proposition 2.5,
each of R, Ry, R, and R; has at most 3°"* such pre-images. Hencer < 4-3*"™*,

TuEOREM 3. There exists an ns such that if n > n; and H is of level n in
LF(2,3™), m > n, then g(H) > g.

Proof. From Lemma 3.2 and Propositions 3.4 and 3.6, W < 3™ for
n > 9; from Proposition 3.8, the number of elements with property A is at
most (n + 1)3"*, Now if Hmod3 = 3, then r < 4-3™* and
t<3-(n+1)3"" So

g(H) > 1+ 33" +6 — (3" + 54 + 32:3" " + 24- (n + 1)-8°
+ 24.37n/9+4}/12.32n—1
=1+4a{3"°@81 —9—32) —b(n +1) — -3 _ g
=1+ f(n)

where a, b, ¢ and d are constants. But lim,..f(n) = . If Hmod3 = 3,
thenr < 3" ° 4+ 3" *and t < (n + 1)’3"*® 50 that

gH) > 14 3"7(3""* — 6 — (3" + 54 +8:3"" + 83"
4 24(n + 1)%3° + 24.3™*H/12.3*
=140a{3"°81 —9 —24 —8) —b(n+ 1) — 3" _ g
=1+ fi(n)
where @, b, ¢ and d are constants. But lim,,., fi(n) = . So in either case,
there is an n; such that for n > ns and H of level n, g(H) > g.
For the case p = 2, refer to the lower bounds for g (H) given in Propositions
4.1, 4.4, 4.5 and 4.6 in [2]. Observe that in each case, the lower bound on
g(H) — « asn— . Hence we have the following theorem which completes

our proof that the number of fields of a fixed genus in K (p"), all p and n,
is finite.
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THEOREM 4. There exists an ng such that if n 2> ng and H s of level n in
LF(2,2™), m > n, then g(H) > g.
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