RELATIONS BETWEEN THE COVERING HOMOTOPY AND
SLICING STRUCTURE PROPERTIES

BY
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1. Introduction

Maps which have the slicing structure property (SSP) as defined in [6]
are a very strong type of fiber map. Unlike Serre and Hurewicz fibrations
they are not defined using a covering homotopy property. However it is
known [8], [15] that Hurewicz fibrations over locally equiconnected spaces
have the SSP. As a matter of fact in [15] West showed that a paracompact
space B is locally equiconnected iff every Hurewicz fibration over B has the
SSP.

The SSP was used in [2], [7] and [11] in connection with local homogeneity.
In [7] it was used to determine homology and homotopy groups of spaces
associated with a locally homogeneous space. In [2] and [11] it was used to
show that locally homogeneous spaces are like manifolds.

In [1], [3] and [13] sufficient conditions for a map to be a Hurewicz fibration
are given. In all three papers it was first proven that the map had the SSP
and hence if the base is paracompact then the map is a Hurewicz fibration.
The fact that Hurewicz fibrations over ANR’s have the SSP was used by
Raymond in [10] to show the local triviality of a map. In [9] Mostert used
the SSP to study light maps and quotients of topological groups.

In all of the above, except [7], it should be noted that the SSP was used to
obtain topological results, not algebraic ones. Maps with the SSP are
topologically easier to work with than Hurewicz fibrations.

The purpose of this paper is to study the topological structure of maps with
the SSP. In particular several sufficient conditions, depending on various
types of covering homotopy property, are given for a map to have the SSP.
Also those Hurewicz fibrations which have the SSP are characterized by the
existence of a special lifting function. An interesting corollary of the above
is (3.9) which gives a very weak condition for a map to be a singular fiber
map.

2. Definitions and notation

In the remainder of this paper p will be a map from a space E to a space B.
Conditions will be placed on E, p or B as needed. The term map is used to
denote a continuous function.

All function spaces will have the compact open topology and a subbasic
open set will be denoted by (C, U) where C is compact and U is open.
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A net in a space X will be denoted by a pair (D, ¢) where D is a directed
set and ¢ a function from D to X.

(2.1) DeriNITION. A space X is locally equiconnected if for each point z,
there exists a neighborhood U, of x and a map

N:U, XU, XI—->X
satisfying N (a, b,0) = a, N (a, b,1) = band N (a,a,t) = a. The neighbor-
hood U, is called an equiconnected neighborhood of x.

(2.2) DeriNiTioN. The map p has the covering homotopy property (CHP)
for a class of spaces if given any space X in the classand maps F : X X I —» B
and g : X — E such that F(z,0) = pg(z) then there exists a map G:
X X I — E such that pG@ = F and G(x, 0) = g(x). The map p has the
regular CHP for the class if G can be chosen such that G, is constant whenever
F,is.

(2.3) DEFINITION. A map p is a Hurewicz fibration if the map
g:E' = = {(e,w) eE X B'|p(e) = w(0)}

defined by ¢(w) = (w(0), pw) admits a section (i.e. a map A : @, — E’ such
that g\ = identity). The section is called a lfting function.

(2.4) DeriNiTION. The map p has the slicing structure property (SSP)
if for each point b ¢ B there exists a neighborhood U, of b and a map

¥, p N (Us) X Uy — p~(Us)

such that (1) ¥s(e, p(e)) = e and (2) p¥% = m (the projection on U,).
The map ¥, is called a slicing function.

3. Various types of CHP and the SSP
All of the results of this section are consequences of the following.

(8.1) TuroreEM. If B is locally equiconnected and p has the regular CHP
for spaces of the form p~(U) X U where U is a neighborhood in B then p has
the SSP.

Proof. Let b belong to B and let U be an equiconnected neighborhood of
b with connecting function N : U X U X I — B. Define

H:p (U)X UXI—>B
by H(e,b,t) = N(p(e),b,t). Define
g:p (U)X U—E

by g(e, b) = e and note that pg(e, b) = H(e, b, 0). Since p has the regular
CHP for p™* (U) X U there exists a map

G:p (U)X UXI
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such that G, is constant whenever H, is and such that the following diagram
commutes.

Vd
P (U) X U X 0——p™(U) X U X I—E B

Define ¢ : p (U) X U — p " (U) by ¢(e, b) = G(e, b, 1). It is easily
seen that ¢ is a slicing function for p.
The following definition will be needed for the next theorem.

(3.2) DerinirioN. Let P be a topological property of topological spaces.
A space X is locally P if given any point z in X and any neighborhood U of
x there exists a neighborhood V of ¢ such that Vis Pand V < U. (Neigh-
borhoods are not necessarily open.)

(8.3) TueorEM. Let P be a topological property preserved by finite products,
and let B be a locally equiconnected space which is locally P. If p has the regular
CHP for P subspaces of E X B and p~" of a P set is a P set then p has the SSP.

Proof. Let b be a point of B and U an equiconnected neighborhood of b.
Since B is locally P there exists a neighborhood V of b such that V is P and
V < U. By the hypothesis p™* (V) and p™* (V) X V are P, hence p has the
regular CHP for p (V) X V. To finish the proof we need only note that
V is an equiconnected neighborhood of b and hence (3.1) can be applied to
get a slicing function over V.

A simple modification of a theorem in [8] yields

(3.4) TuroreEM. If p hasthe CHP for a space X and B 1s meitric then p has
the regular CHP for X.

Combining (3.3) and (3.4) we get the following corollaries.

(38.5) CoroLrarY. If p is a compact map with the CHP for compact spaces

and B s a locally compact, locally equiconnected metric space then p has the
SSP.

(8.6) CoroLLaRY. If p is a O-regular map from a Peano continuum to a

locally equiconnected metric space and p has the CHP for Peano continua then p
has the SSP.

Proof. This follows from the fact that O-regular maps preserve Peano
continua under inversion [14].

(3.7) CoroLrLaRY. If E s a metric space such that dim E < n, B a locally
equiconnected metric space with dim B < n and p has the CHP for spaces of
dimension less than or equal to 2n then p has the SSP.
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It should be noted that (3.7) contains the entire gist of Theorem 1 [13].
The next corollary follows from (3.4) and the proof of (3.1).

(3.8) CoroLLARY. Let p be a map from a space E to a k-manifold B. If
p has the CHP for the collection of spaces {U X E*} where U is open in E then
p has the SSP.

Using a theorem of Bing [4] we obtain the following interesting consequence.

(3.9) CoroLLARY. If B is a Peano continuum and p has the CHP for sub-
sets of E X B then there exists a dense arcwise connected subset C of B such that
p | p~(C) has the SSP with one slicing function.

Proof. This follows since Bing’s theorem says that B has a dense equi-
connected subspace.

4, Local and almost local arcwise connectivity

In this section almost local arcwise connectivity will be defined. It is
weaker than local arcwise connectivity and will be used in Section 5.

The following definition, note, lemma and theorem, may be known. How-
ever, I have not been able to find any reference to them and hence am in-
cluding them for completeness sake. I want to thank P. McAuley for point-
ing out (4.4).!

(4.1) DeFINITION. A map p: E — B is open at ¢ if the image of any
neighborhood of ¢ is a neighborhood of p(¢) (in B).

(4.2) Note. A mapp : E — Bis open iff it is open at each point of E.

(4.3) Lemma. A map p : E — B is open at e, iff given any net (D, ¢) in
B which converges to p(ey) = by then there exists a net (A, ¥) in E which con-
verges to ey and such that (A, py) is a subnet of (D, ¢).

Proof. If pis open at e, let (D, ¢) converge to by. Let M be the neigh-
borhood system of ¢ and order A = M X Dby (m,d) < (n,e)ifm < n
andd < e. Then (4, <) isa directed set with this order. Define o : A—D
as follows: Let a(m, d) be an element of D such that a(m, d) = d and if
d’ > a(m,d) then ¢(d’) ep(m). Lety : A — E be defined by ¢ (m, d) is a
point in m n p~'¢a(m, d). I now claim that (4, ¢) is the desired net.

First note that (4, ¥) converges to ¢ since y (m, d) em. Secondly note
that (4, p¢) = (4, ¢a), hence all that must be shown to complete the proof
is that given any dy in D there exists (mi, di) in A such that if (m, d) >
(my, dy) then a(m, d) > do. To do this let m; be anything and let dy = do,
then it is seen by the construction that everything works.

The proof of the converse is trivial and hence omitted.

1 The referee said that he has seen (4.4) in notes by E. Fadell but has not seen it in
publication.
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(4.4) TueorEM. A space B 1s locally arcwise connected iff
¢g: B —BXB
defined by q(w) = (w(0), w(l)) <s open.

Proof. Assume that ¢ is open. Let by be a point of B and U a neighbor-
hood of by. Then (I, U) is a neighborhood of the constant path at b, and
g, U) is an open subset of U X U. Hence there exists an open set V
containing by such that VX V < ¢(I, U). Now if v is in V there exists
w e (I, U) such that w(0) = boand w(1) = ». Therefore v can be joined by
a path in U to b, .

For the converse assume that B is locally arcwise connected.

Let U be open in B’, and let w e U. It is easily seen that there exists a
partition 0 = f < t; < --- < & = 1 of [0, 1] and open sets Uy, ---, Ui in
B such that w e N~ ([t;-1, t], U:) © U. Since B is locally arcwise con-
nected and w(0) e U, there exists a neighborhood V; € U, of w(0) such that
if v € V; then v can be joined by an arc to w(0) in U;. In like manner
there exists a neighborhood Vi < Uy of w(1) such that if v ¢ V; then » can
be joined by an arc to w(1) in U,. To complete the proof it will be shown
that

Vi X Vi € g(Mie ([t , 8, US)).

Let (a,b) e Vi X V; and let a be an arc in U, from a to w(0) and let 8 be
an arcin Uy from w (1) to b. Define a path v as follows

v(@) = a(4s/t) if 0<s<ih
= w(2s — %) if 0<s<ih
= w(s) if 31 <8< (ea+1)/2

w(2s — (a4 1)/2) if (e +1)/2 <8< (a4 3)/4
B4s/(1 — tpm) +1 — 4/(1 — t1))
if (ht+3)/4<s<1
From the construction it is easily seen that
v e MNiet (tix, 8, Us), ¥v(0) =a and y(1) =b.
Therefore (a, b) e g (MNimy ({ti1, £, UL)).

I

(4.5) DeriNiTION. A space B is almost locally arcwise connected at by if
given any net (D, ¢) in B X B which converges to (bo, bg) then there exists
a net (4, ¥) in B’ which converges to a path from by to by and such that
(4, q¥) is a subnet of (D, ¢). (The map ¢q: B’ — B X B is defined by
qw) = w(), w(l)) as in (4.4)). The space B is almost locally arcwise
connected if it is almost locally arcwise connected at each point.
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(4.6) Turorem. If B is locally arcwise connected then B is almost locally
arcwise connected.

Proof. This follows from (4.3) and (4.4).

(4.7) Levmma. A space B is almost locally arcwise connected iff given any
point (by, b1) in B X B such that there exists a path from b to by and any net
(D, ¢) in B X B which converges to (bo , by) then there exists a net (A, ¢) in B
which converges to a path from by to by such that (A, q¥) is a subnet of (D, ¢).

Proof. The sufficiency of the above condition is ohvious. In order to
prove the necessity let w be a path from by to by and let (D, ¢) be a net in
B X B which converges to (by, by). Define I'v: D — B X B by I't(d) =
(me(d), by) and note that (D, Ty) converges to (bo, bo). Hence there exists
a net (Ao, ¥o) in B’ which converges to a path from b, to by and such that
(4o, q¥o) is a subnet of (D, Ty). Let N : Ay — D be the function such
that g¥o = T'v N and for each d in D there is @ in 4 such that if o’ > @ then
N(a’') > d. Such a function exists by the definition of subnet.

Define I'': Ay > B X B by I‘l(a') = (b1, Tz(ﬁN(a)) and note (Ao, P])
converges to (by, by). Hence there exists a net (4, ¢1) in B’ which converges
to a path from b; to b, and such that (4, q¢1) is a subnet of (4o, I'1). Let
M : A — A, be the function which exists by the definition of subnet.

Define ¢y : A — B by ¢ (@) = vo(M(a)) -w-y1(a). I claim that (4, ¢)
is the desiret net. This is easily checked and hence the proof is complete.

The following theorem together with (4.6) gives the reason for the name
almost local arcwise connected.

(4.8) Tarorem. If B s almost locally arcwise connected then
¢g:B"—>BXB
(defined as in (4.4)) is quasi-compact.

Proof. Let U = ¢ 'q(U) be an open inverse set and assume that q(U)
is not open. Then there exists w in U and a net (D, ¢) in B X B\g(U)
which converges to (w(0), w(1)). Then by (4.7) there exists a net (4, ¢)
in B' which converges to a path & from w(0) to w (1) and such that (4, q¥)
is a subnet of (D, ¢). Note that since U = ¢ '¢(U) and w is in U then U
contains all paths from w(0) to w(1). In particular « is in U. Hence
(4, ¢) is eventually in U and so (A4, g¢) is eventually in ¢(U) but this is a
contradiction to the fact that (D, ¢) wasanetin B X B — ¢q(U). Therefore
q is quasi-compact as desired.

(4.9) TuroreMm. If B s contractible then B is almost locally arcwise con-
nected.

Proof. Let H: B X I — B be a contraction. That is H(b, 0) = b,
and H(b, 1) = b. If (b1, b:) e B X B let wge, .y : I — B be defined as
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follows
Wby ,bg) (t) = H(bl; -2t + 1) if ¢ S %

= H(b,2t — 1) ift > %

Note if (D, ¢) is a net in B X B converging to a point b then (D, y) where
¥(d) = wy@ is a net in B’ converging to w, and hence the proof is complete.

(4.10) CororraRY. The cone of any space is almost locally arcwise con-
nected.

5. Really regular fiber maps

The concept of really regular, given below, combines the ideas of regular
as they refer to covering maps and fiber maps. It turns out that the local
really regular fiber maps are ‘‘almost’ the maps with the SSP.

(5.1) DeriniTioN. A Hurewicz fibration is really regular if there exists
a lifting function A such that:

(a) If ¢ ~ r(rel end pts) then (e, c) (1) = A(e, 7)(1)

(b) If ¢ is constant, then A(e, ¢) (0) = A(e, o) (1).

Such a A will be called a really regular lifting function for p. It should be
noted that any light Hurewicz fibration is really regular. This follows from
Theorem 3.1 [5]. There are regular fibrations which are not really regular as
is shown in a later example. The exact relation between really regular and
SSP is unknown and partial answers are given below.

(5.2) DErFINITION. A map p : E — B is a local really regular fibration if
for each b in B there exists a neighborhood U of b such that p |p™'(U) is a
really regular fibration.

(5.3) TuroreEM. If p has the SSP with one slicing function then p is really
regular.

Proof. Let ¢y : E X B — E be the slicing function for p. Define
A:Q, — E" by Me, w)(t) = ¢(e, w(t)). The map X is a really regular
lifting function.

In (5.5) we obtain a partial converse of the above;however first the follow-
ing is needed.

(54) LEMMA. A map p : E — B 18 continuous if given any net (D, ¢) in E
converging to e there exists a subnet (A, ¥) converging to e such that (A, py) con-
verges to p(e).

Proof. Assume that p is not continuous. Then there exists a net (D, ¢)
in E converging to ¢ such that (D, p¢) does not converge to p(e). Then there
exists a neighborhood U of p(e) such that if d is in D there is a d’ > d such
that pp (d’') doesnot belongto U. LetD’ ={deD |pp(d) ¢ U}. (D',¢|D’)
is a subnet of (D, ¢) by the above and hence (D’, ¢ | D’) converges to e.
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However there is no subnet (4, y) of (D', ¢ | D') such that (4, py) con-
verges to p(e).

(5.5) TurOREM. Let B be a simply connected arcwise connected, almost
locally arcwise connected space. Then any really regular fibration over B has
the SSP with one slicing function.

Proof. Let N be a really regular lifting function for p, and define
V:E X B—Ebyy(eb) = Ae, w)(1) where w is any path from p (e) to b.
That ¢ is well defined and satisfies properties (1) and (2) of SSP follows from
the simple connectivity of B and the definition of really regular. That ¢ is
continuous is shown as follows: Let (D, ¢) be a net in £ X B which converges
to (eo, bo). Define

r:D—BXB

by I'(d) = (pm¢(d), meé(d)) where = and m; are the projections of £ X B
to E and B respectively. By the continuity of p, m and = we have that
(D, T') is a net in B X B which converges to (p(e), by). Hence by (4.7)
there exists a net (4, @) in B” which converges to a path w, from p () to by
and such that (4, ¢®) is a subnet of (D, I'). Since (4, ¢2) is a subnet of
(D, T') there exists a function N : 4 — D such that ¢@ = 'V and if d is in
D there exists @ in A such thatif ' > athen N(@’) 2 d. Let At 4 —Q,
by A(a) = (meéN(a), 2(a)). Then (4, A) is a net in @, which converges
to (e, wo), and since N is continuous A (4, A) converges to A (e, wo). There-
fore A (4, A)(1) converges to A(ep, wo)(1) = ¥(es, bp). This is sufficient
for the continuity of ¢ by (5.4) and the fact that A(A(a)) = ¢y (@ (N (a))).

Again from Bing’s theorem we obtain

(5.6) ComroLLARY. Let B be a Peano continuum. If p 18 really reqular
then there exists a dense arcwise connected subset C of B such that p | p~(C)
has the SSP with one slicing function.

Localizing (5.3) we obtain

(5.7) TurorEM. If p has the SSP then p is a local really regular fibration.

Localizing (5.5) we obtain

(5.8) TarorEM. Let B be a semi-locally simply connected, almost locally

arcwise connected space. If p is a local really regular fibration then p has the
SSP.

(5.9) DEFINITION. A map p is a really regular local fibration if there exists
a regular lifting function A such that given any b in B there exists a neighbor-
hood U of b such that if o ~ 7in U (rel end points) and p(e) = ¢(0) = 7(0)
then A(e, ¢) (1) = A(e, 7)(1).
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From the definitions it is easily seen that a really regular local fibration is a
local really regular fibration. From (5.8) and the above remark we obtain

(5.10) TarorEM. Let B be a semi-locally simply connected, almost locally

arcwise connected space. Then a really regular local fibration over B has the
SSP.

I do not know if local really regular fibrations (presumably over para-
compact spaces) are really regular local fibrations. If they are then (5.7)
and (5.11) would give a characterization of SSP in terms of lifting functions.

Really regular fibrations have the following property enjoyed by maps with
the SSP with one slicing function.

(5.11) TurorEMm. If p is really regular then p* : m,(E) — m(B) is an
epimorphism for n > 2 and if F is 0-connected then it is an epimorphism for
n = 1.

Proof. Let f: (I", I") — (B, by). For « in I"™" let w:(t) = f(z, t).
Note w;(0) = f(x,0) = by = f(x,1) = w,(1). Therefore w, is a loop and
it is homotopic (rel end pts) to by. Therefore if A is a really regular lifting
function for p, Meo, w:)(1) = A(eo, bp)(1) = e . Hence define
g: I I") > (B, &) by g(x,t) = e, @) () and note p*[g] = [pg] = [fl.

(5.12) CoroLLARY. If p s really regular then
& IL(F) — OL(E)
18 @ monomorphism for n > 1.

Proof. Trivial.

(5.13) Example. Let B be an arcwise connected metric space such that
II,(B) # 0 for some n > 2. Define p: (B, b))"” — B by p(w) = w(1).
Then p is a regular fibration which is not really regular.

Proof. (B, b)"? is contractible and therefore

p* : Hn (Bv bO)(I'O) - Hn(B: bO)
is not onto.

In the case of light maps a large number of those with the SSP are locally
trivial. This follows from the following two theorems.

(5.14) TurorEM. If p has the SSP then p has strong local sections.
Proof. 1If b e B there is a neighborhood U, of b and a slicing function
¥ (Us) X Uy — U,

Let e e p~ (Us) and define ¢, : Uy — E by ¢.(w) = ¥ (e, ). Then pe,(w) =
(e, w) = wand¢.(p(e)) = ¥(e,ple)) =e.

(5.15) Tarorem. If p is an a-light map with the SSP and if B is an arewise
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conmected, uniformly locally arcwise conmected metric space and if p~>(b) s
compact for all b in B, then p has the BP.

[

'S

[*]

9

Proof. This follows directly from (5.14) and Theorem 4.2 [12].
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