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1. Introduction
It is the purpose of this note to present an alternate proof of the following

fundamental result of Brauer, Suzuki, and Wall.

THEOREII (Brauer-Suzuki-Wall). Let G be a finite group wih an involution
and an abelian subgroup K of H Ca(t) containing t. Assume the following

conditions"

(i) H K(s) with an involution s K
(ii) C(s) (t), and x" x- for all x K;
( iii K n K l for all g eG H;
(iv) all involutions of G are conjugate to t.

Then G has a subgroup Q of order q such that
(1) GI q(q - 1)(q- 1)/2;
(2) C() Q or all Q;
(3) Na(Q) QD with an abelian subgroup D of. order (q 1)/2;
(4) whenever 1 X D, then Na(X) Na(D) D(u) with an involu-

tion u D inverting D.

Considered as a permutation group on the set of conjugates of Q, G then
satisfies the assumptions of a theorem of Zassenhaus (G is doubly transitive
of degree q - 1, no non-identity element fixes three points, the stabilizer of two
points is abelian of order (q 1)/2 and is inverted by some involution).
It follows that G is isomorphic to PSL.(q); see [6], or [4, Section 18], or [3,
Section 13.3].
The original proof of the Brauer-Suzuki-Wall Theorem is contained in part

II of [2]. See also [3, Sections 15.4 and 9.4].
By a transfer argument, condition (iv) can be replaced by the assumption

that G has no subgroup of index 2.
In addition to the notation already introduced, we let k K I, and

i(x) number of involutions u x in G satisfying x’ x-, for x G.

Note that i(x) equals the number of ordered pairs (u, v) of involutions u, v
satisfying x uv. All other notation follows [3] and is standard. In particu-
lar Qa denotes the set of non-identity elements in Q.

For k 2 it is easily verified that every coset of H (a Sylow 2-subgroup of
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G) not lying in N N((H) contains exactly one involution, and hence that
for each involution u outside N the subgroup T N N has order
3 IN’H and is inverted by u; for example, see [3], Theorem 9.2.2.i.

Since then u is the only element of Hu normalizing T, it follows that
C(T) T. Hence either G hr, or G N contains exactly 3.4 involutions
because N has 4 subgroups of order 3 and each is normalized by 3 involutions
(if G N). In the latter case, 3.4 IG:HI IN’HI, and hence
IGI-- 60.
For a beautiful discussion of a similar, but much more general situation, the

reader is referred to [5].
.In case k 4, subgroups of order larger than H are still available, namely

the normalizers of elementary abelian subgroups of order 4. Again the de-
sired conclusion can be obtained from a look at the distribution of involutions
in the cosets of such a large subgroup. See for example [1, Section 3].

In the following, assume k > 4. Here elementary counting arguments have
to be supplemented by some information on the order of G. A suitable lower
bound would suffice, but the character argument in the next section will give
the exact order of G, in terms of k and a sign c +/-1.

2. The order of G
The abelian group K has k linear characters, two of which are fixed by s

(namely those having [s, K], a subgroup of index 2 in K, in their kernel).
Each of the values 1 and -1 is assumed by k/2 characters on t. Since
k/2 2 >_ 6/2 2 1, K has linear characters p and not fixed by s
such that p(t) 1 and (t) 1.
Then pH and H are distinct irreducible characters of H of degree 2. Let

a (1K-- P)and (p-- ). Then

() () 0, () 0, () 4,

(, ) 3, (, ) 2, (, ) -.
It is an easily verified but basic fact due to Brauer and Suzuki that these rela-
tions remain valid if a and 9 are replaced by * and 9", the generalized char-
acters of G induced by a and 9 (moreover, a* and 9" coincide with a and 9
on K, respectively); for example, see [3, Theorem 4.4.6]. Here it is essential
that K is a t. i. subgroup with normalizer H (condition (iii)), and that a
and vanish outside K.
By Frobenius reciprocity, (a*, 1) 1 and (9", 1) 0. It follows that

* /9*o l,-l""y X, =--’y

where , X, and are distinct non-trivial irreducible characters of G, or nega-
tives of such characters.

For the class function i defined in the previous section we have the formula

i= GI [HI-3 x()2
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where x ranges over all irreducible characters of ; see [3, 9.4.21, and remember
that characters always assume real (in fact integral) values on involutions.
Clearly, this formula remains valid if any x is replaced by its negative.

It follows that

I 11H I-(1 + (t)/(1)
and (#*, I 11H I-((t)/(1) (t)/(1)).
Next we compute these two inner products directly. Let
Since vanishes on elements not conjugate to an element of K, and (x) k
for all K (the involutions contributing to () are exactly those in
H K Ks, and Ks eomists of involutions, by eontion ()), we conclude

(, i) G I-o,o (g)i(g)

G I-IG:No(K) k,,(g) H I-k(lx, $ I).
Ts together th

a [= alx= lx-p-t- (l-p) and

yields

(o*, i) 2 H I-k and (#*,i) 0.

Comparing the two expressions for our inner products, we see that

2k G’H I(1
and

0

(because (1) 3" (1)). Since (t) 3" (t) #*(t) #(t) 4, the latter
relation implies (t) 2 and 3’ (t) 2. Then 1 q- 3" (t) ), (t) a*(t) 0
yields ),(t) 1.
Now the other relation, after multiplication by 3"(1) X(1), reads

2k(1)X(1) G:H If with f -/(1)X(1) -t- 4X(1) (1).

Clearly, H is a Hall subgroup of G. Hence G:HI divides

1 q-3"(1) ,(1) a*(1) 0

From

it is immediate that the greatest common divisor (k(1), f) of X(1) and f is 1,
whence 9(1) divides G:H I, and in particular is odd.
Being a multiple of 2k, f 3"(1) (),(1) 1) q- 4),(1) is divisible by 8. Hence
3"(1) is not divisible by 4. Thus, (3"(1), f) 2, whence 3’(1)/2 must be
a divisor of G:HI.
Now it is clear that

G:HI
Hence

4k f 3"(1)(X(1) 1) q- 4X(1)
(),(1) 1)q 4X(1) (X(1) W 1):.
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Thus2ke k(1) W lwithe +/-1. Then(1) k(1) 1 2ke- 2.
So we get

o:gl (2e- )(e- 1) (2/- e)(- ).

Replacing e by -e yields

[G’HI (2+e)(/+ ) with d=l.

In the following, let q 2/ + e, and note that

Il ( + )(- t)/2.

3. Complet|on of he proof
Since all elements of H K are conjugate to t, the set K equals H and

contaim .the centrafzer of any of its non-identity elements.
Consider the function (u, v) uv from the set of all pairs of involutions

into G. Each element x e G is assigned to i(x) pairs. Since i(1) G:H
andi(x) kforxeK,theG’H](k- 1) + lelementsofK H are
assigned to G’H + G’H [(k 1) k pairs.
Hence there exists an element x H such that

i() > :H I:gl I:l ( t)
IG- 1-IG’Hl(k- 1)

gl- (- )

(2 + )(+ ) ( )- (- )

In the follong, F denotes the centralizer of a suitable element x e H for
which i(x) > k W 3ek/(k + 1) and x .
WeletM No(F), f r l, and n IM’F].
3.1. (i) F Co(a) and a for all a e F,
(ii) M F(K , M),
(iii) FaM lforallgeG- M,
(iv) f k- 1/re= -1, and f k + 3 ff e 1.

Proof. x H impfies F H 1, as remarked above. Hence all involu-
tions of M are ed-point-free on F, and thus invert every element of F.
In particular, F is abelian. For the same reason, Co(a) is abefan for all
a e F. Ts proves (i). For (ii) note that the product of any two involu-
tions of M lies in Co(F) F. Clearly, (i) forces F to be a HM1 subgroup of
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G, and implies F n Fg 1 for g e G M; this gives (iii). From (i) we also
conclude f i(x); since f is odd, (iv) is immediate.

3.2. One of the following holds:
(i) G:H f(k + 1) and lG:M f(2k/n) f + 1,
(ii) G:H !- G:M

_
f(k - l) (f(2k/n) f - l) and

G:MI>_ f(2k/n) , 1.

Proof M contains f involutions.
conjugate to K n M and has order n.

Let u be one of them.
Let g e C(u) CM(u).

Then C(u) is

Since F Mg 1, and all subgroups of K are normal in H, it follows that
CM(u) M Mg. Note that M Mg for all e e Mg. We conclude that
the coset Mg contains n elements of Co(u), but no element commuting with
any other involution of M. In addition, any involution y e Mg centralizes u
because y normalizes M Mr M M.
Hence there are f(2]c n) elements outside M, among them tic involutions,

commuting with an involution of M; they fall in ](2k n)/n cosets of M,
which contain no further involutions. In addition, we have the coset M.

If there are no more cosets of M, then (i) holds. Otherwise, there are
at least f more cosets because F (in fact M) acts without fixed-points on those
additional cosets. This yields G:M >- f(2lc/n) -}- 1.
An additional coset can contain only one involution, as any involution in-

verting a non-identity element of M commutes with some involution in M.
Hence G:H f(k W 1), the number of involutions in the additional cosets,
is not larger than the number of those cosets, which is G:MI (f(2k/n)
f+l).

3.3. Assume case (i) of (3.2). Then the conclusion of the theorem holds
with Q F and D K.

Proof. f( ]c + 1) G H 2l + lc + implies

1 and f= 21-}- 1 q.
We have

G:MI =/(2k/n) f - 1 (2k -t- 1)(2k/n)

On the other hand, G:H f( ] + 1) yields G:M (2k/n) (k - 1).
Hence 2k2/n 2]c O, i.e. k n,

Thus No(F) M FK and K[ (q 1)/2. Now the conditions
(1)-(4) in the theorem are clear.

3.4. Without loss, f= k-- 1, n= 2, ands= -1.

Proof. By (3.3), we may assume that case (ii) of (3.2) holds.

If[M[

_
H [, then 2f

_
nf [M <_ H[ 2/ together with (3.1.iv)

yields the assertion.
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Thus assume M I/I HI 1 > 0.
yield

Then the two inequalities in (3.2.ii)

f(2k/n)(nff2k 1) < G:M (I M Ill Hi 1)
G:HI G’MI < $(k + 1) f(2k/n) W f.

This gives f < k -t- 2. Hence e 1 and J _> k 1, by (3.1.iv). Then
f k- 1 because k + 1 does not divide lG:H[= (2b- 1)(k- 1).

Finally, n K M divides both k KI and F 1 k 2,
since K a M is a subgroup of K acting fixed-point-freely on F. Thus n 2.

3.5. (i) The set Y G- Ha F consists of two conjugate classes of G;
(fi) if y Y, then y is not conjugate to y-;
(i i) if y e Y, then Ca(y). has order 2 1 and is a p-group, p a

prime.

Proof. By (3.4),

GI-- (2k- 1)(k- 1).2k,

Hence
IF I= k- 1, and INo(F) I= 2(k-l).

]YI ]GI -IG:H](k 1) --IG:N,(F)I(f- 1) 1
(2/- 1)(k- 1).2k- (2/- 1)(k- 1)(/- 1)

(2/- 1)/(k- 2) 1
(2k-- 1)(2k- 2k- k-2k- 1 k-t-2k) 1
(2k-- 1)(2k-- 1) 1
4k(/- 1).

On the other hand, if y e Y, then Yal 2k(k 1)m with an odd integer m,
because Ca(y) divides 2k 1.

This yields (i) and (iii). If y’ y-, then i(y) >_ ]Ca(y) 2k 1,
whence Ca(y) satisfies the same assumptions as F. This would imply
Ca(y) 2/ 1 or k 1, see the proofs of (3.3) and (3.4), a contradic-

tion. Now (ii) is immediate.

3.6. Let X 1 be a p-subgroup of G, and P a Sylow p-subgroup of
N Na(X). Then P <] N PD with D conjugate to a subgroup o F or K.

Proof. Let r p be a prime divisor of N I, and R a Sylow r-subgroup of
N. By (3.5.ii), hr has odd order. Since both F and K are t. i. subgroups of
G, and have index 2 in their normalizer, N(R) is conjugate to a subgroup of
F or K. In particular, N(R) is abelian. Then Bumside’s transfer theorem
yields a normal complement, of R in N.

This proves that P is normal in N, and that NIP is abelian. Now the
Frattini argument gives hr PN(R).

3.7. A Sylow p-subgroup of G is disjoint from its conjugates.

Proof. Let X be maximal among the intersections of two distinct Sylow
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p-subgroups. Then No(X) has no normal Sylow p-subgroup. By (3.6),
X-- 1o

3.8. The conclusion of the theorem holds with Q a suitable Sylow p-subgroup
of G, and D F.

Proof. Choose a subgroup Q of order 2/0 1 q in such a way that
No(Q) QD with D a subgroup of F or K; see (3.6).

By (3.7), elements of Q conjugate in G are, already conjugate in No(Q).
Then (3.5) implies that Q is abelian and that

D[ (q-- 1)/2

This completes the proof.
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