FINITE GROUPS WITH LARGE SUBGROUPS

BY

HELMUT BENDER¹

1. Introduction

Considerations concerning the distribution of involutions in the cosets of a given subgroup are often useful in the study of groups of even order. The reason seems to be that if the index |G:H| of a subgroup H of a (finite) group G is small compared to the number of involutions in G, not very many involutions can enjoy the privilege to sit in a coset of H without sharing it with any other involution. Those cosets however, which contain more than one involution are controlled by the normalizers of non-identity subgroups of H, because of the following observation:

Let $u \in G$ be an involution. Then an element $h \in H$ is inverted by u (i.e. $h^{u} = h^{-1}$) if and only if h = vu with an involution $v \in Hu$.

In Section 2 we try to bring the above remarks in a more precise form, and the relations derived there will be illustrated at two examples in Sections 3 and 4.

2. An inequality

Let G be a group with a subgroup H such that |J| > |G:H| where J denotes the set of involutions in G. Furthermore, define

 $J_n = \text{set of } u \in J - H \text{ such that } | Hu \cap J | = n,$ $b_n = \text{number of cosets } Hg \neq H \text{ such that } | Hg \cap J | = n,$ $c = \text{number of } u \in J_1 \text{ such that } C_H(u) \neq 1,$ f = |J|/G:H| - 1 > 0.

Note that $|J_n| = nb_n$, and that J_n consists of those involutions outside H which invert exactly n elements of H. Clearly, H acts fixed-point-freely on the set of $u \in J_1$ satisfying $C_H(u) = 1$. Then the two equalities in the following lemma are obvious.

LEMMA. (1) $|J| = |J \cap H| + b_1 + 2b_2 + 3b_3 + \cdots$. (2) $b_1 = c + m |H|$ for some integer $m \ge 0$. (3) $b_1 < f^{-1}(|J \cap H| + b_2 + 2b_3 + 3b_4 + \cdots) - 1 - b_2 - b_3 - b_4 - \cdots$.

It remains to prove the inequality. Clearly, $|G:H| = 1 + \sum_{i\geq 0} b_i$. Hence

 $|J| - |G:H| = |J \cap H| - 1 - b_0 + b_2 + 2b_3 + 3b_4 + \cdots$

Received October 12, 1972.

¹ This research was partially done at the University of Illinois at Chicago Circle and was supported by a National Science Foundation grant.

Since |J| - |G:H| = f |G:H|, it follows that $b_1 = |G:H| - 1 - b_0 - \sum_{i \ge 2} b_i$ $= f^{-1}(|J \cap H| - 1 - b_0 + b_2 + 2b_3 + 3b_4 + \cdots) - 1 - b_0 - \sum_{i \ge 2} b_i.$

As $b_0 \ge 0$, the inequality follows from this.

Remark. From some knowledge of normalizers of non-identity subgroups of H one can obtain a lower bound, say b, of b_0 . Replacing b_0 in the above expression for b_1 by b, may then yield a more useful inequality.

3. The groups $L_2(7)$ and $L_2(9)$

To begin with an easy example for the application of the lemma, consider a group G of even order such that the centralizer of every involution is dihedral of order 8. We will see that G looks like $L_2(7)$ or $L_2(9)$.

Fix an elementary abelian subgroup V of order 4. Since V is contained in two distinct Sylow 2-subgroups (of order 8), $N_{\mathcal{G}}(V)/V$ must be dihedral of order 6.

Fix a subgroup X of order $3 \text{ in } N_{\sigma}(V)$. We refer to part (i) of the lemma as Lemma (i).

Case 1. $C_{\mathfrak{g}}(X) \not \subseteq N_{\mathfrak{g}}(V)$. Let $A = C_{\mathfrak{g}}(X)$ and $H = N_{\mathfrak{g}}(X)$. Then $H = A\langle t \rangle$ where t is an involution of $N_{N_{\mathfrak{g}}(V)}(X)$.

Since the centralizer of any involution is a 2-group, A has odd order, and $C_A(t) = 1$. The latter implies $x^t = x^{-1}$ for all $x \in A$. Hence A is abelian. Likewise, $C_G(x)$ is abelian and hence equal to A, for all elements $x \neq 1$ of A.

It follows that $H^{g} \cap A \neq 1$ implies $g \in N_{g}(A)$. Since every involution of $N_{g}(A)$ inverts A, H must contain all involutions of $N_{g}(A)$.

This implies $|H \cap H^u| \leq 2$ for all involutions u outside H.

Hence $b_n = 0$ for $n \ge 3$.

There are a = |A| involutions in H, and each commutes with 4 involutions outside H. Hence $2b_2 = |J_2| = 4a$ and thus $b_2 = 2a$.

The number of involutions (they are all conjugate) equals the index of the centralizer of an involution. Hence f = |J|/|G:H| - 1 = 2a/8 - 1 = (a-4)/4.

Clearly, $a \ge 9$ and a divides b_1 . Then Lemma 3 gives

$$0 \le b_1 < \frac{4}{a-4} (a+2a) - 1 - 2a = 12 + 4 \cdot 12/(a-4) - 1 - 2a$$

< 12 + 10 - 1 - 2a = 21 - 2a.

It follows that a = 9 and $b_1 = 0$. Now Lemma 1 yields

 $|G|/8 = |J| = |J \cap H| + 2b_2 = a + 4a = 5 \cdot 9.$

Hence $|G| = 9 \cdot 8 \cdot 5$; and since |A| = 9 divides $|G:N_{\sigma}(A)| - 1$, it follows that $|N_{\sigma}(A)| = 9 \cdot 4$.

Case 2. $C_{\mathfrak{G}}(X) \subseteq N_{\mathfrak{G}}(V)$. Then $N_{\mathfrak{G}}(X) \subseteq N_{\mathfrak{G}}(V)$. Let $H = N_{\mathfrak{G}}(V)$. Let t be an involution outside H. Since t normalizes $H \cap H^{t}$, and since H con-

224

tains the normalizer of every subgroup of order 3 and every subgroup $\neq 1$ contained in V, $H \cap H^t$ must be elementary abelian. Hence t inverts not more than two elements of H.

H has 6 involutions outside *V*, and each commutes with 2 involutions outside *H*. Hence $2b_2 = |J_2| = 6 \cdot 2$ and thus $b_2 = 6$. Furthermore, $|J \cap H| = 9$ and $b_n = 0$ for $n \ge 3$. Since $|H| = 3 \cdot 8$, we have f = |J|/|G : H| - 1 = 3 - 1 = 2.

Now Lemma 3 yields $b_1 < \frac{1}{2}(9+6) - 1 - 6 < 1$. Hence $b_1 = 0$. Then Lemma 1 gives

 $|G|/8 = |J| = |J \cap H| + 2b_2 = 9 + 12 = 21.$

Hence $|G| = 7 \cdot 3 \cdot 8$.

4. Janko's first simple group

Janko has studied a group G of even order satisfying the conditions (i) and (ii) below, and has shown that up to isomorphism there exists exactly one such group G.

(i) Involutions of G are conjugate

(ii) If $t \in G$ is an involution, then $C_{\sigma}(t) = \langle t \rangle \oplus L$ where L is isomorphic to the simple group A_5 of order 60.

With help of our lemma we will determine the order of G. Another characterfree proof of this result is contained in an unpublished paper of Thompson.

Fix a Sylow 2-subgroup Q of G and an involution $z \in Q$. Since Q has order 8, and involutions of Q are already conjugate in $N_{\sigma}(Q)$, $N_{\sigma}(Q)/Q$ must be a non-abelian group of order 3.7. We also need

4.1. Let U be a subgroup in $C_{\mathfrak{g}}(z)$ of prime order $p \neq 2$. Then $C_{\mathfrak{g}}(U) = A\langle z \rangle$ where A has order p or 15. In particular, U is a Sylow p-subgroup of G.

Proof. The proof of Janko's Lemma 3.1 shows that otherwise $C_{\sigma}(U) = A \langle z \rangle$ with A elementary abelian of order 3³, and $N_{\sigma}(A) = AVX$ with V a fourgroup normalized by the subgroup X of order 3.

Since $C_{\mathfrak{G}}(V)$ is a Sylow 2-subgroup of G, X centralizes some involution and hence is conjugate to U. Hence $Y = C_A(X)X \subseteq B$ for some conjugate B of A. Then $Z = N_{N_{\mathfrak{G}}(A)}(Y) \subseteq N_{\mathfrak{G}}(B)$ because $B = C_{\mathfrak{G}}(Y)$.

Clearly, $C_A(V) = 1$ implies $|C_A(X)| = 3$. It follows that Z is non-abelian of order 3³, and that A is the only abelian subgroup of order 3³ in $N_G(A)$ and hence even in a Sylow 3-subgroup of G. However, $N_G(Z)$ has a normal Sylow 3-subgroup containing both A and B, a contradiction.

In the following, let d = 3 if the subgroup A in (4.1) (always) has order 15; in the other case, let d = 1.

Then (4.1) has the following consequence:

4.2. A subgroup of order 3 is inverted by 6d involutions and centralized by 2d-1 involutions.

A subgroup of order 5 centralizes d involutions.

Next we prove:

4.3. Let S be a subgroup of order 7 in $N_{\mathfrak{G}}(Q)$. If $N_{\mathfrak{G}}(S)$ has even order, then $C_{\mathfrak{G}}(S) = S$.

Proof. Suppose false. Let $A = C_{\sigma}(S)$. By (4.1), a = |A| is not divisible by a prime ≤ 5 . Hence $a \geq 49$, and $C_A(t) = 1$ for any involution t of $N_{\sigma}(S)$. Then t inverts A, and A is abelian. Likewise, $C_{\sigma}(x)$ is abelian, for every element $x \neq 1$ of A. Hence $C_{\sigma}(x) = A$ for all those elements. Clearly, $N_{N_{\sigma}(Q)}(S)$ has a subgroup of order 3.

We apply the lemma to $H = N_{\mathfrak{g}}(A) = AC_{\mathfrak{H}}(t)$. Since $C_{\mathfrak{H}}(t)$ contains a non-identity 3-element and is fixed-point-free on A, $C_{\mathfrak{H}}(t)$ is cyclic of order 6.

If u is an involution outside H, then $A \cap A^u = 1$, and hence $H \cap H^u$ is conjugate to a subgroup of $C_H(t)$.

H has a subgroups of order 6, and each is inverted by 6 involutions. Hence $|J_6| = 6a$.

H has a involutions, and each is inverted (i.e. centralized) by 30 involutions outside *H*. Hence $|J_2| + |J_6| = 30a$.

Likewise, since any subgroup of order 3 is inverted by 6d involutions (4.2), $|J_3| + |J_6| = 6da$. Let x be an element of order 3 in H, say $x \in N_G(Q)$. By (4.2), x is centralized by 2d-2 involutions outside H; and since no such involution inverts a non-identity element of H, we get c = 2(d-1)a. Since x centralizes an involution of Q, we cannot have d = 1. Thus d = 3.

It follows that $b_6 = a$, $b_8 = 4a$, $b_2 = 12a$, and c = 4a.

Now Lemma 3 yields (note that $|H| \ge 6.49 > 120 = |C_{\sigma}(z)|$)

$$4a = c \le b_1 \le f^{-1}(a + 12a + 2 \cdot 4a + 5a) - 12a - 4a - a$$

Hence 21f < 26. On the other hand,

$$f = |J| / |G: H| - 1 = \frac{6a}{120} - 1 \ge \frac{49}{20} - 1 = \frac{29}{20}.$$

Thus $29 < 29 \cdot 21/20 \le 21f < 26$, a contradiction.

Next let $H = N_{\mathfrak{g}}(Q)$. Note that $|H| = 168 > |C_{\mathfrak{g}}(z)| = 120$, so that we are in a position to apply the lemma. In fact, $f = |J|/|G:H| - 1 = \frac{7}{5} - 1 = \frac{2}{5}$.

Let u be an involution outside H. Since Q is the centralizer of any fourgroup in H, $H \cap H^u$ has no subgroup of order 4. Hence the elements of H inverted by u form a subgroup of order 1, 2, 3, 6, or 7. This makes it easy to compute the numbers b_n , $n \ge 2$, and c.

H has 8 subgroups of order 7, and each is inverted by 7*e* involutions, with e = 0 or 1; see (4.3). Hence $|J_7| = 8.7e$.

H has 4.7 subgroups of order 6, and each is inverted by 6 involutions. Hence $|J_6| = 4.7 \cdot 6$.

H also has 4.7 subgroups of order 3, and each is inverted by 6d involutions

(4.2). Hence $|J_3| + |J_6| = 4 \cdot 7 \cdot 6d$. Each subgroup X of order 3 is centralized by 2d - 1 involutions (4.2). One of them lies in H, and 2e of them lie in J_7 because X normalizes 2 subgroups of order 7 in H. The remaining ones invert no non-identity element of H. Hence $c = 4 \cdot 7 (2d - 2 - 2e)$.

Each of the 7 involutions of H commutes with 24 involutions outside H. Hence $|J_2| + |J_6| = 7 \cdot 24$, and thus $|J_2| = 0$. We collect:

$$f = \frac{2}{5},$$

 $c = 8 \cdot 7 (d - 1 - e)$ with $e = 0$ or 1,
 $b_1 = c + 7 \cdot 8 \cdot 3m$ with $m \ge 0$ an integer (see Lemma 2),
 $b_3 = 8 \cdot 7 (d - 1),$
 $b_6 = 4 \cdot 7,$
 $b_7 = 8e,$

all other b_n equal 0, for $n \ge 1$.

Next we apply Lemma 3 to get information on m:

$$8 \cdot 7 (d - 1 - e) + 7 \cdot 8 \cdot 3m$$

$$< \frac{5}{2}(7+2\cdot 8\cdot 7(d-1)+5\cdot 4\cdot 7+6\cdot 8e)-8\cdot 7(d-1)-4\cdot 7-8e$$

This simplifies to

$$3m < \frac{5}{16} + 3d + \frac{25}{4} + \frac{15}{7}e - 5 + 1 + 1 - \frac{1}{2} - \frac{1}{7}e + e$$

$$< 3d + 3e + 3 + 1.$$

Hence

(4.4) $m \le d + e + 1 \le 5.$

From Lemma 1 we get

$$|J| = 7 + 8 \cdot 7 (d - 1 - e) + 7 \cdot 8 \cdot 3m + 3 \cdot 8 \cdot 7 (d - 1) + 6 \cdot 4 \cdot 7 + 7 \cdot 8e$$

which simplifies to

$$(4.5) |J| = 7(1 + 8(4d + 3m - 1)).$$

By (4.2), a subgroup of order 5 fixes exactly d involutions. Hence $|J| \equiv d \mod 5$. This together with (4.5) yields

(4.6) 5 divides
$$2d + 2m - 1$$
.

Suppose d = 1. Then m = 2, by (4.4) and (4.6). Thus (4.5) yields $|G| = 8 \cdot 5 \cdot 3 \cdot 7 \cdot 73$. Fortunately, 73 is a prime. Let P be a subgroup of order 73. Then $|N_{\mathcal{G}}(P):P|$ divides $2 \cdot 3 \cdot 7$ since $C_{\mathcal{F}}(x) = 1$ for all elements x of order

2 or 5 (or 3). Since obviously no divisor >1 of $8 \cdot 5 \cdot 3$ is $\equiv 1 \mod 73$, we actually have $|G:N_G(P)| = 4 \cdot 5 \cdot 7x$ with x a divisor of 6. From $4 \cdot 5 \cdot 7 = 140 \equiv -6 \mod 73$ we conclude that 73 divides -6x - 1.

This contradiction proves d = 3.

Next suppose m = 0. Then (4.5) yields $|G| = 8 \cdot 5 \cdot 3 \cdot 7 \cdot 89$. Let P be a subgroup of (prime) order 89. Since no divisor >1 of $8 \cdot 5 \cdot 3$ is $\equiv 1 \mod 89$, and 88 is not divisible by 3 or 5, it follows that $|G:N_G(P)| = 4 \cdot 5 \cdot 3 \cdot 7x$ with x = 1 or 2. From $5 \cdot 3 \cdot 7 = 105 \equiv 16 \mod 89$ we conclude that 89 divides $4 \cdot 16x - 1$, a contradiction.

Hence $m \neq 0$. Then (4.4) and (4.6) yield m = 5. By (4.5), $|J| = 7(1 + 8(12 + 15 - 1)) = 7(1 + 208) = 7 \cdot 11 \cdot 19$. Thus, the order of G is $8 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$.

Reference

Z. JANKO, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra, vol. 3 (1966), pp. 147–186.

Universität

KIEL, WEST GERMANY