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1. Introduction
Considerations concerning the distribution of involutions in the cosets of a

given subgroup are often useful in the study of groups of even order. The
reason seems to be that if the index ://I of a subgroup H of a (finite)
group is small compared to the number of involutions in G, not very many
involutions can enjoy the privilege to sit in a coset of H without sharing it with
any other involution. Those cosets however, which contain more than. one
involution are controlled by the normalizers of non-identity subgroups of
H, because of the following observation:

Let u be an involution. Then an element h H is inverted by u (i.e.
h h- if and only if h vu with an involution e Hu.

In Section 2 we try to bring the above remarks in a more precise form, and
the relations derived there will be illustrated at two examples in Sections 3
and 4.

2. An inequality
Let G be a group with a subgroup H such that J > G:H where J de-

notes the set of involutions in G. Furthermore, define

J,, se o]u e J H such ha Hu n J n,
b,, number of cosets Hg H such ha Hg n J n,
c nunber of u J such tha Cr (u) 1,
f= IJI/G:H I- 1 >0.

Note that J,, nb,,, and that J consists of those involutions outside H
which invert exactly n elements of H. Clearly, H acts fixed-point-freely on
the set of u J satisfying C (u) 1. Then the two equalities in the follow-
ing lemma are obvious.

LEMMA. (1) JI J n H - b + 2b. - 3b + ....
(2) bl c + z H Ifor some integer tn >_ O.
(3) b<f-(IJ,Hl+b-2b-t-3b-...)-l-b-b-b
It remains to prove the inequality. Clearly, G’H 1 - >o b.

Hence
JI G:H J n H 1 b0 - b. + 2b - 3b - ....
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Since J G:HI f iG" H it follows that

b, G’H 1- bo- ,> b,

f- (I J n H -1- bo + b. + 2b + 3b + l bo _,,>b,.
As b0 _> 0, the inequality follows from this.

Remark. From some knowledge of normalizers of non-identity subgroups
of H one can obtain a lower bound, say b, of b0. Replacing b0 in the above
expression for b by b, may then yield a more useful inequality.

3. The groups L.(7) and L.(9)
To begin with an easy example for the application of the lemma, consider a

group G of even order such that the centralizer of every involution is dihedral
of order 8. We will see that G looks like L (7) or L. (9).

Fix an elementary abelian subgroup V of order 4. Since V is contained in
two distinct Sylow 2-subgroups (of order 8), No(V)/V must be dihedral of
order 6.

Fix a subgroup X of order 3 in No (V). We refer to part, (i) of the lemma as
Lemma (i).

Case 1. Co(X) No(V). Let A Co(X) and H No(X). Then
H A (t) where is an involution of NNoCv (X).

Since the centralizer of any involution is a 2-group, A has odd order, and
C (t) 1. The latter implies x x-1 for all x e A. Hence A is abelian.
Likewise, Co (x) is abelian and hence equal to A, for all elements x 1 of A.

It follows that H n A 1 implies g e N (A). Since every involution of
No (A) inverts A, H must contain all involutions of No (A).

This implies H n H -< 2 for all involutions u outside H.
Hence b, 0 for n >_ 3.
There are a A involutions in H, and each commutes with 4 involutions

outside H. Hence 2b J. 4a and thus b 2a.
The number of involutions (they are all conjugate) equals the index of the

centralizer of an involution. Hence f J I/I G" H 1 2a/8 1
(a 4)/4.

Clearly, a >_ 9 and a divides b. Then Lemma 3 gives

0 < b, 4 (a-t-2a) 1 2a 12-t-4.12/(a-4) 1-2a(%--4

12-t- 10-- 1 2a 21 2a.

It follows that a 9 and b 0. Now Lemma 1 yields

[GI/8= IJJ [JnHlW2b=aW4a=5"9.
Hence G 9.8.5; and since A 9 divides IG’No (A) 1, it follows
that No (A) 9.4.

Case 2. C(X) No(V). Then No(X) No(V). Let H No(V).
Let be an involution outside H. Since normalizes H n H, and since H con-
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tains the normalizer of every subgroup of order 3 and every subgroup 1
contained in V, H n H must be elementary .abelian. Hence inverts not
more than two elements of H.
H has 6 involutions outside V, and each commutes with 2 involutions out-

side H. Hence 2b2 J2 6.2 and thus b 6. Furthermore, J n H
9andbn=0forn_>3. SincelHI =3"8, wehavef= IJI/IG’HI-1
3-1 =2.
NowLemma3yieldsbl<1/2(9-t-6)-- 1-6<: 1. Hencebl =0. Then

Lemma 1 gives

]GI/8 J J H + 2b 9-12 21.

Hence GI 7.3.8.

Janko has studied a group G of even order satisfying the conditions (i) and
(ii) below, and has shown that up to isomorphism there exists exactly one such
group G.

(i) Involutions of G are conjugate
(ii) If e G is an involution, then Co (t) (t) L where L is isomorphic to

the simple group A5 of order 60.

With help of our lemma we will determine the order of G. Another character-
free proof of this result is contained in an unpublished paper of Thompson.

Fix a Sylow 2-subgroup Q of G and an involution z e Q. Since Q has order
8, and involutions of Q are already conjugate in No(Q), No(Q)/Q must be a
non-abelian group of order 3.7. We also need

4.1. Let U be a subgroup in Co(z) of prime order p 2. Then Co(U)
A (z) where A has order p or 15. In particular, U is a Sylow p-subgroup of G.

Proof. The proof of Janko’s Lemma 3.1 shows that otherwise Co(U)
A (z) withA elementary abelian of order 38, and No (A) AVX with V a four-
group normalized by the subgroup X of order 3.

Since Co(V) is a Sylow 2-subgroup of G, X centralizes some involution and
hence is conjugate to U. Hence Y C (X)X B for some conjugate B of
A. Then Z NNo (Y) No(B) because B Co(Y).

Clearly, C (V) 1 implies C (X) 3. It follows that Z isnon-abelian
of order 38, and that A is the only abelian subgroup of order 38 in No (A) and
hence even in a Sylow 3-subgroup of G. However, No(Z) has a normal
Sylow 3-subgroup containing both A and B, a contradiction.

In the following, let d 3 if the subgroup A in (4.1) (always) has order 15;
in the other case, let d 1.
Then (4.1) has the following consequence:
4.2. A subgroup of order 3 is inverted by 6d involutions and centralized by

2d-1 involutions.
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A subgroup of order 5 centralizes d involutions.

Next we prove"

4.3. Let S be a subgroup of order 7 in Na (Q ). IfNa (S) has even order, then

Proof. Suppose false. Let A Ca(S). By (4.1), a AI is not di-
visible by a prime _< 5. Hence a >_ 49, and C (t) 1 for any involution of
Na(S). Then inverts A, and A is abelian. Likewise, Ca(x) is abelian, for
every element x 1 of A. Hence Ca (x) A for all those elements. Clearly,
Na() (S) has a subgroup of order 3.
We apply the lemma to H Na (A) AC. (t). Since C(t) contains a

non-identity 3-element and is fixed-point-free on A, C(t) is cyclic of order 6.
If u is an involution outside H, then A n A 1, and hence H n H is con-

jugate to a subgroup of C (t).
H has a subgroups of order 6, and each is inverted by 6 involutions. Hence

1561 6a.
H has a involutions, and each is inverted (i.e. centralized) by 30 involu-

tions outside H. Hence Ji W Jl 30a.
Likewise, since any subgroup of order 3 is iaverted by 6d involutions (4.2),
J8 " J* 6da. Let x be an element of order 3 in H, say x e Na (Q). By
(4.2), x is centralized by 2d-2 involutions outside H; and since no such involu-
tion inverts a non-identity element of H, we get c 2 (d 1)a. Since x
centralizes an involution of Q, we cannot have d 1. Thus d 3.

It follows that b6 a, b8 4a, b. 12a, and c 4a.
Now Lemma 3 yields (note that H >- 6.49 > 120 Ca (z) i)

4a c _< bl _< f-l(a -t- 12a -t- 2.4a -t- 5a) 12a 4a a.

Hence 21f < 26. On the other hand,

f J I/IG" HI- 1 6a/120- 1 >_ 49/20- 1 29/20.

Thus 29 < 29.21/20 _< 21f < 26, a contradiction.
Next let H Na(Q). Note that Hi 168 > Ca(z) 120, so that

we are in a position to apply the lemma. In fact, $ J I/i G:HI 1
--1--.

Let u be an involution outside H. Since Q is the centralizer of any four-
group in H, H n H" has no subgroup of order 4. Hence the elements of H in-
verted by u form a subgroup of order 1, 2, 3, 6, or 7. This makes it easy to
compute the numbers bn, n _> 2, and c.
H has 8 subgroups of order 7, and each is inverted by 7e involutions, with

e 0orl;see (4.3). HencelJ! 8.7e.
H has 4.7 subgroups of order 6, and each is inverted by 6 involutions.

Hence lJl 4.7.6.
H also has 4.7 subgroups of order 3, and each is inverted by 6d involutions
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(4.2). Hence IJ[ - Jl 4.7.6d. Each subgroup X of order 3 is
centralized by 2d 1 involutions (4.2). One of them lies in H, and 2e of
them lie in J because X normalizes 2 subgroups of order 7 in H. The re-
maining ones invert no non-identity element of H. Hence c 4.7 (2d 2
2e).
Each of the 7 involutions of H commutes with 24 involutions outside H.

Hence J. - J 7.24, and thus Jl 0.
We collect:

c 8.7(d- l--e) with e 0 or 1,

b c-t- 7.8.3m with m >_ 0 an integer (seeLemma2),

ba 8.7(4- 1),

b 4.7,

b 8e,

all other b equal 0, for n _> 1.
Next we apply Lemma 3 to get information on m"

8.7(d- 1 --e) - 7.8.3m

< (7 -[- 2.8.7 (d 1) -t- 5.4.7 -[- 6.8e) 8.7(d 1) 4.7 8e.

This simplifies to

am <-{-3d-[-Wa@e- 5- 1 - 1- 1/2-,}e-l- e

< 3d -t- 3e -t- 3 -t- 1.
Hence

(4.4) m _d+e-t--1 <_5.

From Lemma 1 we get

J 7 - 8.7 (d 1 e) W 7.8.3m -t- 3.8.7 (d 1) - 6.4.7 -t- 7.8e

which simplifies to

(4.5) J I= 7(1 -}- 8(4d -t- 3m 1)).

By (4.2), a subgroup of order 5 fixes exactly d involutions. Hence J d
rood 5. This together with (4.5) yields

(4.6) 5 divides 2d -}- 2m 1.

Suppose d 1. Then m 2, by (4.4) and (4.6). Thus (4.5) yields G
8.5.3.7.73. Fortunately, 73 .is a prime. Let P be a subgroup of order 73.
Then lNa(P)’P divides 2.3.7 since C,,(x) 1 for all elements x of order
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2 or 5 (or 3). Since obviously no divisor > 1 of 8.5.3 is --- 1 mod 73, we
actually have G:N(P) 4.5.7z with x a divisor of 6. From 4.5.7
140 -6 mod 73 we conclude that 73 divides -6x 1.

This contradiction proves d 3.
Next suppose n 0. Then (4.5) yields G 8.5.3.7.89. Let P be a

subgroup of (prime) order 89. Since no divisor > 1 of 8.5.3 is 1 rood 89,
and 88 is not divisible by 3 or 5, it follows that G:N (P) 4.5.3.7x
with x 1 or 2. From 5.3.7 105 16 mod 89 we conclude that 89 divides
4.16x 1, a contradiction.
Hence m 0. Then (4.4) and (4.6) yield m 5.
By (4.5), JI 7(1 - 8(12 W 15 1)) 7(1 + 208) 7.11.19.
Thus, the order of G is 8.3.5.7.11.19.
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