FINITE GROUPS WITH LARGE SUBGROUPS

BY
Helmut Bender ${ }^{1}$

1. Introduction

Considerations concerning the distribution of involutions in the cosets of a given subgroup are often useful in the study of groups of even order. The reason seems to be that if the index $|G: H|$ of a subgroup H of a (finite) group G is small compared to the number of involutions in G, not very many involutions can enjoy the privilege to sit in a coset of H without sharing it with any other involution. Those cosets however, which contain more than one involution are controlled by the normalizers of non-identity subgroups of H, because of the following observation:

Let $u \epsilon G$ be an involution. Then an element $h \in H$ is inverted by u (i.e. $h^{u}=h^{-1}$) if and only if $h=v u$ with an involution $v \epsilon H u$.

In Section 2 we try to bring the above remarks in a more precise form, and the relations derived there will be illustrated at two examples in Sections 3 and 4.

2. An inequality

Let G be a group with a subgroup H such that $|J|>|G: H|$ where J denotes the set of involutions in G. Furthermore, define

```
\(J_{n}=\) set of \(u \in J-H\) such that \(|H u \cap J|=n\),
\(b_{n}=\) number of cosets \(H g \neq H\) such that \(|H g \cap J|=n\),
\(c=\) number of \(u \in J_{1}\) such that \(C_{H}(u) \neq 1\),
\(f=|J| / G: H \mid-1>0\).
```

Note that $\left|J_{n}\right|=n b_{n}$, and that J_{n} consists of those involutions outside H which invert exactly n elements of H. Clearly, H acts fixed-point-freely on the set of $u \in J_{1}$ satisfying $C_{H}(u)=1$. Then the two equalities in the following lemma are obvious.

Lemma. (1) $\quad|J|=|J \cap H|+b_{1}+2 b_{2}+3 b_{3}+\cdots$.
(2) $b_{1}=c+m|H|$ for some integer $m \geq 0$.
(3) $\quad b_{1}<f^{-1}\left(|J \cap H|+b_{2}+2 b_{3}+3 b_{4}+\cdots\right)-1-b_{2}-b_{3}-b_{4}-\cdots$.

It remains to prove the inequality. Clearly, $|G: H|=1+\sum_{i \geq 0} b_{i}$. Hence

$$
|J|-|G: H|=|J \cap H|-1-b_{0}+b_{2}+2 b_{3}+3 b_{4}+\cdots .
$$

[^0]Since $|J|-|G: H|=f|G: H|$, it follows that

$$
\begin{aligned}
b_{1} & =|G: H|-1-b_{0}-\sum_{i \geq 2} b_{i} \\
& =f^{-1}\left(|J \cap H|-1-b_{0}+b_{2}+2 b_{3}+3 b_{4}+\cdots\right)-1-b_{0}-\sum_{i \geq 2} b_{i}
\end{aligned}
$$

As $b_{0} \geq 0$, the inequality follows from this.
Remark. From some knowledge of normalizers of non-identity subgroups of H one can obtain a lower bound, say b, of b_{0}. Replacing b_{0} in the above expression for b_{1} by b, may then yield a more useful inequality.

3. The groups $L_{2}(7)$ and $L_{2}(9)$

To begin with an easy example for the application of the lemma, consider a group G of even order such that the centralizer of every involution is dihedral of order 8. We will see that G looks like $L_{2}(7)$ or $L_{2}(9)$.

Fix an elementary abelian subgroup V of order 4. Since V is contained in two distinct Sylow 2 -subgroups (of order 8), $N_{G}(V) / V$ must be dihedral of order 6.

Fix a subgroup X of order 3 in $N_{G}(V)$. We refer to part (i) of the lemma as Lemma (i).

Case 1. $C_{G}(X) \nsubseteq N_{G}(V)$. Let $A=C_{G}(X)$ and $H=N_{G}(X)$. Then $H=A\langle t\rangle$ where t is an involution of $N_{N_{G}(V)}(X)$.

Since the centralizer of any involution is a 2 -group, A has odd order, and $C_{A}(t)=1$. The latter implies $x^{t}=x^{-1}$ for all $x \in A$. Hence A is abelian. Likewise, $C_{G}(x)$ is abelian and hence equal to A, for all elements $x \neq 1$ of A.

It follows that $H^{g} \cap A \neq 1$ implies $g \in N_{G}(A)$. Since every involution of $N_{G}(A)$ inverts A, H must contain all involutions of $N_{G}(A)$.

This implies $\left|H \cap H^{u}\right| \leq 2$ for all involutions u outside H.
Hence $b_{n}=0$ for $n \geq 3$.
There are $a=|A|$ involutions in H, and each commutes with 4 involutions outside H. Hence $2 b_{2}=\left|J_{2}\right|=4 a$ and thus $b_{2}=2 a$.

The number of involutions (they are all conjugate) equals the index of the centralizer of an involution. Hence $f=|J| /|G: H|-1=2 a / 8-1=$ $(a-4) / 4$.

Clearly, $a \geq 9$ and a divides b_{1}. Then Lemma 3 gives

$$
\begin{aligned}
0 \leq b_{1} & <\frac{4}{a-4}(a+2 a)-1-2 a=12+4 \cdot 12 /(a-4)-1-2 a \\
& <12+10-1-2 a=21-2 a
\end{aligned}
$$

It follows that $a=9$ and $b_{1}=0$. Now Lemma 1 yields

$$
|G| / 8=|J|=|J \cap H|+2 b_{2}=a+4 a=5 \cdot 9 .
$$

Hence $|G|=9 \cdot 8 \cdot 5$; and since $|A|=9$ divides $\left|G: N_{G}(A)\right|-1$, it follows that $\left|N_{G}(A)\right|=9 \cdot 4$.

Case 2. $\quad C_{G}(X) \subseteq N_{G}(V)$. Then $N_{G}(X) \subseteq N_{G}(V)$. Let $H=N_{G}(V)$. Let t be an involution outside H. Since t normalizes $H \cap H^{t}$, and since H con-
tains the normalizer of every subgroup of order 3 and every subgroup $\neq 1$ contained in $V, H \cap H^{t}$ must be elementary abelian. Hence t inverts not more than two elements of H.
H has 6 involutions outside V, and each commutes with 2 involutions outside H. Hence $2 b_{2}=\left|J_{2}\right|=6 \cdot 2$ and thus $b_{2}=6$. Furthermore, $|J \cap H|=$ 9 and $b_{n}=0$ for $n \geq 3$. Since $|H|=3 \cdot 8$, we have $f=|J| /|G: H|-1=$ $3-1=2$.

Now Lemma 3 yields $b_{1}<\frac{1}{2}(9+6)-1-6<1$. Hence $b_{1}=0$. Then Lemma 1 gives

$$
|G| / 8=|J|=|J \cap H|+2 b_{2}=9+12=21
$$

Hence $|G|=7 \cdot 3 \cdot 8$.

4. Janko's first simple group

Janko has studied a group G of even order satisfying the conditions (i) and (ii) below, and has shown that up to isomorphism there exists exactly one such group G.
(i) Involutions of G are conjugate
(ii) If $t \epsilon G$ is an involution, then $C_{G}(t)=\langle t\rangle \oplus L$ where L is isomorphic to the simple group A_{5} of order 60 .
With help of our lemma we will determine the order of G. Another characterfree proof of this result is contained in an unpublished paper of Thompson.

Fix a Sylow 2 -subgroup Q of G and an involution $z \epsilon Q$. Since Q has order 8 , and involutions of Q are already conjugate in $N_{G}(Q), N_{G}(Q) / Q$ must be a non-abelian group of order $3 \cdot 7$. We also need
4.1. Let U be a subgroup in $C_{G}(z)$ of prime order $p \neq 2$. Then $C_{G}(U)=$ $A\langle z\rangle$ where A has order p or 15. In particular, U is a Sylow p-subgroup of G.

Proof. The proof of Janko's Lemma 3.1 shows that otherwise $C_{G}(U)=$ $A\langle z\rangle$ with A elementary abelian of order 3^{3}, and $N_{G}(A)=A V X$ with V a fourgroup normalized by the subgroup X of order 3 .

Since $C_{G}(V)$ is a Sylow 2 -subgroup of G, X centralizes some involution and hence is conjugate to U. Hence $Y=C_{A}(X) X \subseteq B$ for some conjugate B of A. Then $Z=N_{N_{G}(A)}(Y) \subseteq N_{G}(B)$ because $B=C_{G}(Y)$.

Clearly, $C_{A}(V)=1$ implies $\left|C_{A}(X)\right|=3$. It follows that Z isnon-abelian of order 3^{3}, and that A is the only abelian subgroup of order 3^{3} in $N_{G}(A)$ and hence even in a Sylow 3 -subgroup of G. However, $N_{G}(Z)$ has a normal Sylow 3-subgroup containing both A and B, a contradiction.

In the following, let $d=3$ if the subgroup A in (4.1) (always) has order 15; in the other case, let $d=1$.

Then (4.1) has the following consequence:
4.2. A subgroup of order 3 is inverted by $6 d$ involutions and centralized by $2 d-1$ involutions.

A subgroup of order 5 centralizes d involutions.
Next we prove:
4.3. Let S be a subgroup of order 7 in $N_{G}(Q)$. If $N_{G}(S)$ has even order, then $C_{G}(S)=S$.

Proof. Suppose false. Let $A=C_{G}(S)$. By (4.1), $a=|A|$ is not divisible by a prime ≤ 5. Hence $a \geq 49$, and $C_{A}(t)=1$ for any involution t of $N_{G}(S)$. Then t inverts A, and A is abelian. Likewise, $C_{G}(x)$ is abelian, for every element $x \neq 1$ of A. Hence $C_{G}(x)=A$ for all those elements. Clearly, $N_{N_{G}(Q)}(S)$ has a subgroup of order 3.

We apply the lemma to $H=N_{G}(A)=A C_{H}(t)$. Since $C_{H}(t)$ contains a non-identity 3 -element and is fixed-point-free on $A, C_{H}(t)$ is cyclic of order 6.

If u is an involution outside H, then $A \cap A^{u}=1$, and hence $H \cap H^{u}$ is conjugate to a subgroup of $C_{H}(t)$.
H has a subgroups of order 6, and each is inverted by 6 involutions. Hence $\left|J_{6}\right|=6 a$.
H has a involutions, and each is inverted (i.e. centralized) by 30 involutions outside H. Hence $\left|J_{2}\right|+\left|J_{6}\right|=30 a$.

Likewise, since any subgroup of order 3 is inverted by $6 d$ involutions (4.2), $\left|J_{3}\right|+\left|J_{6}\right|=6 d a$. Let x be an element of order 3 in H, say $x \in N_{G}(Q)$. By (4.2), x is centralized by $2 d-2$ involutions outside H; and since no such involution inverts a non-identity element of H, we get $c=2(d-1) a$. Since x centralizes an involution of Q, we cannot have $d=1$. Thus $d=3$.

It follows that $b_{6}=a, b_{3}=4 a, b_{2}=12 a$, and $c=4 a$.
Now Lemma 3 yields (note that $|H| \geq 6 \cdot 49>120=\left|C_{G}(z)\right|$)

$$
4 a=c \leq b_{1} \leq f^{-1}(a+12 a+2 \cdot 4 a+5 a)-12 a-4 a-a
$$

Hence $21 f<26$. On the other hand,

$$
f=|J| /|G: H|-1=6 a / 120-1 \geq 49 / 20-1=29 / 20
$$

Thus $29<29 \cdot 21 / 20 \leq 21 f<26$, a contradiction.
Next let $H=N_{G}(Q)$. Note that $|H|=168>\left|C_{G}(z)\right|=120$, so that we are in a position to apply the lemma. In fact, $f=|J| /|G: H|-1=$ $\frac{7}{6}-1=\frac{2}{5}$.

Let u be an involution outside H. Since Q is the centralizer of any fourgroup in $H, H \cap H^{u}$ has no subgroup of order 4. Hence the elements of H inverted by u form a subgroup of order $1,2,3,6$, or 7 . This makes it easy to compute the numbers $b_{n}, n \geq 2$, and c.
H has 8 subgroups of order 7, and each is inverted by $7 e$ involutions, with $e=0$ or 1 ; see (4.3). Hence $\left|J_{7}\right|=8 \cdot 7 e$.
H has 4.7 subgroups of order 6 , and each is inverted by 6 involutions. Hence $\left|J_{6}\right|=4 \cdot 7 \cdot 6$.

H also has $4 \cdot 7$ subgroups of order 3, and each is inverted by $6 d$ involutions
(4.2). Hence $\left|J_{3}\right|+\left|J_{6}\right|=4 \cdot 7 \cdot 6 d$. Each subgroup X of order 3 is centralized by $2 d-1$ involutions (4.2). One of them lies in H, and $2 e$ of them lie in J_{7} because X normalizes 2 subgroups of order 7 in H. The remaining ones invert no non-identity element of H. Hence $c=4 \cdot 7$ ($2 d-2$ $2 e$).

Each of the 7 involutions of H commutes with 24 involutions outside H. Hence $\left|J_{2}\right|+\left|J_{6}\right|=7 \cdot 24$, and thus $\left|J_{2}\right|=0$.
We collect:

$$
\begin{aligned}
f & =\frac{2}{5} \\
c & =8 \cdot 7(d-1-e) \quad \text { with } e=0 \text { or } 1 \\
b_{1} & =c+7 \cdot 8 \cdot 3 m \text { with } m \geq 0 \quad \text { an integer (see Lemma 2) } \\
b_{3} & =8 \cdot 7(d-1) \\
b_{6} & =4 \cdot 7 \\
b_{7} & =8 e
\end{aligned}
$$

all other b_{n} equal 0 , for $n \geq 1$.
Next we apply Lemma 3 to get information on m :

$$
\begin{aligned}
8 \cdot 7(d- & 1-e)+7 \cdot 8 \cdot 3 m \\
& <\frac{5}{2}(7+2 \cdot 8 \cdot 7(d-1)+5 \cdot 4 \cdot 7+6 \cdot 8 e)-8 \cdot 7(d-1)-4 \cdot 7-8 e
\end{aligned}
$$

This simplifies to

$$
\begin{aligned}
3 m & <\frac{5}{16}+3 d+\frac{25}{4}+\frac{15}{7} e-5+1+1-\frac{1}{2}-\frac{1}{7} e+e \\
& <3 d+3 e+3+1 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
m \leq d+e+1 \leq 5 \tag{4.4}
\end{equation*}
$$

From Lemma 1 we get

$$
|J|=7+8 \cdot 7(d-1-e)+7 \cdot 8 \cdot 3 m+3 \cdot 8 \cdot 7(d-1)+6 \cdot 4 \cdot 7+7 \cdot 8 e
$$

which simplifies to

$$
\begin{equation*}
|J|=7(1+8(4 d+3 m-1)) \tag{4.5}
\end{equation*}
$$

By (4.2), a subgroup of order 5 fixes exactly d involutions. Hence $|J| \equiv d$ mod 5. This together with (4.5) yields

$$
\begin{equation*}
5 \text { divides } 2 d+2 m-1 \tag{4.6}
\end{equation*}
$$

Suppose $d=1$. Then $m=2$, by (4.4) and (4.6). Thus (4.5) yields $|G|=$ $8 \cdot 5 \cdot 3 \cdot 7 \cdot 73$. Fortunately, 73 is a prime. Let P be a subgroup of order 73 . Then $\left|N_{G}(P): P\right|$ divides $2 \cdot 3 \cdot 7$ since $C_{P}(x)=1$ for all elements x of order

2 or 5 (or 3). Since obviously no divisor >1 of $8 \cdot 5 \cdot 3$ is $\equiv 1 \bmod 73$, we actually have $\left|G: N_{G}(P)\right|=4 \cdot 5 \cdot 7 x$ with x a divisor of 6 . From $4 \cdot 5 \cdot 7=$ $140 \equiv-6 \bmod 73$ we conclude that 73 divides $-6 x-1$.

This contradiction proves $d=3$.
Next suppose $m=0$. Then (4.5) yields $|G|=8 \cdot 5 \cdot 3 \cdot 7 \cdot 89$. Let P be a subgroup of (prime) order 89. Since no divisor >1 of $8 \cdot 5 \cdot 3$ is $\equiv 1 \bmod 89$, and 88 is not divisible by 3 or 5 , it follows that $\left|G: N_{G}(P)\right|=4 \cdot 5 \cdot 3 \cdot 7 x$ with $x=1$ or 2 . From $5 \cdot 3 \cdot 7=105 \equiv 16 \bmod 89$ we conclude that 89 divides $4 \cdot 16 x-1$, a contradiction.

Hence $m \neq 0$. Then (4.4) and (4.6) yield $m=5$.
By (4.5), $|J|=7(1+8(12+15-1))=7(1+208)=7 \cdot 11 \cdot 19$.
Thus, the order of G is $8 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$.

Reference

Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra, vol. 3 (1966), pp. 147-186.

Universität
Kiel, West Germany

[^0]: Received October 12, 1972.
 ${ }^{1}$ This research was partially done at the University of Illinois at Chicago Circle and was supported by a National Science Foundation grant.

