PARABOLIC POTENTIALS WITH SUPPORT ON A HALF-SPACE

BY
RiceARD J. BagBY

1. Introduction

We study the class of parabolic potentials £ introduced by Jones [4]. These
spaces arise in the study of the heat equation; they are analogous to Sobolev
spaces of fractional order.

We direct our attention to the problem of deciding whether the restriction
of a function in £2 to a half-space necessarily agrees with a function in £7
supported on that half-space. In the case of Sobolev spaces the result is well
known; one method of answering this question appears in Strichartz [7, §3].
Essentially the same approach is used here, but the presence of the time vari-
able raises a number of complications.

For 1 < p < =, it is possible to describe £7 in terms of Sobolev spaces on
R. This is done, for example, in [2]. Such a characterization could also be
used here to give a somewhat shorter proof of the main theorem. However,
the techniques used here produce additional insight.

2. Definitions and basic properties

DerINTION. A function fis in £2(R™™) if f = (1 + |z |* + it)"*"$ for
some¢ e L7 (R"™). Herez ¢ R", t ¢ R, and » denotes the Fourier transform in
R". Thenorm of fis || f |lpe = || ¢ |l -

DEFINITION.
Ho(z, t) = ™ exp {—2%/4t}, t >
=0, <

Sampson [5] proves that if f e £7,0 < a < n + 2, then f = H,*g for some
geL?with || g s < cpall fllp.a-

The following functional is useful in examining these spaces:

t>0
t<0

S f(z,t) =

{‘[, ['/;u|<l j: | f — ry, ¢t — 1"s) — flx,y) | ds dy:r o df}llz .

Theorem 2.2 of [1] states that for0 < @ <land1l < p < «,feLy if and
only if both f ¢ L” and S.f ¢ L?, and that || f ||p.«a = || fll» + || Saf||». Since

Sa(fg) < 1 fllw Sag + | 918af,

this characterization of £3 is especially useful when products of functions
are involved.
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Note that an equivalent functional is obtained if the y-integration is per-
formed over the region —1 < y; < 1,7 = 1, - - -, n; for our purposes, this will
be more convenient.

3. Main theorem
Letfe £2(R™"'), where0 < a < 1/p < 1. Let{ eR" ~ {0}, and let

g(x7 t) = f(l), t)} t> z-§
= 0, t < x¢.

Then g ¢ £2(R"™), with || ¢ |lpe < Cpa || f |lpea
4. Some mixed-norm Sobolev inequalities
Lemma b, Let f e 2(R™™), where 0 < o < 1/p < 1. Let 1/u = 1/p —
a/2. Then for a.e. ¢ ", {(z, -) ¢ L*(R) and [ ||£(x, -) |12 v < cpual|  |3e-

Lemma 2: Let fe £2(R™?), where n > 0 and 0 < a < 1/p < 1. Denote
points in R"™ as (z, ¢, t), wherez e R", { e R, and te R. Let 1/v = 1/p — a.
Then for a.e. (z,t) e R"*,

@) eI’ ®) and ([5G0 12 d2dt < cpallF 13-

Proof of Lemma 1. Let f = Hurg, g € I*(R"™), [ gy < cpa || lla
Then
Ja ) = [ s ds [ exp (= |y [aslge =yt — o) dy.
0 Rn
Now

“.R” exp {—|y[*/4slg(z — y) dyl

< S | exp [~y l/4s} gl = vt — )| dy

(G-De<lyl2<js
< Ximexp {—(j — 1)/4} fmw lg(z —y,t — )| dy

< Yrmexp {—(j — 1)/4}ca(fs)"*M1g(z, t — s)
= As"®M,yg(z,t — s),
where A = Y 7 c.j”” exp {— (j — 1)/4} and M, denotes a partial maxi-

mal function defined by
1

M ,0) = SUPro — T T
19(2, 8) = SUPr0 T T

[ loz—v,0d.
lylgr
Thus

iz, 1)| < A fo S g(x, 8 — ) ds.
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By the standard fractional integration theorem and the L”-boundedness of
the maximal function,
“f(x: ) ”“ S Cp,a ” Ml g(x’ ) ”v
and

[15@ ) 12de < epe [ [ Mr9G, 07 dtde < cpa 013 < cpa 1 £ [ 3un-

The fractional integration theorem is proved in Hardy, Littlewood, and
Polya, [3, Theorem 383] and in Zygmund [8]. Stein [6, Chapter 1] contains a
discussion of the maximal function.

Proof of Lemma 2. Again we set f = H, #g; this time

foytt) = [ an [ 8 [ exp =1yl + 1) 40}
9@ —y, & —n,t — 8) dy.
Just as in Lemma 1, the first integral is bounded by
As™ exp {— n'/4s} M1 g(z, ¢ — n,t — 8).
Now we bound the s-integral:
A[ sV exp {—n’/4s}Mrg(z, & — n,t — 8) ds

27 +1p2

= Are [ S axp (o /sl Mg, £ = ¢ — 8) ds

2iy2

< A 35w (2" exp {—1/4-27")
2i+1y2
fo Mig(z, & —n,t —s) ds
S A Z;?--—W 25n2)(a—l)l2—1 exp {_2—i-8} '2j+1n2M3 Mlg(x, g_ -, t)
= A.BI‘))P_IMSMlg(x)g‘ - M t)y

where B = D gm0 2™ oxp {— 277 and M; denotes another partial
maximal function. Thus

7@ & 01 < AB [ 2| Midg(a, ¢ = n, 1) dn;

the desired conclusion follows as in Lemma 1.

5. Proof of main theorem

Let
1, t> ¢

X(x’ t)
=0, t<x¢.
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Then we must prove that f — xf defines a continuous mapping from £ into
itself for0 < o < 1/p < 1.

Clearly || xf llo < | fll2 £ || f l»,a ; it remains only to show || Se(xf) |l» <
¢||fllpa- Now

Saxf) < I x llo Saf + | [Sax-

As || x |l = 1 and S.f e L*, we must show | f |S. x € L*.
Rotate coordinates in R" so that  becomes (0, ---,0, | {|). Then x and

consequently S, x are independent of z;, - -+, &, ; to simplify notation we
assumen = land { = A > 0.

In the next section we show S, x (2, 1) < ca \* |t — A& | ™% + | t — Az |™*?).
By Lemma 1, we have for ¢ ¢ L¥*(R),

[[16s@nraa < [ 161l )12 e

< cpall@llfiellf 7.

since a/2 + 1/u = 1/p. Using the same technique as in Strichartz [7,
Theorem 3.6], it follows that also

[[16ws@ 01 dt o < Moyl 130

provided only that
mit:|¢@) | >0} < My Yo

Since m{t: |t — Az |[™** > g} = 207¥% |t — A& |7**|f| e L? with norm
bounded by ¢pa || f ||, -

Using Lemma 2 and the same technique, we also have that \*|t — Az|™°|f|
e L.

It is interesting to note that the estimate thus obtained for || xf ||,« is in-
dependent of A.

6. Estimates for S, x
Let

1 1
v — pe— 2 —
I = [1/‘; |x(x — ry,t — r°s) — x(z,t)| dy ds,

where x is the characteristic function of { (x, ¢) : £ > Ma}. Then S,x* =
[¢ I’r77** dr. Note that I is simply the measure of the set of points (y, s)
in [—1, 1] X [0, 1] for which (2, ¢) and (z — ry, t — #°s) lie on opposite sides of
the line t = Az.

As (y, s) ranges over [—1, 1] X [0, 1], the points (z — ry, t — r’s) sweep
out a rectangle R with vertices at (z — r,¢t), (x + r,t), (@ +r,t — 7*), and
(x — r,t — 7*). Ignoring the cases in which the line ¢ = Az passes through a
vertex, there are six possible configurations.
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¢

A X B
//

/
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A
/
E F

We see that in cases A and F, I = 0. In case B, I is the area of a triangle.
In cases C and D, I is the area of a trapezoid. In case E, I is either the area
of a triangle or the area of its complement in B, depending on the sign of ¢ —
Az,

First we consider the possible cases when ¢ — Az > 0. For small r, case A
occurs and I = 0.
Let rincrease. We enter case B when

t—r=Aa+7r) or r=3(-N+VNF4{ - ) =1.
During case B, the line crosses the bottom of R when ¢ — * = A (z — ry), i.e.,
y=1["— (¢ =)\ =y
and the right-hand side of B when
t—rs=Nz+r), ie, s=(C—=Az+ )" =s.

Thus we have

=1(y+ 1)1 — &) =["* + € — (¢ — r\e)l/2M°.
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As r increases, the upper right-hand corner of R crosses the line when
t=\ax+r), ie, r=N"(t— ) =r,and the bottom left-hand corner
crosses the line whent — #* = A (z — r), i,

r=30+ VR4 4t — )= 1.

If r, < r, we have the following situation: case A for 0 < r < 7y, case B for
ro < r <7 ,case Cforry < r < ry,and case E forr, < r.

If r, < 7, then we have case A for 0 < r < ry, case Bforry < r < ra, case
D for r» < r < r,and case E forr, < 7.

The condition r, < 7, is seen to be equivalent to 0 < ¢ — Az < 2A°. With
reasoning similar to that used in case B, we discover that

I =[2z + ¥ — 2(t — Az)]/2 in case C
I =2[— (t —)]/r* incaseD
and I =4 — @t =z + M))/2v° in case E.
We thus obtain

Sax’ = ix‘* l PP 4 — (= M) dr
ro
1., ™ 2 9 —3~2
(1) +3X f 20 + 1% — 2t — ) dr
1.5 (% 3 22 —7—2a
+Z>\ [N — (8 — N 4+ M) dr
r2

when 0 < t — Az < 2\ and

St = 7 [ e — =
(2) +a [ 0= =)

+ iﬁ f [4n® — (¢ — € 4+ M) Tr " dr

when 2\ <t — Az

When ¢t — Az < 0, the situation is simpler. The rectangle is in case F for
small r. It enters case E whent = N(z — r)orr = N[t — Ax| = 7. It
will enter case C at the first solution of ¢ — 7* = A (z — r), i.e.,

r=30N\—VNF 40 - ra)) = 13-
It returns to case E at the second solution
r=3AN+VN+4(E— ) =14.

If A + 4(t — A\z) < 0, it remains in case E for all» > .
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We discover that

I =0 incaseF

I =+t —al/20° in case E

and I =[x =74 20— A2)]/2 in case C.

We thus obtain

(3) Sax’ = Iy f I+t — el dr
4 *o

for ¢t —Ar < —2\/4 and

rg
Sax’ = %)\"2 f e+ ¢ — 2l T dr
ro

(4) 1y f "2 =+ 208 — )
4 g
1 -2 ® 4 —T—2a
+3X f v+ ¢ — Al dr

for —N/4 <t — 2 <O.
While each integral can be evaluated explicitly, such a computation does not
display the dependence on X and | ¢ — Az | very well. A change of variables

r=A"t— | "

is helpful. The quantity A’ | ¢ — Az |™ oceurs frequently; we denote this by
2
g

We thus obtain

1
Sax® = l)\”lt — Nz {a‘ f " 4 r — 1% dr
R0, 4 i

+ f K [2r 4+ o7 = 2% 2 gy + f . 4’ — P (L + ) dr}
1 Ty
for t—Xz>0, o >%;

Sax® = N[t — Nz |7 {i— o f *2 o™ + 7 — 1% dr
2" . o .
+4 f P = + = f 4 — (1 + o) dr}
3 4,
for t—Az>0, ¢ <3

(3’) SaX2 == i—o}}\%‘lt — )\x‘_zaﬁ (7' . 1)41_-—7—-20: dr
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for t — Az <0, ¢°<4; and
2 1 2a —2a 2 r; 4 ~T7—2a
Sax =Z)\ [t — Az ¢ (r —1)% dr
4) . ' o
+ f : 2r — % — 2 g 4 o f . (r =142 dr}
) T4
for t— <0, o >4
In the above,
=3 +ovVaatd), n=30c+cVITa),
=30 —0cvVe2—4), and i = (0’ + oV — 4).
For the first integral in (1’), note that
re = 37 (=1+ V1 F 402) 2 35 (—=1+ 14207 =25 =1 -4,
sincen/(1 +a)>1+a/2—a’/8 for 0<a <8 Thus
|o'—2'l‘2+1'-—l]Sa"2 for ro <r <1
Asre >0 for ¢ >0 and 70 >1— o> forlarge o,7¢ > ¢ >0 for
o > 4 Thus
1 1
f . [ +r—10""dr < 5° f A = cuo
1‘0 c

For the second integral in (1’), note that

1 =30"+ocVaF4) <2
Thus

fl i 2r + o7 — 2% dr < f; i 4 dr = ¢,.
For the third integral, note that 73 > ¢® > % and thus
fr : 4t — S + )T dr < j; ; 4 +rQ + )" A = c,.
Thus from (1’) we obtain
SaX® < caN¥|t — Az [ for 0 <t — 2z < 2\

Next we look at (2'). For the first integral, note ro < # < ry implies
=0+ Va2 F+4)<or <3+ F4)

Squaring and subtracting 1, —rg < ¢ — 1 <ry. Thus|o ¥ +r—1]|<
21';* .
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Now

e =3(—c+ Va2 +4)>% and 7 =3+ Ve F+4)<2
for o <4 Thusry > 40 and 75 < 2¢. Consequently

4 -7

20 .
-2 —
o1 dr = Cqo - .
[ 4

f e 4 — YT dr < ¢ f
i

/2

For the second integral, since ry > o,
1 1
f [Tz — 02]2r—5—2a d’l‘ —<— f [1‘2 — 62]2r—5-2a dT
r;‘ [
o1
= a_—2a f [rz . 1]2,',-5—241 d’r
1
< cpo e

Since ¢® < %, the third integral in (2’) is bounded by ¢, . Thus from (2')
we obtain

SaX2 _<_ Ca )\2a|t_ )\(E l—za(az—za_i_ a_-2a_|_ 1)
SNt =N | ™+ co |t — N |™®

for 2\ <t — Az
From (3’) we see immediately that

Sax’ = a N |t — Az [7% e |t — Az |77
for ¢t — <0, <4
Finally we look at (4’). For o > 4 we have
=31 —V1I—46?) <3*A—14+2"+8 ") =1+40"
sincev/(1 —a)>1—13%a—4%a® for 0<a <1 Hence

f ’ (r— D% < f (467)% 7 = ¢ 0%
1 1

To bound the second integral in (4'), we observe that r; < o* and hence
o <rfor r<ri. Thus

Flom e e e
r;’ 1
For the last integral, note ry > }o°. Hence

] 0
f (r— D% dr < f gy = ¢,
r: o2/2



222 RICHARD J. BAGBY

Using these bound in (4') yields
Sax <INt = A2 [ (Ca 0 + Ca + Ca0 ) < ca N |t — Az |72

for t— Az <0,d >4
Consequently, we have in all cases

Sax < caM* |t — N |™% + |t — Az |*?)

as claimed previously.
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