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The object of this paper is to develop an analogue of the Oka-Cartan theory

of coherent analytic sheaves, in the case in which the structure sheaf O of
germs of holomorphic functions on an analytic space is replaced by the sheaf
of germs of holomorphic functions on a plane domain which are continuous, or
differentiable of some order, up to the boundary. To be precise, let Wcc C
be a relatively compact domain whose boundary is a finite union of simple
closed m-times continuously differentiable curves. Let denote the sheaf
of germs of Whitney Cm-functions on W which are holomorphic on W. It is
known that Ha (W, () (0) for q >_ 1, and in this paper we obtain analogues
of Cartan’s theorems A and B for a certain class of sheaves of modules over a.

It turns out that the class of coherent sheaves of modules over (, defined in
the usual way, is too small, for this class is not preserved under the usual
algebraic operations on sheaves. For example, we show in section III that
the kernel of a sheaf map ( - ( need not be locally finitely generated.
The reason for this is that the sta!ks of the sheaf (, at points on the boundary
of W, fail to be Noetherian rings, and hence the classical definition of coher-
ence is not appropriate.

In Section I we introduce new notions of a globally Oka sheaf of rings (R, and
a globally coherent sheaf of modules ff over (R on a topological space X, which
turn out to be more useful in the study of differentiable boundary values of
holomorphic functions. The definition of globally coherent sheaf has built
into it an analogue of Cartan’s theorem A" global sections generate the stalks
at each. point. But we then show that under certain hypotheses on the sheaf
of rings (R and the space X, we obtain an analogue of Cartan’s theorem B"
every globally coherent sheaf has vanishing higher cohomology. We also
show that the class of globally coherent sheaves of modules is preserved under
the usual algebraic operations on sheaves. In Section II, we show that the
sheaf ( is a globally Oka sheaf of rings over W, and that the theory developed
in Section I applies. In particular, we obtain a vanishing theorem for coho-
mology of globally coherent sheaves over a. In Section III, we show that
coherent sheaves over ( in the classical sense are in fact globally coherent, but
that there are globally coherent sheaves which are not coherent. We also
show that ideal sheaves of varieties, defined in the usual way, are globally

Received June 19, 1973
This paper incorporates part of the author’s doctoral dissertation at Columbia

University. Further research was supported in part by a National Science Foundation
grant.

495



49 ALEXANDER NAGEL

coherent. Finally, in Section IV we prove a variant of Cartan’s lemma on
holomorphic matrices which is used in Section III.

I. Global coherence
In this section we study analogues of the classical notions of coherent sheaf

of modules, and Oka sheaf of rings (see Gunning and Rossi [2], pages 128-133).
These analogues seem appropriate in the study of sheaves of holomorphic
functions on a plane domain having continuous or differentiable boundary
values, but we present the results of this section in a quite general setting.
We shall use the following notation. Let $ be any sheaf of abelian groups

on a topological space X. For any x e X, $ denotes the stalk of $ at x. For
any set Y c X, F(Y, $) denotes the group of sections of $ over Y.
If f e r(Y, $), and if x e Y, [f] denotes the germ determined by f in
$. H (X, $) denotes the q-th (ech cohomology group of X with coefficients
in $.

We now define the analogues of coherent sheaf of modules, and Oka sheaf
of rings.

DEFINITION 1.1. Let (R be a sheaf of rings on a topological space X, and
let be a sheaf of (R-modules on X.

(a) ff is globally generated if for every x e X and every f e , there exist
F1, ,Fm e I" (X, fi;) and rl, rm e (R so that f -1 r[F].

(b) If F, F e 1 (X, if), the sheaf of relations among F, Fm is

RIFt, F,] (r, r,) e (R" _,’- r, F, 01.
(c) The sheaf fi; is globally coherent if is globally generated, and if for

every finite set {F, F} c 1 (X, if), the sheaf R[F, ..., F,] is also
globally generated.

DEFINITION 1.2. Let (R be a sheaf of rings on a topological space X. Then
(R is a globally Oka sheaf of rings if for every sheaf map (R - (Rq over X,
the kernel of is globally generated.

The following result gives a sufficient condition for a sheaf of rings to be
globally Oka. The proof is a simple modification of the induction step in the
proof of the Oka coherence theorem, and is omitted (see for example Gunning
and Rossi [2], page 136).
LEMMA 1.3. Let (R be a sheaf of rings on a topological space X, and suppose

that for every sheaf map (R --> (R over X, the kernel is globally generated.
Then (R is a globally Oka sheaf of rings.

We shall also need the following analogue of an easy standard result. Again
the proof is omitted (see Gunning and Rossi [2], Chapter IV, Corollary B9).
LEMMA 1.4. Let (R be a globally Oka sheaf of rings on a topological space X,

and let ff c (Rm be a globally generated sheaf o modules. Then ff is globally
coherent.
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The definition of global coherence has built into it an analogue of Cartan’s
theorem A: the global sections of a globally coherent sheaf generate the stalks
of each point. The first main result of ths section is that if is a globally
Oka sheaf of rngs on X with vanishing higher cohomology groups, then under
suitable conditions on the space X, we obtain an analogue of Cartan’s theorem
B for globally coherent sheaves of modules over . e first recall the foIlow-
ng"

DEFINITION 1.5. A topological space X has covering dimension N < if
every open cover of X has a refinement so that every point of X lies in at
most N W 1 sets of the refinement.

THEOREM 1.6. Le be a sheaf of rings on a topological space X. Suppose
that

(i) X s conpac Hausdorff and has finite covering dimension,
(ii) t is a globally Oka sheaf of rings,
(iii) H(x,t) (0)forallq >_ 1.

Then for any globally coherent sheaf of -nodules on X, H (X, ) (0) for
all q >_ 1.

Proof. Suppose that the covering dimension of X is N < . It follows
that for any sheaf $ on X, H (X, $) (0) for all />_ N -t- 1. We now argue
by inverse induction on q, and assume that for all >_ - 1, H (X, ) (0)
for every globally coherent sheaf . Let be a globally coherent sheaf of
t-modules on X, and let e H (X, ). If we can prove that 0, this will
complete the induction step, and hence prove the theorem.

Since X is compact, we can represent as a k-cocycle on a finite open cover
IVy} of X. Since X is normal, we can find a refinement U} of this cover so
that U V for each i. Then if is the k-cocycle {,....}, ...., is
a section of on an open neighborhood of the compact set .
Note that since U} is finite, there are only finitely many such intersections.

Let z e a a 7. Since $ is globally generated, we can find a neigh-
borhood W of x, sections r, ..., r e F(W,, oR), and global sections
F, F r (X, ) so that

(1) [....,,] , [r,][F,].

Since equation (1) gives an equality of germs of sections of , we can find
an open neighborhoodN W of x so that for all y N,

(2) [,....,,] , [r,][f,].

We can now find a finite number of these neighborhoodsN which cover the
finite number of sets }, and for each such neighborhood we get
a finite number of global sections of . Let F, F be the set of all these
global sections, and let be the subsheaf generated by F, F.

Equation (2) now shows that ,.... is a section of over a neighborhood
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of o n n , and hence the ]c-cocycle {0,...,} on the open cover {U}
represents an element * e H (X, 9). Moreover, if

i*" H (X, ) -- H (X, if)

is the map induced by inclusion, then by construction i* (*) .
" (r, r) r F. Then the imageDefine a map --. ff by

of is 9. Let be the kernel of #. Then E R[F, F,], and since ff
was assumed to be globally coherent, is globally generated. Since K (R’,
it follows from Lemma 1.4 that is globally coherent.
We now have a short exact sequence of sheaves

(0) -, x --, 9 -, (o).

The long exact sequence in cohomology gives-- S (X, (R") --. H (X, 9) -- S+ (X, ) - H+ (X, ) -but since Hq (X, (R) (0) for q _> 1, we get H (X, 9) --- H+ (X, ). But
H+ (X, ) (0) by induction, so * 0, and hence 0. This completes
the proof.
The class of globally coherent sheaves is closed under the usual algebraic

operations on sheaves, at least under the hypothesis of Theorem 1.6. In
fact, we have the following more general result"

TEoE 1.7. Let t be a sheaf of rings on a topological space X, and suppose
that H (X, if) (0) for every globally coherent sheaf ff of 5-modules. Let

(o) v --, 9 --, (o)

be a short exact sequence of sheaves of t-modules. Then if any two sheaves in
the sequence are globally coherent, so is the third.

Proof. The proof of this result is a tedious diagram chase, which is very
similar to the classical argument for coherent analytic sheaves (see Gunning
and Rossi [2], Chapter 4, Proposition B 13). The only difference is that one
needs the hypothesis that H (X, ) (0) when is globally coherent to
insure that the global sections map F (X, if) - r (X, 9) is surjective. We
omit details.

COROLL_R 1.8. Suppose that X and 5 satisfy the hypotheses of Theorem
1.6. If ff is a sheaf of 5-modules over X and a sequence

(o)

is exact on X, then is globally coherent.

Proof. Let 9 be the image of . By Lemma 1.4, 9 is globally coherent,
and we have an exact sequence (0) --. 9 --* (Rq --* fi; -- (0). By Theorem 1.7,
it follows that ff is globally coherent.
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I!. The sheaves ((m, T)
In this section we study specific examples of sheaves of rings on plane

domains. While we are primarily interested in the case of holomorphic func-
tions with differentiable boundary valves, for technical reasons that will appear
in Section III we consider the following slightly more general situation. Fix
an element n of the set {0, 1, 2, I. Let W cc C be a relatively com-
pact plane domain whose boundary OW consists of a finite number of simple
closed m-times continuously differentiable curves. Let T OW be a finite
collection of open intervals on the boundary of W. Then let ( ( (m, T)
denote the sheaf of germs of Whitney C%functions on the closure l of W
which are holomorphic on W u T.

THEOREM 2.1. ( ( (m, T) is a globally Oka sheaf of rings.

Proof. By Lemma 1.3, it suffices to show that if ( --. ( is a sheaf map
over , and if ff is the kernel of , then ff is globally generated. Let be
given by the map (al, a) ’1 a where e I’ (l, (). We may
assume that the map is not identically zero, and hence without loss of gen-
erality that is not identically zero. Let Z() {z e](z) 0}.
Then Z() is compact, Z (1) n W is discrete, and it follows from the Rie-
mann mapping theorem and Jensen’s inequality that Z (1) n OW is totally
disconnected.

Let z0 e I, and let (fl, f) e ffz0 so that ’=f 1 0. We distinguish
three possibilities.

(i) Suppose z0 e ] Z(). Then ()-1 e (z0, and hence

Then

(1) ",

where ks is the p-tuple (-., 0, 0, , 0, 0) where #1 appears in the
i-th place. But each ]c is a global section of if, and thus equation (1) shows
that ffo is in fact generated by a finite number of global sections of ft.

(ii) Suppose z0 e W u T. Then there is an integer n _> 0 so that

l(z) (z-- Zo)’(z) for i 1, ...,p

where e F (l, a), and so that o (zo) 0 for at least one jo. Let Ct
be defined by (a, a) ’-1 a . Then the kernel of is precisely
the sheaf if, and by treating ’0 as we did in case (i), we see that ffo is
generated by a finite number of global sections of ft.

(iii) Suppose zo OWn Z (tl). Choose a relatively open neighborhood
of z0 in W so that all the germs {f} have representations as fUnctions on
ChOose V a relatively open neighborhood of I V. Since Z() W is
discrete and Z (ta) r, OW is totally disconnected, we can find relatively open
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sets U c V, i 1, 2 so that U1 u U. Ir and so that
(a) the boundaries of U1, U., and U n U consist of a finite number of

simple closed m-times continuously differentiable curves,
(b) (#- Ut)n (#- U.)
(c) (Un U)-nZ()

Because of property (c), (m)-I r ((Ux n U)-, a). Thus as in case (i), we
can write

where (u)-f e F ((Ux n U2)-, a). In particular, each (ut)-f is a Whitney
C%function on (U n U)- wch is holomorphic o the interior of Ut n U2.
By Lemma 4.1, we can write (l)-f
function on 2, holomorphic on the interior, and h is a Wtney C%function
on 1, holomorphic on the interior. Thus

(2) (f, ..., f) +
_

on U n U. In equation (2), the right hand side is a #obal section of over
U, we the left hand side is a globM section of over Ux. Hence we can
define a globM section of over M1 of W by

(tt, ...,,t) fix, "",f) + h,k, on Vt
-g on U.

But then ,, f) (t, t) -hk and ts shows that $ is
generated by global sections of . This completes the proof of the theorem.

TEoaE 2.2. Let Wa e be as in Theorem 2.1. If is a globally coherent
sheaf of e-modules over W. Then H (W, (0) for q 1.

Proof. We simply show that W and e verify the conditions of Theorem 1.6.
W is a compact Hausdo space of covering dimension 2 (see [3], Theorem
IV 3). By Theorem 2.1,
the fact that Hq (W, a) (0) for q 1 is in [4, Theorem 1.9]. (The condi-
tion there that OW be (m + 1)-times continuously derentiable is easily
modred since W c C). If T D, we can find a sequence of do-
masW c C, i 1, 2, each hang m-times continuously derentiable
boundary curves, so that - W, W+ W, and

OW n OW OW T.

If we define sheaves a of germs of Whitney C functions on which are
holomorpc on W, then Hq (i,
liHq (#i, ai) (0). Ths Theorem 2.2 follows from Theorem 1.6.

TEoa 2.3. Let " a aq be a sheaf map over , a let ff denote
either the kernel, cokernel, or ime sheaf of. Then Hq (, (0) for q 1.

Proof. Ts follows from Theore 1.8 and 2.2.
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III. Globally coherent sheaves over a
In this section we study examples of globally coherent sheaves of modules

over the sheaf of rings a a (m, D) studied in Section II. Our definition of
global coherence involves global behavior of the sheaf of modules, while the
classical definition of coherence only involves local behavior. We show that
in the case of sheaves of modules over a, coherence in the classical sense implies
global coherence. The proof of this fact uses a variant of Cartan’s theorem
on holomorphic matrices, which is presented in Section IV. We next show
that if varieties and ideal sheaves are defined in the usual way relative to the
sheaf a, then ideal sheaves are globally coherent. Finally, we show that
there are globally coherent sheaves over a which are not coherent in the classi-
cal sense, and hence the introduction of the notion of global coherence is not
artificial.
We recall first the classical definition of coherence"

DEFrNITIO 3.1. A sheaf ff of modules over a is coherent if for each z e W,
there exists a relatively open neighborhood U of z, and an exact sequence

a --, aq --, -, (0)
over U.

The main step in proving that coherence implies global coherence is then
the following"

LEMMA 3.2. Let W U u U where U, U. are relatively open subsets o]
W such that
() the boundaries of U, U, and Ua U n U each consist of a finite

number of simple closed m-times continuously diHerentiable curves,
(b) (W- U)n (W- U.) ,
(c) U consists of a finite number of disjoint, simply connected regions.

Suppose that is a sheaf of a-modules on W, and that for j 1, 2, there is an
exact sequence over "
(1) (i - a" --. $ -- (0).

Then there is an exact sequence over all of W"

aa (o).

Proof. Let a~ be the sheaf obtained by restricting the sheaf a to the set
7 7 n ET. Then a~ is the sheaf of germs of Whitney C%functions on
7 which are holomorphic on the interior of U and on 0U n W. But 0U n W
is just a finite collection of open intervals on OU, and so a- is a sheaf of the
type covered by Theorem 2.1. Hence a is a globally Oka sheaf of rings on, and on ) we have exact sequences

a~--a---- (0) for j 1,2.
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By Corollary 1.8, 5: is a globally coherent sheaf of a~ modules. By Lemma
1.4, the images of the maps v. are globally coherent, and hence by Theorem
2.2, the induced sequences of global sections are exact"

F (8, a~v’) --* F (8, a~q) -- F (a, if) (0) for j 1, 2.

It now follows, as in Gning and Rossi [2, Chapter VI, Theorem F3], that
we can modify the sequences (1) as follows" we can find integers r and s, and
exact sequences"

a a v (0)

over U so that over Ua we have a commutative diagram

(0).

We terpret the sheaf maps and as non-singar r X r and s X s matrices
whose entries are sections of a over ; i.e. {}, {} where and
h are Whitney C-functions on a which are holomorphic on the interior of
U. By Theorem 4.2 we can write

X (M)(h)- and u (m)(m)-
where , h are non-singular r X r and s X s matrices over U th entries
wch are sections of a. In the obous way we let the matrices and
define sheaf maps

over U1, and
(m)-I ar - ar

over U.. We then have exact sequences

0"I 1 (i -Y- (0)
over Ux nd

(0)

But over U U1 n U.

(x)- o o (x.)- o o

)-loalozx on U1

over U2.

Hence
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defines a global sheaf map over W, and we obtain the required exact sequence

a a’ - -. (0).

We now can prove

THEOnM 3.3. Let ff be a coherent sheaf of modules over (L Then ff is
globally coherent.

Proof. By Corollary 1.8, it suffices to show that there is an exact sequence
a -- (’ -- ff -- (0) over W. Suppose there is no such sequence. By Lemma
3.2, it follows that if IV U u U. with U, U. relatively open in W, satisfying
conditions (a), (b), and (c) of Lemma 3.2, then there is no exact sequence
a -- aq -- ff --. (0) over for at least one of , .. By continuing to
subdivide in this way, we find that there is a point z e W such that in no open
neighborhood of z is there an exact sequence of the required type. But this
contradicts the definition of coherence. Hence ff is globally coherent.
Next we study the notions of variety and ideal sheaf.

DEFINITION 3.4. A subset V W is a variety relative to the structure
sheaf ( if for every z0 e I, there is a relatively open neighborhood U of z0 in
t, and a collection of functions {f e F (U, a), i e I} so that

Vn U= {zeUIf(z) 0 forall ieI}.

The ideal sheaf of the variety V is the sheaf

{f e a If(z) 0 for all z e V}.

Before proving that ideal sheaves are globally coherent, we need the follow-
ing covering lemma.

LEMMA 3.5. Let Z W be a compact set such that Z n W is discrete and
Z n OW is totally disconnected. Suppose that {U}i 1, ..., n is a finite
open cover of W. Then there exists a finite refinement }j 1, m of the
cover {U} so that for all i j, U n U n Z D.

Proof. This is a purely topological result, and hence by taking a homeo-
morphic image of W, we may assume that the boundary of W consists of a
finite number of circles.

Choose o > 0 so that for all Zo e W, there exists an element of the cover U
so that {z e C II z z01 < 0} U, (i.e. 0 is the Lebesgue number of the
covering U} ). Let .X and Y be the projections of Z on the real and imagi-
nary axes. Then X and Y are compact, and because lr has nice boundary,
X and Y are totally disconnected. Hence we can choose real numbers
{a}j 1, n, {b}k 1, m so that:

(i) a < a+;b < b+;] a+ a] < 1/20;]b+ b < 1/20.
(ii) a. e X for all j, and ib Y for all k.
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(iii) For all z l, if z x + iy then

ao x a.b0 y b.

Let $1 mint dist (at, X), . min dist (b, Y).
and Y are closed. Let e 1/2 rain (t0, i, 2). Put

Then , > 0 since X

Then Ntj 1, n, h 1, m form a cover of W, and by construc-
tion, each hrt is contained in some U, and Nil .1 n Nt n Z } if (jl, kl)
(in k.). The cover {/V.} is the required refinement.

THEOREm 3.6. If V C W is a variety then , is gobally coherent.

Proof. Since is a subsheaf of a, by Lemma 1.4, it suffices to show that, is globally generated. Let zo V and let fo e ()o. Let U0 be a relatively
open neighborhood of zo in Ir on which f0 is defined. For each z tr {z0}
choose an element f e () and a relatively open neighborhood U of z in
l {zol in which f is defined. The sets Uo, and U, z l {zo} cover
so we c_an find a finite subcover U0, ..., U with functions . r (U, ).
Since W is normal, we can find a refinement of this cover, U, U so
that Ut Ut. Let

-!{z lf (z) o}
and let Z (J-i Zt. Then Z is compact, Z W is discrete, and Z OW is
totally disconnected.
By Lemma 3.5 we can find a refinement No, N of U.}, j 1, N

so that if i j, N n hr Z }. Thus f and ] have no zeros in N N
so g f/f is an invertible section of a overN n N.. Thus {g.} represents
an element of H (l, t*), where a* is the sheaf of invertible elements of
But H (r, Ct*) H (]r, Z) (0) (see [4], Theorem 20). Hence on some
refinement {/} of the cover {N} we can find non-zero functions g so that
ft gt/g. Hence f g ft gt on/ n t and so F f g on N defines a
global section of . Moreover on/0, f0 go F so the global sections of
generate ()0. Thus is globally coherent.
The final object of this section is to show that there are examples of globally

coherent sheaves which are not coherent. For simplicity, we consider the
case in which W is the open unit disc, and ( is the sheaf of germs of contiauous
functions on W which are holomorphic on W. The crucial fact is that for
z OW, a is not a Noetherian ring.

LEMMA 3.7. The ideal i {f al If(l) 0} is not finitely generated.

Proof. Suppose that I were generated by fl, f. Choose a neighbor-
hoodN1 of 1 inwhichall theft are defined. Let h (z) exp ( (z + 1 )/(z 1 ) ).
Then hft I for j 1, p, and so we can find at e a, so that
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Since (z 1) eI, thereare b .a,j 1, ..., p sothat (z 1) ffi .,--1 bf.
Choose a neighborhood N2 c N1 in which all the a, b are defined.
We have {z eN2 If(z) Oj 1, p} {1} since z 1 0 except

for z 1. But on N2 we also have the system

(all h)fl -t- a12fg. .d[- + alvfv 0

aafl -i- a,2f -!" +" (av,- h)f, O.

Hence on N2 {1},

Van h, al, alh] O.det
Lay1, ave, av,

Expanding this determinant, we obtain

h= ah-+ +av.
where each ae I. But then h e I is impossible. Hence I is not finitely
generated.

Example 3.8. Let V c l be the set {1}. Then V is a variety, and by
Theorem 3.6, g, is globally generated. But (g)l is not finitely generated, so
g is not locally finitely generated, and hence not coherent.

Example 3.9. Define a map g a - ( by

g(a,a) (z- 1)aA- (z- 1)exp (z-l- 1)/(z- 1))a.

An easy calculation shows that the stalk of the kernel of g at 1 is isomorphic to
the ideal I, and hence is not finitely generated. Hence the kernel of g is not
coherent. Yet by Theorem 1.7, the kernel of g is globally coherent.

IV. A generalization of Cartan’s lemma
In Section IV, we needed a variant of Cartan’s lemma on holomorphic

matrices for the case in which the entries of the matrix are m-times continu-
ously differentiable up to the boundary, and the region on which the matrix is
defined is not connected. The proof of the case m < is a simple modifica-
tion of the case m 0 which appears in Douady [1, Chapter 6, Proposition 2].
The proof of the case m w is then a standard approximation argument.
For completeness, however, we present the proofs here.

Let U, U2 and U U1 n U2 be relatively compact domains in C and let
U U u U2. Assume that

(a) the boundaries of U, U, U, and U consist of a finite number of simple
dosed m-times continuously differentiable curves,

(b) (U- Ux)-n (U- U)-=
Let B be the algebras of n n matrices whose entries are Whitney C%
functions on and are holomorphic on U. Let G B be the groups of
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invertible elements in B; i.e. the sets of nonsingular matrices with appro-
priate entries. Note that for m < ,B is a Banach algebra under the usual
norm, and G is an open subset of B. Define maps

" G X G--. G, p" B X B- B
by

(, ) () (x.)-, (, .) ), .
We need the following preliminary result, which was used in Section III.

LEMMX 5.1. Under assumptions (a ) and (b), there is a continuous linear
map

T" n -- B X B
so that p o T identity.

Proof. By assumption (b) we can find a C%function defined on so
that 0 <_ v _< 1, v 0 in a neighborhood of U1, 1 in a neighborhood of. Choose k e B. Since the entries of k are holomorphic on Us,

(o/o) (x) (a/Oz) (( ,)x) on u.
Then

(z) (0/02) (y),) on 1
(0/02)((1 y)X) on

defines a matrix whose entries are Whitney C%functions on . Put

(x)(z) / -" Z
It follows from Vekua [5, Theorem 1.32] that the entries of S (X) are of Whit-
ney class C on , and that (0/02) (S ()) . Finally put

T(X) (,X- S(),), (1 --,)X- S(X)).

It is clear that T satisfies the requirements of the 1emma.

THEOaEM 5.2. Suppose that U, U, Us, and Ua satisfy conditions (a) and
(b), and in addition

(c) Ua consists of a finite disjoint union or simply connected regions.
Then the map G X G --. G is surjective.

Proof. Consider first the case m < . Then is a continuously differen-
tiable mapping of an open set of the Banach space B X B to the Banach
space B, and the differential of r at the point (1.1) is just the map p. It
follows from Lemma 5.1 and the open mapping theorem for Banach spaces
that the image of contains an open neighborhood V of 1 e G.

Next, we show that the image under v of G (1 is dense ia G. The
closure H of v(G {1} is a closed subgroup of G. But by condition (c)
and Runge’s theorem, the restriction of B to is dense in B, and hence H
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contains exp (B). Thus H contains an open neighborhood of 1 e G,
and hence is open. Since each component of U8 is simply connected, every
element of G is connected by a path in G to a matrix whose entries are
constant on each component of Us. Since the group GL(n, C) is con-
nected, it follows that G is connected, and hence H G.

Finally, let k e G. We can find ul e G so that (ul)-, e V. Hence
()-k k (k)- where k e G. But then k ( M)()-, so r is surjec-
tiveif < .
Next suppose that k e G. For each < we can find k eG so that

A (Ai) (Ai)-. Put
-1

Tm (m+l) (m) on U1

)-1(m+l (Xm) on U2.

Then r is a nonsingular matrix whose entries are Whitney C-functions on
and are holomorphic on U. We can approximate r by a nonsingular

matrix which is holomorphic in a neighborhood of U so that

Then Gm+l m e m+l

+ X ]] < 1/2m

(+a . Hence in choosingand (m+a, a) )- + we may assume that
k

Put 1 + :--1 k k k G, and(+ h) lim.. Then e

(h) ()- . This completes the proof.
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