EXTENSIONS OF ELEMENTARY ABELIAN GROUPS OF ORDER 2 BY
S:»(2) AND THE DEGREE 2-COHOMOLOGY OF §..(2)"

BY
UrricH DEMPWOLFF

Following Artin’s notation (see [1]) we denote by S;,(2) the symplectic
group of dimension 2n over the field F; of 2 elements which is defined as a
subgroup of GL(V'), V a 2n-dimensional vector space over F, leaving a non-
degenerate, skew-symmetric scalar product invariant. We want to show:

TueorReEM. Let G be a finite group which satisfies the following conditions:

() V G,V is elementary abelian of order 2°",
(i) G/V = 8u.(2),

(i) Ce(V)CS V.

Then G/V acts on V faithfully and one can define a skew symmetric, non-
degenerate scalar product which is G/V-invariant. If n > 2 then either G splits
over V or G s a uniquely determined (up to equivalence of extensions) nonsplit
extension of V by Sz (2) and such nonsplit extensions do exist.

We have a corollary.

CoRrOLLARY. If V denotes the standard Fa-module for Ssn(2), then
dime, H (82 (2), V) =1 4 n > 2.
Remark. By a result of Pollatsek [7], it is known that
dimpg, H' (8:,(2), V) = 1.

A recent result of R. Griess [5] shows that dimp, H*(S3.(2), V) = 1. We will
show that dimp, H’ (S2.(2), V) < 1 which will imply the theorem. The proof
follows the same line of arguments as in [2], [3]. Thus we consider for v ¢ V¥
the stabilizer H of v in G and determine the structure of O.(H). Then we
study the action of H/Oy(H) on O;(H). The information obtained in this
way will enable us to determine the structure of @ in terms of generators and
relations. As the arguments used in the proof are very computational, a
more group theoretic proof is certainly more desirable. We prove the theorem
by a series of lemmas.

By our assumptions we may always V consider as an F; vector space of
dimension 2n acted upon by G/V as a subgroup of GL (2n, 2) faithfully.
We will always denote by E;; a square-matrix whose entries are all 0 with the
sole exception of the entry 1 for the index pair (7, j). If the matrices which
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are in question have dimension 2m we set for ¢ + j = 2m + 1,

tii = Iom + Eij + Eomir—jomir—i
and for 1 < 7 < 2m,

tigmiimi = Iom + Eigmi1—i

where I», is the 2m-dimensional identity matrix.
It is easy to check that the subgroup X generated by ¢;;for¢ +j < 2m + 1
of GL (2m, 2) is isomorphic to S:m(2). Moreover the subgroups

Bo = <t,'j I tij eX;i < J) and No = (ti,.'+1 tc‘+l,i t,',i+1 l 1 S 7 S m)

form a (B, N )-pair for X. Note that t;; = tamy1—j2m1—i.

Throughout the proof we will always denote by ¢;; either matrices of the
type described above or elements of the automorphism group of a Fs-vector-
space which act in respect to a fixed basis vy, - - -, v2m as described by the
matrices.

(1) Let U be a 2m-dimensional F; vector space and ¥ =~ Sym(2) a subgroup
of GL(V). Then one can define a symplectic scalar product on U which is
X-invariant. In particular X “acts as a symplectic group’ on V.

Proof. The case m = 1 is trivial and as As >~ GL (4, 2) has only one con-
jugacy class of subgroups isomorphic to Zs ~ 8,(2) the assertion is true for
m = 2,

Choose an elementary abelian subgroup & in ¥ of order 3». As F, isa split-
ting field for & we have a decomposition U = U, @ --+ @ U, in irreducible
&-invariant subspaces where dim U; = lor2for1 < ¢ < r. As § acts faith-
fully it followsr» = m and dim U; = 2for1 <7 < m. Fore,f ¢ & weintroduce
an equivalence relation by ¢ = f if and only if dim [¢, V] = dim [f, V]. We
have exactly m + 1 equivalence classes say @, * - - , €, With dim [e, V] = 2:¢
for ¢ e@;. Then

|e,-|=(7:.‘>2" for 0<i<m
Asm > 3 we have
(*) Ieo|<|81|<]e.-| for 2<¢< m

If e 5 fthen ¢ and f can not be conjugate in ¥. X has exactly m conjugacy
classes of elements of order 3 and so €; for 1 < ¢ < m are the intersection of
these classes with & and by () and the structure of Sy (2) for r ¢ @, we must
have

Cs (1‘) = <’l'> X &£

where £ ~ S;,-2(2) and £ acts faithfully on Cqy(r) and trivially on [r, U].
Assume 79 €@y, 7 % 7 or ¥ and Cx(re) = (re) X £, with £ =~ Szm—2 (2).
Then

Cx(r, m0) = (r) X (ro) X (£n L)
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and & n & =~ S;m-(2). By induction there is a £o-admissible symplectic
scalar product on Cy(r) and an £-admissible symplectic scalar product on
Cy(r) and an £ n Lo-admissible one on Cy(r, 7). We have Cy(r) =
Cr(r, 1) @ 3¢ where Cv(r, 79) and 3C are regular subspaces, mutually orthog-
onal, in respect to the scalar product of Cy(r) which was induced on Cy(r)
by Cx(r). In the same manner we have a orthogonal decomposition Cv(ro) =
Cv(r, 1) @ 3C. Note that the symplectic scalar product induced on Cr(r, 7o)
by £, £, £ n £ is always the same. Clearly UV = Cy(r, r) @ & @ 3Co.
Reading this direct sum as a orthogonal sum we define a symplectic scalar
product on V. Certainly this scalar product is £- and £e-admissible. As
X = (£, L) the assertion follows.

Using (1) we now choose a basis vy, vz, - -+ , 2, of V such that {v1, v:.},
{ve, Van—1}, - - -, {Vn, Un4a} are hyperbolic pairs in respect to the action of G/V.
In particular there are elements 7;; e G — V such that the action of 7;; in
respect to our fixed basis is described by matrices of the form ¢;; (here we have
m = n) and always 73, ¢ V.

Without proof we state:

(2) Let the t;;'s have their fixed meaning and set
X ={tjlt+7<2n+ 1)~ 8,.2).

Set s = tn._1,n tn,n—-l t”..1,n t"+1,”+2 t,.+2_,.+1 t”+1,n+2. Then the classes Of z'nvolu-
tions in X are represented by

t”ln.l, tzn,l tzn—l,Z, Tty tz»,l e tn+1.n
and

Yy bnibon12¥, 5 bnalen12 ** batdines Engsn—2 Yy
wherey = (tnnsr8) and o = 1 if nis even and a = 0 4f n 1s odd.
(3) If reG — V suchthat 7° ¢ V then there is a t in 7V such that £ = 1.

Proof. Choose elements py, -+ , p, of order 3 in G — V such that p; nor-
malizes (v, van41—i) and centralizes

(vly Tty 1)1.'-1’ vi+1) Y v2n—-i’ Vont2—iy *°° 7)2”)

Set Y = (p;|1 < ¢ < n)V. Then Y/V is elementary of order 3" and Y/V
acts fixed-point-free on V. Denote by ¢ an element in G — V which acts as
s on V where s has the meaning as in (2). Then

Z = (7'2»,1; Ton—1,2y ° " 5y Tatl,ny U)

normalizes Y. Using a Frattini argument it follows that for every x e Z,
x € V thereis an z e xV with 2 = 1. Now using (2) the assertion follows.

(4) There are involutions ty € 1 V and tan—1,2 € T2n—1,2 V such that

(b, ban—1,2) =~ Ds  and  (ty, bpna2)n V = 1.
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Furthermore there is an tnvolution a1 € 1221 V such that one of the following
possibilities is true

1) [(ta, tenr2), tena] = 1

() [tana, a2l = 01, [tan1, t21] = V20
and

[V2n tan 1, (a1, (2 trn12)™)] = [D2n tan-12y {tons1, V2n fan1)] = 1

Proof. As (721, Ten—12, T2n,1) centralizes the nonsingular symplectic sub-
space (Vs, Vs, ** - , Van—p) We may restrict our attention to the case n = 2.
Using the same Frattini argument as in (3) we find involutions tx, t such
that (tz, fs2) =~ Ds and (t, t») n V = 1. Choose an involution ¢y in 74 V
and set 7 = f, 0 = fn,j = ty and £ = 70. By changing j if necessary by
v; We may assume [7, j] € (v1).

£ is an involution and so [j, £] € (v1, v2). Assume [j, & = v§ 05 07 v}, then

[5, ] = v w where w e (&, v). So & = 0 and [j, £] = v v7. Now choose

p € @ — V such that
£V L v L ey
and p shall act fixed-point-free on (£, 7j)V. By [6; V, 8.9¢)],
EErE» =1
Set [r, s1 = v{. Then
(&) e v} o, ) and (8" eof I P iE 0y, 0a).
On the other hand

(&) ev¥ 7jE¥vn, va).
Hence 8 = x = v and

G, 7l =oF, [5, 8 =ofofof, [j, £ = ol o}
As Cy (0, ) = (vy, vs) we have [J, o] = viv. So
of of of =[5, 8 = [j, o7l = v} 020}
which implies x + ¢ = a and 8 = x. If we replace j by 5% and denote it
now by j we have
Uy sl =of, [ 8 =olofo}, [5& =0ofof, [j,0] =0

For x = 0 we get case (i) of (4) and x = 1 implies (ii). As an immediate
corollary we have:

4') If V is elementary of order 2* and G/V = Zg and G does not split over
V an Sp-subgroup of G ts uniquely determined.

(5) Denote by H the centralizer of v, in G and set A = O, (H ). Then A
possesses a H-admissible subgroup X of index 2 such that A = X(vs.) and
= X n (ven) and

A/D(A) = (na)D(4)/D(A) X X/D(4)
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18 an H/A-invariant decomposition where D (A) denotes the Frattini subgroup
of A.

Further one of the following cases s true:

(1) X s the direct product of an extra special group Y of width 2n — 2 and
type (4 ) with a group (w) of order 2. If Vo = (v, «++ , Van) then Vo S Y,
Z(Y) = (v and Z(X) = (v, w) 1s elementary abelian of order 4.

(i) X = Y{(w) where Y is exitra special of width 2n — 2, |w| =
4,[Y,(w)] =1L, Y nw) = (n)and Z(X) = (w).

Proof. A/V is elementary abelian of order 2°"" and H/A acts faithfully
on A/V and centralizes (r24,1)V/V. Choose involutions wi € 1 V, w2 € 731 V,
<o, Won1€Twma1 V. Then A = (vy, <« , ven, w1, -*-, Won—). Certainly,
A" C V. Set Vo= (v, -, V). Then Vo <{H. Noelementin 4 — V
commutes with any element in v;, V,. Therefore if a ¢ A, then o ¢ V..
But clearly Vo C A’ andso A’ = D(A) = Voand Z(A) = (v1). We use the
“bar convention” for groups and elements in A modulo Z(4). Obviously
Vo € Z(4). Further

CA/AI (H/A ) = (vzn, 1,D2n_1>A'/A,.
Using (4) for £ ¢ (w1 Vo)~ one of the following statements is true:
) [&, wena] = 1.
(i) [&, (ven won—a) ] = L.

As (wzn—1 Vo)~ and (ven wan Vo)~ are H/A-invariant cosets and H/A acts
transitively on 4 /V{wzn—1) We may assume that for each involution & e A — V
one of the following statements is true:

1) [&, Wena] = 1.

(ii) [ﬁy (v2n w2n-—1)_] = 1.

In case (i) weset W = (wan—1) incase (ii) weset W = (Van Won—1) . So
Z(A) = Z,(4)/ (1) = (Volw))™
and (4) implies that for G e 4 eithgr di =1lor (tzma)” )’ =1. )

For each pair of involutions @, b e A — (V{(w))™ such that | (@, b) (V{w))~/
(V{w))™ | = 4 there is an element p of order 3 in H such that p permutes the
elements in

(@, BY¥ (V(w))™/ (V{w))™.
Hence a° e¢b(Vo(w))™ and @ e gab)_(V(w))_. Assume (ab)” is not an

involution, i.e. [d, b] # 1. As @ is an involution we have
e (@bves)” (Vo{w))™ by the above. So (abvs.)” has order 2 and therefore

1= [d’ 5][(0'17 )—1 (v2n )_]
Therefore if @, b ¢ A — (V(w))™ are noncommuting involutions, then

(3, B] = 5% B
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Assume b and ¢ are commuting involutions in A such that
(Vw))™ # V(W)™ # (cVw))™ # (V(w))".

Assume further that a does not commute with ¢; then using that 4 has class
2 we conclude
(4, be] = [a, blla, ¢
and
[@, (Bc)7] = on (02a) ™" if [a, (be)7] # 1

=1 if (4, (be)] =1
and
@, Bl(@, €] = B2n(F2n) Bon @2n)®®” if [4, 5] #= 1

= Tyn (B20) " if [a,b] =1.

So we may conclude, if ¢ A — (V{(w))~ is an involution and there is an invo-
lution b ¢ A — (@) (V{(w))~ which does not commute with @ then no involution
in A — (@)(V{(w))” will commute with d. Assume this is the case. Let
deA — (V{w)) " andb e A — (V{w, a))” be involutions; then [fz, &, 72, D] = 1
and it follows that Ao = (Z(A), @@ w1)”, -, (Wan w2a—)”) is an abelian
subgroup of index 2 in A and A, is of type (2, 4,4, -+, 4). Let Ao be the
counter image of Aoin A. Then A, has class 2 and Z (4,) S (1, w). Now
choose a € Ao of order 4. Then for every b ¢ Ao we have [a®, b] = [a, b] = 1.
SoX = (| Zedo) S (Z(Ao))". But as a’ e s, v5.(n1) for each a of order 4
it follows | X n V, | > 4, a contradiction.

We have shown that every pair of involutions in A — V() commutes.
It follows that X = (Z(A), b, @, s, * - , Wan-z) is elementary abelian of
order 2", Let X be the complete counter image of X. Then X’ = D(X) =
(n) and Z(X) = (1, w).

Set Y = (Vo, w1, ---, Wa-2). Then Y is extra special of type (4 ) as
Vo C Y. (An extra special group X of order 2" is called of type (+) if it
contains an elementary abelian group of order 2"*'.) Finally X char A:
As for every & e 72, Z (A) we have Cz (&) = (£)Z (4) it follows that an auto-
morphism a of A has the property X*n ., Z(4) = 0

As A — (Tan Z(A) u X) is the set of elements of order 4 we have shown that
X is H-admissible.

The following fact is an easy consequence of the result of Pollatsek [7] and

).

(6) Let U bea (2n + 1)-dimensional Fs vector space and assume there is a
subgroup X = 85, (2) of GL (V) such that X centralizes v e O and acts faithfully
on V/(). Suppose there is no X-admissible complement of (v) in V. Then V
has a basts v, vy, - - - , von SUch that {v; + @), vany—i + @)} are hyperbolic pairs
with respect to the action of ¥ on V/@) for 1 < ¢ < n. If ¢ € X is represented on
V/{v) in respect to the basis v; + (W)(1 < © < 2n) by the matriz X = (z:;)
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then the matrix of x with respect to the basis of U has the form

1 0 a1 n
[K(X) X-] where K(X) = . and a; = j__;xt'ixi.ﬂn-l-l—j-

02

Now (5) implies the existence of an H-admissible subgroup X < A such
that X = Y(w) and we have either X = ¥ X (w)and |w| =20r X = Y(w),
(wynY = Z(Y),|w| = 4 where Y is in both cases an extra special 2-group
of widthn — 1 and type (+). We consider U = X/(») as a F, vector space.
If we define ¢(a) = a® where @ ¢V and @ e« and (o, 8) = [a, b] for @, 8 €V
and ¢ e a, b € 8, then ¢ is a quadratic form on V and ( , ) is the symplectic
bilinear form belonging to ¢. We have to distinguish two cases according to
the structure of X.

i) |w| =2, Yn @) =1 Then U is a orthogonal vectorspace such
that rad U = (w(1)), V/{wlv1)) is a regular orthogonal vector space of maxi-
mal index and dimension 4n — 4.

@) |w|=4,Yn{w) =2Z(X). Then U is a (4n — 3)-dimensional,
regular orthogonal vector space.

According to (6) and the proof of (5) we have to study the following situa-
tion (here n = m + 1):
Given a (4m + 1)-dimensional F, vector space U with a basis w, wy, - -,

Wom, V1, * - , V2m and an orthogonal form ¢ and a bilinear form ( , ) such
that either
@ qgw) =0, q@)=qw) =0 for 1<¢<2m

(w,v) =0 forall ve,
(i, w;) = 8;; for 1<14,j < 2m,
i, v;) = (Wi, w;) =0 for 1<4,5 < 2m,
g(Xiaivi + 2 ibjwi+ cw) = D% aib;
or

(i) glw) =1, qg;) = qlw;) =0 for 1 <7< 2m,
(w,v) =0 forall »e?,
Wi, w;) = 8;; for 1 < 4,5 < 2m,
Wi, ;) = (Wi, w;) =0 for 1L 4,5 < 2m,
e aivi + D ibjwi+ ew) = D iaibi +
By (5) it is clear that H/X =~ Sy2(2) X Z;. Thus there is a subgroup
X =~ S2m(2) of GL (V) such that ¥ normalizes Uy = (v1, * « + , vam) and respects

the form ¢ and the scalar product ( , ). Note that only in the case m > 3
the group ¥ corresponds to a unique subgroup of H/X.
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Furthermore the structure of H tells us that ¥ acts reducibly but not com-
pletely reducibly on /0, and centralizes in particular w + ;. In any case
we may assume that we have chosen v;, w; for 1 < 72 < 2m in such a way, that
if reX induces the matrix X on V/(V;, w) with respect to the basis
wy + (Vy, W), *++ , Wem + (U1, w) that the matrix induced by ¢ with respect
to the basis w, vy, +++ , Vom, W1, * + + , Wam Of U has the form

1 0 0
0 SX) 0
KX) YX) X
There K (X) denotes the function described in (6). As (v;, w;) = 8;
for1 < 4,5 < 2m wehave S(X) = (X~ 1) and Y is function such that

A) Y(XZ) = Y(X)(Z)' + XY (2).
As we have (w;, w;) = 0for1 < 7,j < 2m it follows that
B) Y(X)H)X' = X(Y(X))

If weset Y(X) = (yi5), X = (x;;) and K(X) = (k) for 1 < 7 < 2m
implies
© 0= D% yaza for case (i).
= Y yaza + ki for case (ii).

In other words the diagonal elements of ¥ (X)X’ are 0 in case (i) and equal
k;in case (ii).
We now determine the function Y in case (i) as well as case (ii). There-
fore weset of 1 < 7,5 < 2m,
K = Y (t:;),

Kij = (ki) for 1< rs < 2m,

1 0 0
;=10 t; 0 |
K (t:;) Ki tj

Using T%j = 1 it follows that 0 = Kij tij -+ i Kij. Further Kij t;; =
t: (Kis)"s
These equations imply for ¢ 4 j = 2m + 1,

U=1r¥ forall 1<sl<2m,
=k =0 forall 1<1<2ml#j2m-+1—7,
ki amt1—i = k;f;m—j.j-
Finally using equation (C) we have
Fi=0 for 1<1<2m and I#j2m+1—j

i _ 1.47 L) 1.7
ki = kjj, ksmt1—jomii—i = kami1—i 2mi1—i.
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If i 4+ j = 2m 4+ 1 we have again
Kiomir-i = (Kigmir—i)'
and ) )
k"M =0 forall 1<1<2m, I#2m+1—34

4,2m+1—1 %,2m+1—¢
kigmti—i = kom¥i-iomt1i— + €

where ¢ = 0in case (i) and ¢ = 1in case (ii).
Using the equation [7;5, .] = lfor{r,s} n{s,75,2m +1—¢,2m+ 1 —j} =
0 we get by (A) the equation

Kijte + tji Krs = Ko tij + e Kij
which implies

=0 forall {r,sn{i,j,2m+1—452m+1—j =90

and r + s % 2m + 1. Furthermore we have for {r, s} n {¢,7, 2m + 1 — i
2m + 1 — j} = B always krhmii—r = Ksomt1—s.
Using [7rs, Ti2mt1—i] = 1forall {r, s} n{s,2m + 1 — i} = 0 we get

Koo tiomra—i + tor Kigmir—i = fomsr—ii Kps + Ki2me1—i brs

and it follows that
PmHm — 0 forall {r,sfn{s,2m+1—14 =9
and r + s # 2m + 1. Furthermore we have kitmii—r = kibmii

for{r,s}n{5,2m + 1 — 3} = 0.
Therefore we can write for r + s # 2m + 1,
Ko = D ca(ry 8) (Bor + Ei) + Xisemirer B1 (7, 8) (Bomt1r,:
+ Eiomi1—r) + o (v, 8)Ess + Bamtr—s (7y 8)Eomir—rgmti—r
+ ¥ (7, 8) Dirtr, mir—e2mrir Bramir

Note that the entry for the index 2m 4+ 1 — r,8) and (s,2m + 1 — r) is
Qemt1—r (1, 8) + Ba(r, 8). We will later denote this entry by e(r, s). Further
foralll < r < 2m,

Kromiier = D psamir—r ax(r, 2m + 1 — 1) (Bompr—rp + Ep2miir)
+ &, 2m + 1 — v)Eymir—r2mti—r
+ (@, 2m + 1 = ) D it amirr Bramiros
Here &, (r,2m + 1 — 1) = a,(r,2m + 1 — r) in case (i) and
ar,2m+1—7r)=a(@,2m+1~7r)+1 incase (ii).
The equation [7,, 75] = 1forj s 2m + 1 — r, s implies

(L.1) B:(r,J) = v(r,3) + camir—;(r, 8)
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and [7y,, 75] = 1forj # 2m + 1 — s, r gives us

@.1) Bemtr—s (4, 8) = Bam+1—s (1, 8).
The equation [y, Tram+1—r] = 1 leads to
3.1) a,(r,8) +a,(r,2m+1—7r)=~v"2m+1-—7)

and since [7,2m+1—s, Ts2mt1—s] = 1 it follows that
“41) a(s,2m+1—8) 4+ B(r,2m+1—38) =~v(s,2m + 1 — 3).
Form > 3andj #r,s2m+ 1 —r,2m + 1 — s the equation [rn, 7j2m+1—j]

= 1 implies
5.1) ar(4,2m + 1 — j) = a;(r, 8),
(5.2) am1—s (4, 2m + 1 — j) = B;(r, 8).
The equation [r;j2mt+1—j, Tram+1—] = 1forj £ 2m + 1 — r gives us
(6.1) a(,2m + 1 —j) = a;(r,2m + 1 — 7).

Forj+s# 2m+ 13 r + sandj  r we have [rn, 755] = 7r; which
implies
Krc tsj tra + tsr Ksj trc + tlr tja Kn = Krj t«j + t.ir Ku'-

Computing both sides of this equation yields
(7.1) e(r,8) +e(r,g) + &(s,5) + B (r,7) + camir—j(s,5) = v(r, 8),

(7.2) a(r, s) + a,(s,5) = as(r,5),
(7.3) ogmt1—i (1, 8) + Br(s,5) = v(r,5),
(7.4) Bami1—i (ry 8) + Bemtr—s (", ) = Bemtr—; (1, J).

To obtain these equations we must have m > 3. If m > 4, then we also
obtain v (r, j) = 0. The equation [ru, Tk.2m-1-%] = T¢2m-1—% Ti2m-1—; implies
Kk teamtr—s tie + tei Kigmir—r tie + bei lamia—io Ko
= Kigmt1-k bigmiimi tegmtr—t + bamti—k,i Kigmr—i thami1—p
+ bmt1k,i amtr—i,s Keamtr—k.
And therefore we have
8.1) G, k) + coms G, k) + G, 2m — 1 — k) + &k, 2m + 1 — k)
=BG, 2m+ 1 —k) + comi (G, 2m + 1 — ) + ax G, 2m + 1 — 7)
+oailb,2m+1—k) + an(k,2m + 1 — k) + 70, 2m + 1 — 3),
82) i@, k) + an(i,2m + 1 — k)
=a;k,2m+1—k)+v0E2m+ 1 — 9),
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8.3) c(i, k) + d(k,2m + 1 — k) + (G, 2m + 1 — k) + asmsrs (G, k)
ool 2m 4+ 1 — k) + asG, 2m + 1 — ©)
— oy 2m + 1 — k) + asmarsG, 2m + 1 — 0),
84) oG k) + axk,2m +1—k) 4+ oy, 2m + 1 — k)
+ B8 2m+ 1 — k) + (@, 2m + 1 — 7)
=y, 2m+ 1 — k).

Alsoif m > 3 weobtainy (¢, 2m + 1 — ¢) = v(5,2m 4+ 1 — k). First we
assume m > 3. Using our fixed basis we define ¢ ¢ Aut (V) by

10 O
Y = 0 Ism O
0 S I2m .

S is a 2m X 2m matrix with entries s;; = o;(j, 2m + 1 — j) for 7 £ j and
14+ 7 # 2m + 1. Further set s;; = siomuu—s = 0. By (6.1), S is well de-
fined. We replace 7;; by ¢ 'r:;¢ and denote these elements again by 7;.
(This operation is nothing else then replacing the basis w, v, - -, vam, w1,
oo, Wam by WP, of, -+ -, v3m, wi, - -+, wls which has the same properties as
the old one.) We have
Kipmp-i = a;(@,2m + 1 — 1) (Bamyr—i,s + Eigmpr—s)
+ & (1, 2m + 1 — 9)Esmir-igmia—i
+v@E 2m+1—7) Zk;‘z‘,2m—{-1—i By ami1—.
Using (5.1) and (5.2) we have
Kn = ar(r, 8) (Ecr + En + En)

+ Bamir—s (7, 8) (Bamir—r2mii—s + Eompr—somii—r + Eomir—romit—r)

+ &(r, 8) (Esemii— + Eamir—rs)

+ v (r, 8) Zk;‘r,c.2m+1—r,2m+l—a By omy1—
If m > 4 then at oncey(k,2m + 1 — k) = y(r, 8) = 0, but also (7.3) does
imply this equation. Combining (7.2), (7.4), and (8.4) we get finally
Kiom—i = @i(%,2m + 1 — 1) Eemy1—iami1—i,

Kia = €@, k) (Bampr—ix + Ex2mir—i)
Looking in the proof of (5) and using the terminology of (5) we have
H/X >~ 8-2(2) X Z,

where Z; corresponds to the coset v2, X. So in the case of m < 2 we may
choose ¥ ~ Spm(2) suitably such that y(, 2m + 1 — k) = 0 by
using (b 2my1k mpaii)’ = 1. So we get the equations (+) in the case

(+)
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m = 1. In the case m = 2 again we may assume
Kiomp—i = o;(¢,2m + 1 — ©) (Bampr—i,s + Eigmpr—i)
+ a:i(4, 2m + 1 — ) Eamyr—i2mi1—i
The equation (7, 7or)° = 1 implies
8(7‘, S) + 8(8) 7') = a5—8('r’ 8) = a5~1‘(s9 'I‘) and 35—1‘(8) ’I’) = [35_3(1‘, S)-

Then (6.1), (3.1), (4.1), (8.2), and (8.4) again imply finally the equations

(+). Now set
10 O
y=|0 Iomw 0 |eAut (V)

0 A I2m

where A' = Aand A = Y72 @12mi1-1 Ergmias.  Choose @ 2my1—; in such a
way that agm1 + Gs2mp1—s = €(@m, s) form+ 1< s < 2m — L.

We replace now 7;; by 7{; and denote these elements again by ;. So we
may assume that e(2m, s) = 0form + 1 < s < 2m — 1.

(I) Assume that we are in case (¢). We have &;(%, 2m + 1 — 7) =
a;(¢,2m + 1 — ) = 0 and 50 K;2mp1—; = 0. Using equation (8.3) we have
e(,k)=¢c@G,2m+1—k). With (7.1) wegete(s,u) = e@m,s) + c(2m, p)
=0if2<s,u<2m—1. For2 <k < 2m — 1 we have further

0

It

e@m, k) =e@Cm+1—-Fk1)=e@Cn+1—-k2n+1—-1)
=¢c¢@m+ 1 — k, 2m).
So for all possible k, r we have e(r, k) = 0
(II) Assume that we are in case (ii). We have &;(¢,2m + 1 — ¢) = 1
and (8.3) implies (4, k) = €(¢,2m + 1 — k) + 1. Hence ¢(2m, 1) = 1 for

2<1<m. (7.1)impliese(s,u) = ¢(2m,s) + ¢(2m,u). Hencee(s,u) =1
for

(s,u)e{Z,---,m}X{m+1,~-~,2m—1}
Ulm 1, 2m = 1 X {2, o, m)
Finally e(2m, k) = e@m + 1 —k, 1) = e@@m + 1 — k, 2m) 4+ 1 and so
e, 2m) =1 for 2<57<m
=0 for m4+1<j<2m—1
If we summarize the results of (I) and (II) we can state:

(7) There is a subgroup K of H of index 2 with Kn A = X. If we arein
case (1) of (5) then there is an elementary group W of A such that WV = A,
WnV =Z2Z(X)and W is K/A-admissible.
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If we are in case (ii) of (5) K/X acts reducibly but not completely reducibly
on X/X'. The action of K/X on V /{v1) s uniquely determined.

(8) Ifweareincase (i) of (5) H and G splits over V.

Proof. First we assume that we are in the situation of case (i) of (5).
Keeping the same notation we have 4 = (v2,)X where X is a H/X-admissible
group which is isomorphic to the direct product of a group (w) of order 2 with
an extra special 2-group Y of width » — 1 and type (4 ).

As every involution in H/A ~ S,,_,(2) has a pre-image which is an involu-
tion too (see for instance (3)), we have by [4] a subgroup Hy € H such that
HyA = Hand Hin A = X. X/(w) is an extra special group and the situa-
tion of (7) applies further to X/X’. Hence there is an elementary abelian
group W € A suchthat VoW = X, Von W = Z(X) and W is Ho/X-admissi-
ble where V), has the same meaning as in the proof of (5). By the structure of
GL (2n — 1,2) we can find a subgroup H, of Hysueh that H1 X = HyHyn A =
W and H,/W acts on W in such a way that (v1) has a H,/X-invariant comple-
ment Wy, with Wo X (n) = W. On the other hand there is a subgroup H:
of H such that H; X = Hpand Hy;n X = V.

Hence with the modular law

H=HnHy=HnH W = (H1ﬂH2)W.

Hence Hin H; = Z(X) and (Hin H,)/Z (X) =~ Sen—2(2). As every involu-
tion in (Hyn H;)/Z(X) has a pre-image which is an involution we have sub-
group Hy € Hy n H,, Hy =~ Sens, Hs A = H and H; normalizes Wo. So
WoHsn V = 1 and hence we get the assertion for the case (i) by a result of
Gaschiitz [6; I, 17.4].

From now on we have only to handle the situation described in case (ii) of
(5). Forl <4 j<2nand<-+ j = 2n -+ 1 we choose involutions ¢;; which
act as it is suggested by the notation (use (3)). For 1 < ¢ < 2n choose ele-
ments ¢; ant1—; of order 4 such that ¢; 2.41-; acts on V in the way suggested by
the notation. By (3) it follows (fi2nt1—:)° = V2nt1—i-

Forl <i<2mweset H; = Ce(v;) and A; = O.(H;). With this notation
we have

H,= (|1 <r,s<2m{s,rin{s,2n+ 1 — 13 =0).V.
|1 <r < 2n57 #7r)
and
A; = V(a1 < r < 2n50 # 7).

In the course of the following argument we are going to modify the ¢;; by
elements in V step by step. We say the k-th component of ¢;; is determined if
we do not change ¢;; in the course of the argument by v, any more. We always
make use of the action of H;/X; on X;/X; as it was developed in the proof of
(7) where X; corresponds to the subgroup X of A. Aswe will not change the
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order of the ¢;; the - and the (2n + 1 — j)-component of these elements are
already determined.

First we consider Hz,. We may assume that we have choosen t; on, f2.2n, * * *
tan—1,2 In such a way that (ve, ta20), * -« , (Ven—1, tan—1,2.) are dihedral groups of
order 8 and (f;,2.) is of order 4 and X, is the central product of these groups,
where X3, corresponds to the group X of (5).

As (t1,20) commutes with all the dihedral groups, it follows that all com-
ponents with exception of the 2n-component of ¢ 2, are determined.

Further there is a skew symmetric matrix @ = (p;;) with2 < ¢, j < 2n —1
and numbers « (Z, j; k, 2n) forj # k, 1;¢ 5 2n 4+ 1 — k, 2n such that

' [tisy thon] = oF*ofetpri-ipgyt e
fOl' k 7~ 1, 2n and ) + ] = 2n + 1 and [ti,2n+1_.', tk,z'a] = v{,’fﬁd_i v:,fi'znﬂ—i;k o2n)

The proof of (7) tells us that we have if necessary to change ¢,;; by v to
obtain these equations. Therefore the 1-component fort;;2 < 7,5 < 2n ~ 1
is determined. Moreover we replace .2, by v5%? -+« v8R2 o for2 < k <
2n — 1 and denote again this element by #2.. By the proof of (8) it follows
that X, is still the central product of (f12x), V2, f2.2n), =+ 5 (Van—1, fen—1,20).
In this way all components of #,. for 1 < k& < 2n — 1 but the 2n-component
are determined and ¢;; = O for 2 < 7,7 < 2n — 1.

We have, by the above, numbers a (¢, j; ¢, 2n) with

[tis, tizn] = w8572

As t;;, tian € A2n1—; there exist elements in ¢;; V and ¢;,2. V of the same order
as I;; and t; 2, respectively which do commute. Hence a (3, §; ¢, 2n) = 0.

Further we have numbers v (7, 2n + 1 — 7, 2n) and v (¢, j, 2n) such that

[ti2nt1is Trnt1—i2n] = Vent1—i Ugyf"zn+1-"2”)ti,2n o for 2<i<2n— 1
Ifi+j#2n4+1
[tii tian] = Vantaoi 038 ti0n for 2< 4,5 <0
or n+1<44j<2n—1
= o3 for 2<i<n; n+1<j<om—1
or n+1Zi<2n—-1; 2<j<n

We proceed now by induction and assume that we have shown the following
fork > 1.

() (ienna—i|1 <4< 2054 % 20 4+ 1 — 1) is an abelian group of type
4,2 - ,2)forl <1<k

(i) te2ny * o0 5 8,2ny baj2n
loon—1, =+ , 8,201

Uk 2n—k42
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are completely determined in all components. The #;sn41—i fors = 2n + 1 —1
are either completely determined if they are an element listed above or they
are completely determined up to their (2n 4+ 1 — 1)-component for 1 < I < k.

(i) For1l <! < k the following relations hold: There are numbers
a@jik,2n+1-1), ~v@E2n+1—-42n+1-1), +v@Gj,2n+1-—1)

such that

(G 2=l
[Lisy toantrd] = vEnsigm

for iFEk, 2n+1—disx2k 1#j Il#2n+1-—4i

_ 7 (5,201t 20411
[t: 2n1—iy Bant1—i ont1-1] = Vond1—i V3ntimi bi gnt1—-1 L1,2nt1—ie

v (2,5,2n+1—1) . o
[tsdy tignt1-1] = Vent1—i V3n¥iZs tignt1i—i for 4,7 < mn
(%,7,2n4+1-1)
v;yn+1—l

for t<n and j>n

]

or 1>n and j<n

v) e@G2n+1—-0Lr,2n+1—f)=0foralll <1< f < kandall
possible ¢, r. a(3,7;4,2n 4+ 1 — 1) = 0 for all possible ¢, jand 1 < ! < k.
a(r,s;i,2n + 1 — 1) = 0for all possibler,sand 1 < 7,1 < k.

(v) If ¢;; is not an element listed under (ii) then the l-component of ¢;;
is determined for 1 <! < kandl#j,2n — 1 — <.

We have Asnr = {igns |1 < 2 < 20)V. By (iii) we know for ¢ < &
and j # 2n + 1 — ¢ that [t;gs, tjens] = 1. By changing if necessary
bent1—i2n—k DY v; and &; 2n DY V2n+1-s We may assume

[tj,zn..k, t;‘,zn—k] =1 for 1 S 2 S k and all]

In this way all components of lit1,2041—1 (1 < I < k) are determined and we
will see that tx41,2041—1 (1 < 1 < k) is not being changed in the course of the
argument.

Changing ;o (K + 1 < j < 2n) by elements in (v44s, + -+ , t2n) We may
assume that (i) is true.

We have further by (iii) and (iv),

[ts 2nt1—1, tiszn—s] = vasprhetn =l for 1 <1<k and i#k+1

and [t znt1—1, teront] = 1. Seta(s,2n —k;8,2n+ 1 — 1) = ¢;..
We only have to change ¢, forr 2 &k + 2 and 8 < 2n 4+ 2 — k by vp if
necessary in order to get with help of (7) the fact

Pir, Pi,n+l—s, a(r,s;i,2n~Fk)
[trs, ti,ﬁn—k] = Ug "02n+i‘-—r Von—k ,

[tr 2nt1—rs Ligni] = VEA%1—r v AR
forr #2n—k,2n4+1—4;1 #2s=k+ 1.
In this way the 1-, - - - , (k¢ + 1)-components of ¢,, are determined. More-
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over by (iv), et 2n — k;s,2n +1 -1 =0 A <IL<k)if1 <1<k
So ¢is = 0for 2 < k and all s.

If 1 < 7 < k then the determination of the (¥ + 1)-component of ¢,, forces
a(r,s;k+1,2n+ 1 —17) = 0and so

[trs, ti,2n—-k] =1

We now replace &g by o8 -« - 085" 00 AS 0is = @5 = 0 for all s
and ¢ < k, it follows that ¢; 2. stays unchanged for 1 < ¢ < k and ¢;,2.— is
only changed in the {-component where ¢t > k -+ 2 as desired.

In this way we have determined all components of ¢, 2., but the (2n — k)-
component for s > k + 2.

Moreover we have for 1 < Il < s <k + 1;1 # 2n + 1 — jJ, s:
i=om+1—js

[tignt1-1y tintr—s) = 1
and as tij, ti,zn..k € Azn+1_,' we have
[ty tign—s] = 1

By (7) we have furthermore numbers v (¢, 2n + 1 — 2, 2n — k), v(3, 7,
2n — k) such that

[ty tiontk]l = vent1— Ugrsil];'2n-k)ti,zn—k for 1<4,5<n
or n+4+1<L14j5<2n
= pJBirnh for 1<i<n; n+1<j<2n
or n+1<2<2n; 1Lj< n

v (4,27 +1—% ,2n—k)
[t: 2nt1—iy Lontr—i,2n—k] = Vanti~i Van—k bi2n—k Lht1,2n—ke

And for¢ # 2n — k,2n + 1 — s;5 ## s,k + 1 we have
[Liiy tognusl = vg i an—k)
where
a(z,7;¢,2n — k) = 0 for all 7 and j,
a(t,2n+1—1;82n—k) =0 forall 74 s and 11k,
and finally
a(r,s;f,2n+1—d) =0 forall r,s and 1<f, d<k+ 1L

As we have not changed results obtained by the induction step ¢ — ¢ 4 1 for
1 < kit follows that (i)-(v) are verified for the induction step k — k + 1.
Therefore we end up finally with

(i) Forl <14,j < 2n,t;;is completely determined in all its components if
147 #2n+ 1.
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(i) fignt1—s is completely determined in all its components but the
(2n 4+ 1 — 4)-component for 1 < 7 < 2n.

(i)  (tsznt1—i)’ = Vantrs, t5; = 1or 1 < L,j<2nandi+ j#2n+ 1.

(iV) [tij’t”]= lif{i,j}n{f',é‘,zn'l'1—1‘,2n+1—s} =¢01'1:= r or
j=sand1 <475 < 2n.

v(2,2n4+1—3
[t 2nt1—i, tant1—i,s] = Ven41—i Vs

forl1 <4,s <2nand? + s # 2n + 1.

’8)tic t2n+1~—s,e

[Lisy ti] = Vanpr—ivd @, for 1< 4,5 < m
or n+4+1<14,j<2n
= o779, for 1<i<m n+1<j<2n
or 1<j<m n+1<1<2n
where? +j # 2n + 1 #j + s.
Using that t;; = tant1—jan+1— and tj5 = lant1—s,20+1~; We conclude that

[tij’ t]'a] = Vant+1—i bis if 1 S 7/,.7 < n;n +1 _<_ s < 2n

Vet Ve tie if 1 <4,5,8 < n

=l if n+1<L,s8i2m;1<j<n
= Vs bis if 1<j,s<mn+1<s<2n
= i if 1<is<mn+1<j<2n

= Vamn—iVelic f n4+1<14,7,8< 20
Clearly (t:;t:)° ¢ V and t;; t;; commutes with every ¢, for

{r,s}n{i,j,2n+1 —32n+1—j =40.
So
(B tji )8 € {Vs, Vjy Vent1—iy Vens1—j) = Bij.
But as t;; t;; acts fixed-point-free on B;; we conclude
(tijtis)) =1 forall 1<4,5< 2n.

Therefore we have determined our multiplication table up to the (2n + 1 — 7)-
component of ¢; gnt1—; and the numbersy (3, 2n 4+ 1 — 4,7). If weset £(s,5) =
Oforl1 <s4,j<norn+1=<4j<2nand?+j5#2n+ 1,7 jand
e@,j)=1for1 <i<nn+1<j<2norl <j<nn+1<i1< 2n
and 7 + j # 2n 4+ 1 we can set

e2n+1—8,2n+1—j) €(2,5)
[tisy tis] = 05" T e nt1—i bise
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Further

(4,2n+1—1,8)
[ts 2nt1—sy Lontr—i,s] = Vanpr—i Vs “tis tant1s,s
and

t“o’.ﬁn+1-s‘"!n+l—".l]
8T

1+¢(2n-+1—1,8) v‘y(c‘ 2n+1—i,r) +e@n+1—s,s) +e2n+1—r 2n+1—i) v1+e(2n+1—i 18) +e(@2n+1—s,t)
r s

= Ugnt1~i
¢ to‘r tar t2n+1—o,r t2n+1—r,r
and
a  __ , v@n+l—s,8,r) +e@n+1—r 2n+1—8) +y (¢ 2n+1—13,8), £(3,8)
t:r = Vr " " Van+1—i Us tir tnr t2n+1—c,r t2n+1—r,r

where ¢ = vanq1-s 07 P b1 e..  This implies
*) vy@G,2n+1—4r)y=v@n+1—35,871r)+~v0E2n+1—1,s)
+e@n+1—s,7)
+e@n4+1—r2n+1—2)
+e@n+1—r2n+1-—5s).
By changing {; sn+1-: if necessary by vs.+1—; We may assume that
y@,2n4+1—-11)=0 for 2<71< 2n — 1,
y(1,2n,2) =y(@n,1,2) = 0.

Then (%) determines all other v (¢, 2n + 1 — 4, ).
So we can state:

(9) If G is a nonsplit extension of V by San(2), then G is uniquely deter-
mined. Moreover G s generated by elements t;; for 1 < 4,j < 2n,7 4+ j <
2n 4+ 1, ¢ ## j which satisfy the relations listed above.

Using (9) and (8) and a result of Griess [5] it follows that if G is a nonsplit
extension, that G is uniquely determined and that there are such nonsplit
extensions.
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