INTERPOLATION THEOREMS FOR THE CLASS N+

BY
Niro YANAGIHARA
1. Introduction

Let D be the unit disk { | 2| < 1}. A function f(z), holomorphic in D, is
said to belong to the class H*, 0 < p < «, or H”, if

= 1 f“ W0y |p 1/p
(1.1) £l o{és}ili% L fe) P oy < o
or
(1.2) I flle = supogr<1 maxi | f(2) | < o,
respectively.

A function f(z), holomorphic in D, is said to belong to the class N of func-
tions of bounded characteristic if

27
(13) T(rf) = o [ log" | (re®) | 08 S M <

for 0 < r < 1, with a constant M. A function f(z) of the class N is said to
belong to the class N7 if

(14) tim [ " log" | £(re®) | d8 = [ " logt [ £(6") | do.

Thus, for0 < p < q¢ < =,
(1.5) H*c H*c H° c Nt c N,

and these inclusion relations are proper (see [9, p. 82], where N and N are
denoted as A and D, respectively).

Interpolation problems have been studied by several authors. For H”,
by Carleson [1], Hayman [5], and Newman [8]; for H?, 1 £ p < o, by Shapiro
and Shields [10]; for H*, 0 < p < 1, by Kabaila [6]; for N, by Naftalevié [7].
(The present author wishes to express his gratitude to Professor Shields for
having let him know of the interesting paper [7]. See Math. Reviews, vol.
22 (1961) #11141.)

Here we consider corresponding problems for the class N*.

2. The interpolation problems

Suppose a class X of holomorphic functions in D be given. Let {z,} be a
point sequence in D. When a complex sequence {c,} is given, the problem is
to seek a function f(z) € X such that

(2.1) f(2,) = ¢, foreach n.
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Let Y be a collection of complex sequences. Suppose for any sequence
{ca} € Y thereisafunction f(z) € X which satisfies (2.1); then the sequence of
points {z,} in D is said to be a universal interpolation sequence for the pair
(X,Y). We write it simply as u.i.s. for (X, Y).

We use the following notations: Fot a sequence Z = {z,} in D, we put

(22) ¥ ={{eh; 2ol =]z |al"< =}, 0<p< .
In the sequel we suppose that

(23) 2z, #0, Zn#E2m f nEm |2.]|]—1 a8 n—
and
(2.4) a1 (1= |2]) < .

We denote by B,(z) the infinite product

(2.5) Bu(2) = JLnmn {(|2m |/2m) ((zm — 2)/(1 — Zm2))}.

Carleson [1] showed that, {2.} is a u.i.s. for (H”, I”) if and only if (I° de-
notes, as usual, the set of all bounded sequences)
(2.6) | Ba(2s) | = ILwin | (2 — 24)/(1 — Zm2a) | 2 8 > 0 forall n.

Shapiro and Shields [10] showed that (2.6) is necessary and sufficient also
for {z.} to beau.is. for (H”,17),1 < p < «. Kabaila [6] obtained analogous
results for 0 < p < 1.

Recently, Duren and Shapiro [4] showed that there is a u.is. for (H?, I”)
which does not satisfy the condition (2.6),if0 < p < .

Here we put

(2.7) I = {{ea; Tama (1 = |2 ") log* | ea| < oo},
Then:

TaeoreM 1. In order that a sequence Z = {z,} be a u.i.s. for (N¥, I}), it is
suflicient that (2.6) hold, and is necessary that

(2.8) (1 = |22 log (1/| Ba(2s) |) =0 as n— .
Remark 1. As for (2.8), we remark that if we write
(27 I = {{eals sups (1 = |20 [) log" | ea] ) < o0},
then Naftalevié [7, p. 27] proved that Z is a u.is. for (N, [7) only if
(28) sup ((1 — |2 [*) log (1/]| Bu(2a) | )) < .
Remark 2. It is obvious that (2.6) implies (2.8), but the example
{za} = {1 — 7

shows that (2.8) does not imply (2.6).
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Further, we put
@7 #={laa>0 21 —|al)|lgn| < =
and denote by N* the set of zero-free holomorphic functions such that
(29) feN* means f(0) >0 and ¢(z2) = logf(z) € H',
where we take as ¢$(0) = real. Obviously, ¥ < I} and N¥ c N*.

THEOREM 2. A sequence Z = {z,} s a u.i.s. for (N¥, 1#), in the sense that
for any {c.} € I¥ there exists f € N* with log f(z.) = loges, n = 1,2, - -+, if
and only if (2.6) holds. (Note that log ¢, = real.)

In [10] and [6), it is shown that if f(2) € H?, 0 < p < «, then {f(z.)} € I¥,
i.e.

21 =2 |f@) F < =,
supposing {z,} satisfies (2.6). It would be natural to conjecture, as a cor-
responding statement, that {f(z.)} € I, i.e.,
2 (1 — |z [)log" | f(2s) | <  forany f(e) € N¥,

supposing that {z,} satisfies (2.6).
This is not true (Theorem 3), but a somewhat weaker result holds even for
the class N (Theorem 4). That is:

TrEOREM 3. We can find a sequence {2,} satisfying (2.6), for which there is
a function f(z) € N* with

(2.10) w1 (1= |z ") log™ | f(za) | = .
THEOREM 4. Suppose {z,} satigfies (2.6). If f(z) € N, we have
(2.11) et (1= |2 [))(log" [ f(za) | )17 <

forany 8,0 <6 < 1.

On the other hand, we can find a sequence {z,} in D and a complex sequence
{ca} such that {z.} satisfies (2.4) as well as (2.6), and {c.} satisfies, for any 8,
0<d8<1,

(2.11) w1 (1= |20 [)(log" e | )7 < o,
while there is no function f(z) € N with f(z.) = ¢a,n = 1,2, + -,

Remark. Naftalevié [7, p. 13 and p. 17] proved that, if {z,} satisfies (2.4),
there is a sequence {z.} with |z, | = | 2 |, such that

21 (1 —|2zn[)log"|f(2n) | < @ forany f(z) € N,
and

| Ba(zn) | 28>0 forall n.
3. Proof of Theorem 1
(i) Suppose {z,} satisfies (2.6). For a sequence {c.} € I let
(3.1) en=cn if |e|21; =1 if || <1
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Then, by (3.1), (2.6) and (2.7), the function

_ had _ 212 ' B,.(z) 1
(3.2) g(2) = ”Z=:1 (1 = |2 [7)"log ca B.G.) (1 — z,2)*’

where we take —r < arg [cn] < , is holomorphicin D. If we put

fi(z) = exp [g(2)],
fi(z) is holomorphic in D and f;(2,) = ¢u,n = 1,2, --- . Further,

1 2% 0
§;;fo | g(re”) | do

S 35 (1 2 )Clog | ¢4 | + | arg [ )(1/ | Balen) D)
(3.3) 11

2rdo |1 — 2,2 lzdo
S5, (1= 2 Uog" [en| + )
< «;
hence g(z) € H', therefore fi(z) € N*.
Put
(3.1) en=1if |e|2Z1; cn=ca if |eu] <1

Then, by the theorem of Carleson [1], there is a bounded holomorphic funec-
tion f(z) with fo(z.) = cn. Thusif weputf(z) = fi(2)f2(2) then f(z) € N*
and f(z) satisfies f(2.) = cn Cn = Cn.

(ii) We need some lemmas to obtain the second part of the theorem.

LemMma 1. The class Nt is an F-space in the sense of Banach [2, p. 51] with
the distance function

(34) o(f,9) = él;forlos (14 | f(e”) — g(e”) | ) do

forf,geN*t. Thatis:

(1°) o(f,9) = o(f — 9,0).

(2°) Let f, be functions in N* such that p(f, f.) — 0 as n — ». Then for
any complex number a, p(af, afn) > 0asn — «.

(3°) Let a, an be complex numbers such that an — a as n — . Then for
each function f € N*, p(an f, af) > 0 asn — .

(4°) N is complete with respect to the metric (3.4).

LemMa 2. The class Ij is an F-space in the sense of Banach with the distance
Sfunction

(35)  o(u,v) = 2aa1 (1 = |2za ") log (1 4 | ca() — ca(v) |)
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for u = {ea(u)}, v = {ca(v)} € I
For the proofs, see {11, Theorem 1] and [12, Theorem 1].
Lemma 3. We have, for f(z) € N,

(36) (1 =]z log (1+ [f(x) ) < 40(£,0), |2] <1.

Proof. The function log (1 + |f(2) |) is subharmonic if f(z) is holo-
morphic. Hencefor R, 0 < R < 1,

log (1 4+ |f(2)])

sL[” R—r log (1 + | {(Be*)|) do
T 2rJo R*+ 2 — 2Rrcos (0 — ¢)

z = re”,r < R. Thus

log (1 1£() ) & B2 [Tlog (14 [ #(Re®) 1) do.

Letting R — 1 we have, using the property (1.4) of functions of N7,

(1 —=1z])log (1 +[f(2)|) = 20(f,0),
and hence (3.6). Q.E.D.
Now we prove the second part of Theorem 1. Let K be the set of functions

f(z) € N* such that f(z,) = 0,n = 1,2, ---. K is easilyseentobea closed
subspace of N*. Put

N*=NYK, Jj=f+KecN* for f€ N,
and

p(J,8) = infrei p(f,0),  #(f,9) = 8((f — 9)7, 0).

Then 5 is a distance function in N*, and N* becomes an F-space in the sense
of Banach.

For each u = {c,(u)} = {ca} € I7 there corresponds a unique f € N* such
that

f(z2) = ¢, n=12 -+ foreach fE€j.

Write this correspondence as T: f = Tu. Obviously 7 is linear. We will
show that T is a closed operator. Suppose u, € IF, ¢(ua, 0) — 0, and

p(Tn, f*) — 0.
We have only to prove that f* = 0, i.e.,
M) =0, k=1,2 ... for ffejf*
Put Tu, = f.. Then, from u, = {cy(un)} — 0, we have
fu(ze) = cx(u,) » 0 foreach k, as n— .
Put f*(z) = c and ga(2) = fa(2) — f*(2); then
gn(2x) = ci(un) — cx, k=1,2,--- foreach g¢. € §a.
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Since p(gn, 0) — 0, for any given ¢ > 0 there is an ng such that, if n = ng, we
can find a g, € §, with p(ga, 0) < ¢/4. Then, by Lemma, 3,

(1 = |z [*) log (1 + | ci(un) — c|) < e foreach k.

Letting n — « and e — 0, we get ¢; = 0, which proves that T is closed.
By the closed graph theorem [2, p. 57], we know that 7 is continuous.
Let %, = {ci(a)} k=1 be the sequence such that

ce(uy) =0 if k # n; ca(un) = 1.

Obviously o(u,, 0) — 0, hence 5(fs, 0) — 0, where f, = Tu,. There are
fa € Ju such that p(fa, 0) = 0, Put Fn(2) = fu(2)/Ba(2); then F,(z) € N*
and | F.(¢”) | = | fa(€”) |, almost every 6.

Thus, since f.(2,) = 1 and p(F,, 0) = p(f», 0),

(1 = |2a|") log (1/| Ba(2a) | ) = (1 = | 2a|") log (1 + | fa(2)/Bn(20) | )
=(1—|z[)log (1 +|Fu(za)|)
= 4P(Fm 0)

= 4P(fn; 0) d 0>
which proves (2.8).

4. Proof of Theorems 2

Sufficiency. Take a sequence {¢,} € 1¥. Then {ba}, by = log ¢, (arg[c.] =
0), belongs to I3, and by the theorem of Shapiro and Shields [10], there is a
function g(z) € H' with g(0) = 0 and g(2,) = b,, n = 1,2, ---. Hence we
put f(z) = exp [g(2)], we have that f(z) € N¥ and f(2.) = coyn = 1,2, -+ - .

Necessity. ¥ can be considered as a real Banach space with addition and
scalar multiplication defined as follows:

(4.11) f{ca} + {ba} is defined to be the sequence {c, ba}.
(4.1,) For a real number X\, \c,} is defined to be the sequence {(c,)"}.
(42) l{ed lI= 252 (1 = |2 [") |log ca .

N*¥ can also be considered as a real Banach space with addition and scalar
multiplication defined as follows:

(4.3;) f+ gis defined to be the function whose value at z equals f(2)g(2),
ie., (f + 9)(2) = f(2)g9(2),

(4.3:) For a real number A, Af is defined to be the function whose value at
z equals (f(2))", ie., (M) (2) = (f(zz))“, (M)(0) > 0, \ ,

(4.4) ||f|l = supogrs1 (1/27) [3" |log f(re”) | d6 = (1/2m)[5" | log f(€*) | df
where the logarithm is determined by arg [f(0)] = 0.

Now, let P be the set of functions f(z) € N* such that log f(z.) = 0,n = 1,2,
P is obviously a closed subspace of N*. Let N* = N¥/P,7 =f + P.
Then N* is a real Banach space with the norm || | = infsej || f|l. For each
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u = {ca(u)} = {ca} € 1¥ there corresponds a unique f € N* such that
log f(2,) = logea(u), n=1,2 ---, foreach fE¢€fj.

Write this correspondence as §, i.e.,f = S[u]. Obviously § is linear. S is
shown to be a closed operator, as in (ii) of the proof of Theorem 1. Thus S
is continuous by the closed graph theorem. Hence we have

(4.5) IFll S M|ul
with a constant M’, for an f € § = S[u]. Obviously
(4.6) (1 -1z logf(x) | = M" || F]

with a constant M”.
Let un = {cx(un)}i=1 be a positive sequence such that
ce(un) =1 if k5= n; cn(us) = e.
Then || ua || = (1 — |2a |2_)
Let f. be a function of S[u.] satisfying (4.5). Put arg [B.(0)] = a. and
Fu(2) = exp [(log fa(2)) /(¢ *"Ba(2))].
Then F.(z) € N¥ and |log F.(¢”) | = |log f.(¢”) |, a.e. Thus
(1= |2 [) [log Fa(en) | £ M" | Fall = M" | fu ]l £ M'M"(1 ~ |2a [).
On the other hand
| log Fu(2s) | = |1og fa(za) |/ | Ba(2s) | = 1/ | Bu(2s) |.
Hence | B.(2,) | = 1/M’'M”, which proves (2.6).
5. Proof of Theorems 3 and 4.
We say that {2} is an exponential sequence if
(5.1) limpsw sup ((1 — |2aa])/(1 = |2.])) < L.

Such a sequence is easily seen to satisfy (2.6). Further, if {2,} lies on a radius,
(5.1) is equivalent to (2.6) [3, p. 155, Theorem 9.2].

Proof of Theorem 3. Take a number b,0 < b < 1. Let {2.} be defined by

(5.2) 2 =1—0" n=12---.
Put N

_ 1 [Te"+ 2
(5.3) f(z) = exp [-2—;_ ‘[.,e—‘t”z h(t) dt]
where

h(t) = (1/1t])(og (1/ [ ¢ N, if |¢] S n/4,
=0, it |t] > n/4.

(54)
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Then f(2) € N*, and, if z = re”,

+ - 1 T 1 - 7'2
log™ | f(2) | = '2—;.[* 14+ 122rcos (0 — 0 Wt) dt.
Thus, Wl'itillg 1 —Tn = an, Tn = lzn | = Zn,
1 1=
log" | flza) | 2 5 .[,, a- r,.)2 + 4r, sin? (t/2) W) dt
11 -I- Tn
1
T 2rl —

= 5 (1 = r) ™ (log(1/8.))™
Since 8, = b", we have

2

2, (1 =Tzl log" | () | 2 2 fog (l/b) ,.z-:l n= © QED
Proof of Theorem 4. Let f(2) € N and B(z) be the Blaschke product with
respect to zero points of f(z). If we write g(2) = f(2)/B(2), log| g(z) | is
easily seen to be represented by a Poisson-Stieltjes integral, hence log g(2)
belongs to H” for any p,0 < p < 1 [3, p. 35, Corollary]. Hence by [6, Theo-

rem 2],

2o (= |z[) [logg(za) P < ®, 0<p<I;

therefore for any 8,0 < § < 1,

2o (1= L2 ) (08" | £20) )™ S T3ea (1= |2 ) [Tomgan) | ™ < o,

which proves the first part of the Theorem 4.

For the second part, let b be a number, 0 < b < 1, and put z, = 1 — b";
cn = exp[n/b"]. Then {z.} satisfies (2.4) as well as (2.6), {c.} satisfies
(2.11') for any 4,0 < 6§ < 1, and

(5.5) (1= 2za|)log"|cal T .

Since for any f(z) € N there must hold log™ | f(2) | = O(1/(1 — |z|))
[9, p. 106, where N is denoted as A}, (5.5) shows that there is no f(2) € N with
f(za) = cu. QE.D.

The author wishes to express his hearty gratitude to the referee for cordial
and valuable suggestions.
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