A CHARACTERIZATION OF CERTAIN FROBENIUS GROUPS

BY
MIcHAEL ASCHBACHER

1. Introduction

Let § be a collection of groups and @ a finite group. Following B. Fischer,
an §-set of G is a collection D of subgroups normalized by G and generating G,
such that the subgroup generated by any pair of distinct members of D is
isomorphic to a member of .

Let p be a fixed odd prime and D an §-set of the nonabelian group G, such
that each member of D has order p. Fischer has shown that if § = {G}, and
G is solvable, then G/Z(@) is a Frobenius group [4]. He has further shown
that if § is the collection of Frobenius groups with cyclic kernals, then G is a
Frobenius group [5].

In this paper it is shown that:

TuroreM 1. Let § be the collection of groups F with F/Z(F) Frobenius of odd
order. Then G ¢, and Z(Q@) is generated by the centers of 2-generator D-sub-
groups.

As a corollary it follows that:

TueorEM 2. Let § = {F} with F of odd order. Then G/Z(@Q) is a Frobenius
group of odd order.

The restriction in Theorems 1 and 2 that F have odd order is necessary.
For example if § = {SL:(3)} then U;(3) possesses an -set. The following
theorem is however true:

TuroreM 3. Let § be the collection of Frobenius groups whose kernel is an
elementary 2-group. Then G € §.

The analogous theorem for § the collection of groups F of order pm with
(m, 2p) = 1, probably holds. Some progress is made in this paper toward
such a result.

The proof of Theorem 3 is combinatorial. The proof of Theorem 1 is more
complicated, and uses signalizer arguments. A contradiction is arrived at by
showing a minimal counterexample has 2-rank at most 2, or possesses a proper
2-generated core.

Certain specialized notation and terminology is used. A D-subgroup of G
is a subgroup H with (H n D) = H. GivenX < @, 6(X) = (X nD). V(X)
is the set of proper D-subgroups of G normalized by X, and ¥1*(X) the set of
maximal elements of VI(X). ¥ = V(1) and YI* = U*(1). m(G) is the
2-rank of G. 0,(@G) is the largest normal solvable subgroup of G. F(X) is
the set of fixed points of X under its action by conjugation on D.
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2. F-sets

Throughout this section p is a fixed odd prime, and D is an §-set of a non-
abelian finite group @, such that the members of D have order p. § will be
one of the following collections of groups:

2.1.  The collection of groups F with F/Z(F) Frobenius.
2.2. The collection of groups in 2.1 of odd order.
2.3. The collection of groups of order mp where (2p, m) = 1.

LEMMmA 2.4. Let § be as in 2.1. Then:

(1) If H s a D-subgroup, H n D s an -set of H.

(2) If a is & homomorphism of G then Da is an F-set of Ga.
(8) If A and B are in D then A 1is conjugate to B in (A, B).

Proof. (1) is trivial. Let G be a minimal counterexample to (2) and (3).
Then G = (A, B) for some A and Bin D and Z(G) = 1. Let H and K be
the Frobenius compliment of G containing 4, and the Frobenius kernel of G,
respectively. Then C¢(4) < H,so Kisap'-groupand thus BnK = 1. So
B* < H for some k e K. (3) now follows from minimality of G. In (2), Ga
is not Frobenius, so K < ker (a). Thus Ga = (4, B*)a ¢ § by minimality of
G.

LeMMA 2.5. Let Fbeasin2.1,let G e, A eD and G = G/Z(G).
Then etther

(1) C:¥ has Frobenius kernel G' and compliment A, or
(2) @ has a Frobenius compliment isomorphic to SLy(3) and p = 3.

Proof. Let G be a minimal counterexample. Then Z(G) = 1. Let H be
the Frobenius compliment containing A. By 2.4, D n H is an §-set of the
Frobenius compliment H of G, and as H # A there exists some Bin H n D
distinct from A. Minimality of G implies either H = (4, B) or (4, B) =
SLy(3). Assume H = (4, B), and let K/Z(H) be the Frobenius kernel of
H/Z(H). Then K is a nilpotent Frobenius compliment, so O(K) = J is
cyclic. It follows that J n C(A) = 1, as AJ €. But AJ is a Frobenius
compliment so [4, j] = 1 for any j € J of prime order. Thus J = 1. Simi-
larly it follows that K is a quaternion group. As [4, K] = 1, minimality of
Gimplies H = A = SLy(3).

So for every choice of distinet 4 and B in D, H = (A, B) =2 SL:(3). It
follows from [3] that H = U3(3). But Us(3) is not a Frobenius compliment.

LemMa 2.6. Let § be as tn 2.2 with G € §.  Then the center of G is generated
by the centers of 2-generator D-subgroups of G.

Proof. SetZ = Z(G),let (a) = A e D andset E = a°. Let G be a minimal
counterexample. As G €, the centers of all 2-generator D-subgroups of G
liein Z(@). Thus minimality of G implies all such centers are trivial.

Let b, c e E, and H = {a, b). Then ab = o’ mod H’, so as H is Frobenius
with kernel H' and p > 2, ab = d” for some d ea”. Similarly considering
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(d, ¢), d’¢" ¢ E. Therefore abé' ¢ E and thus E¢' = @'E forall @, c e E. So
d'E = E¢' = ¢'E and therefore a'E is normalized by G.

Now let M/Z be a minimal normal subgroup of G/Z. Then M = Z X |a,
M] and [a, M] = ¢ 'E n M is normalized by G. Thus minimality of G implies
G/la, M]is a Frobenius group, whereas 1 # M/[a, M] centralizes a, a contra-
diction.

LemMmA 2.7. Let § be as in 2.2, and assume G' = Q is a g-group for some
prime q. Then G € §.

Proof. Let G be a minimal counterexample, let A e D and set Z = Z(Q).
Clearly Z(G) = 1,50 C(A) n Z = 1. Set G = G/Z. Minimality of @
implies G ¢ §, so as C(A) = A, 2.5 and 2.6 imply there exists B in D distinct
from A such that H = (4, B) has a nontrivial center. Thus the center of H
containg an element u not in the center of G. Let T be the collection of 2-
generator D-subgroups X of @ such that Zu n Z(X) is nonempty. By 2.4,
G® is transitive, and minimality of G implies @ is in the center of G,
0Q=(XnQ:Xel'). ButasZ = Z(Q), Zu = Z(Zun Z(X)) is central-
ized by X n @, so (Z, u) < Z(Q) = Z, a contradiction.

LemMMmA 2.8. Let § be as in 2.2 and assume G is solvable. Then G € §.

Proof. Let G be a minimal counterexample and let A eD. Clearly
Z(G) = 1. Let M be a minimal normal subgroup of G. Then M is an
elementary abelian ¢-subgroup for some prime ¢ and minimality of G implies
G/M ¢§. Set K = . Suppose K is nilpotent. Then minimality of @
implies K is a g-group and 2.7 yields a contradiction. So K is not nilpotent
and there exists a prime r # ¢ dividing the order of K. Let R be an A4 invari-
ant Sylow r-subgroup of K. As K is not nilpotent, minimality of G implies
K = MR, AR is generated by any two members of AR n D, and AR acts
irreducibly on M.

Suppose H = (4, B) is a 2-generator D-subgroup. Then either H is conju-
gateto AR or H < M. Letm = |[M|,n = | M :Cu(4) |, and

k=|R:Cad)]

Then D has order nk, so there are nk — 1 members B of D distinct from 4.
There are m/n D-subgroups H conjugate to AR containing A, and
| Hn D | = k;there are n — 1 members B of D distinet from A with (4, BY <
M. Therefore

nk —1=mk—1)/n+n—1

It follows that m = n®. Thus letting AR = (4, B), M = Cx(A) X Cu(B).

Extend GF(p) to a splitting field F for AR and M to a vector space V over
F. Then dim V = 2dim »(Cv(A)) = 2r. Let V, be the absolutely
irreducible components of V, and set 7; = dim #(Cv;(4)). Thenr = > r;
andas Cy(4A)nCy(B) = 1,2r > > 2r, Sodim » V; = 2r;is even, impossi-
ble as | AR | is odd.
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LeMMA 2.9. Let § be as in 2.3, and let S be a Sylow 2-subgroup of G.
Then

(1) forany X < 8, F(X) = Cp(X), and
(2) F(8) is nonempty.

Proof. Let X < S centralize A ¢D and fix BeD., Then X acts on
H = (A, B) of odd order, so all X invariant Sylow p-subgroups of H are conju-
gate in Cy(X) to A. In particular as X centralizes A and normalizes B, X
centralizes B.

Next let T’ be a maximal subgroup of S fixing a point of D. Suppose T = 8S.
Then T is of index 2 in some B < S and R acts on F(8S). Thus maximality
of T implies B has a cycle (4, B) of length 2 in D. Then R acts
on H = (A, B), and as H n D = A" has odd order, F(R) is nonempty, a
contradiction. This yields (2).

Finally assume (1) is false. Then by the first paragraph, Cp(S) is empty.
Let A e F(S) and T = Cs(A). Then S/T < Aut (4) is eyclic and T is the
set of elements x of S with Cp(z) nonempty. Thus N(7T') controls fusion in
S and considering the transfer of G to S/T, G has a subgroup of index two.
But this is impossible as G = (D).

3. A signalizer theorem
In this section the following hypothesis is assumed:

Hyprorursis 3.1. § s the collection of groups F of odd order with F/Z(F)
Frobenius. p is a fixed odd prime and D is an §-set of G such that each member
of D has order p. Oo(G) = 1 and each member of VI is solvable.

LemMA 3.2. Let E be an elementary 2-group of rank at least two, and
H eVI(E). Then H = (0(Ca(U)) : |E: U| = 2).

Proof. H/Z(H) = (Cgizay(U) : |E:U| =2). By 28, H/Z(H) is
Frobenius, while by 2.9, there exists A ¢ C(E) n Hn D. Thus

Crzan(U) = 6(Ca(U))Z(H)/Z(H).

Sosetting K = (8(Cx(U)) : |E: U| =2),H = KZ(H). Thusas|H : H'|
=p,Z(H) < K,soH = K.

TuroreM 3.3. Let E be an elementary 2-group of rank 3. Then VI*(E)
contains a unique member.

For the remainder of this section let M, and M, be distinct members of
V*(E) with My n M, maximal. By 2.9, E centralizes a member of M;n D,
so maximality of My n M, implies there exists A ¢ M1 n Mz n Cp(E).

Z(M1) nM, = Z(Ml) n Z(Mz) = 1.

Thus either M1 n M, is Frobenius or A = My n M,. As m(E) = 3, there
exists e ¢ E* with 6(C(e)) n M; > A,4 = 1,2. Thus maximality of My n M,
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implies My n M, is Frobenius. Let ¢ be a prime distinct from p and 1 = @
the Sylow g-subgroup of My n M,. Let Z; be the Sylow ¢-subgroup of Z(M;).

As each member of Y is nilpotent, if @ is Sylow in M, then maximality of
M; implies M; = 6(N(Q)) and @ is not Sylow in M, . As m(E) = 3, with 3.2
there exists e ¢ E such that 6(Cy, (¢)) has a nontrivial Hall ¢’- group R, and a
Sylow g-group Q. of 8(Cu,(e)) is not contained in Q. Let 6(N(R)) < Mj; €
VI*(E). Then (Q, @) < Qs € Syly(Mzn Ms), and as above AQ; is Frobenius.
So AQ < (N 4¢, @)) < M, contradicting Q Sylow in M, .

So Qis not Sylowin M;, ¢ = 1,2. But maximality of @ implies My n M, =
0(Nu;(Q)) for i = 1 or 2, say the former. Thus M, is a g-group and N, (Q)
= Z,(MynM,). Inparticular Z; 1 and thus M; e VI*.

Lemma 3.4. If Z, acts on a D-subgroup H with A < H < M ¢ VI*(E),
H' a g-group with Z(H) #~ 1,then A 3 Myn M = Min M, .

Proof. Choose M, so that either @ is maximal or @ = 1. Let
U; = Nz, (QZ,)), X = QZ,U; and Y = 0(Ny, (X)),
Then Min My, < Y.If Min M; = 6(Ny, (@) thenZ;nY = lwhileif @ = 1
then as [Y, U, # 1, the same holds. So
{My} =8(N(X)) and N(X)nZy=NXnM)nZ = NZQ)nZ, = U,

Thus U, = Z,. But then arguing as above on M, {Ma} = I*(6(N(Z1 2, Q)))
= { M}, a contradiction.

LeMMma 3.5. @ is abelian.

Proof. If not then 1 = @ = (QZ;) ] Nu,(QZ:), 50 @ < 0(Nu,(Q")),
contradicting the maximality of Q.

Let P be the Sylow g-subgroup of M; and U a 4-group contained in E with
Co(U) = 1. For some u e U*¥, 0(Cup(u)) £ Min M, LetY = QZ; n
0(Cu,(u)). Y < 0(N(Y)) n P and as Q is abelian, @ < 6(N(Y)). Thus
maximality of My n M, implies M is the unique member of I*(E) containing
6(N(Y)).

Maximality of My n M, implies 8(N(Z:Q)) < M, and either My n M, =
0(Nu, (Q)) or 6(N(Q)) < M, . As Z, acts on 6(N(Q)), with 3.4 and our initial
remark, it is the former. So there is symmetry between M; and M, .

Suppose Y nZ, = 1. Then [Y, Z] = 1,50 Z, acts on 6(N(Y)). By 3.4,
QisSylowin 6(N(Y))no(N(Q)),and Q@ < PnO(N(Y)),s00(N(Y)) nZ,
1. Therefore 3.4 yields a contradiction. It follows that:

LeMMA 3.6. Zon 0(C(u)) # 1 and M. = 0(C(Z,)) e V¥,
By symmetry there exists v ¢ U* with Z; n 6(C(v)) 5 1.

LemMA 3.7. Let (C(wv)) < Ms e I*(E). Then either My = My or Ms, or
Zsn 0(C(uw)) #land Min My = Min Ms = Myn Ms.
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Proof. Assume Mz = Myor M;and choose M3 = M ¢ I*(E) with 6(C(U))
< M n M; maximal. Then by 3.6, 6(C(w)) n Ms 5 1 for some w ¢ U¥ and
as My 5= My 5% My, w = uww. Further Z(M) n 6(C(z)) 5 1 for some z ¢ U¥,
sayz = 0,80 M = My. Let AX = MinM:nM;. 15 Ce(U) < X and
as M;n M;is abelian,

MinM;:1<i<j<3)<8NX)) =Mn M.

So Min M, = M; n M; by maximality of My n Ms.
Lemma 3.8. |V*(E)| > 3.

Proof. There exists eeE* with 0(Cu;(¢)) £ M; i % j. Thus
| I*(E) | > 3. Assume equality. Then 6(C(e)) < M;, and M1 n Ms £
My n M,. So arguing as in 3.7, A = My n M, n Ms. Thus for a ¢ E* with
0(C(a)) < My, ainverts My n M;. Now for some M;, say M,, there exists
e; e E¥ 1 < i < 3, with 6(C(e;)) < M. Further 6(C(ese;)) £ My, so we
may choose 0(C(e1e;)) < Mo, ¢ = 2, 3, and 6(C(e2e5)) < M;. Now e;
inverts M; n M; and thus b = e, e; centralizes My n M3, Also

My = (0(Cuy(eie;) : ¢ 5 ) = 60(C(b))(M:n Ms) < 6(C(D)),
80 b centralizes M.

Suppose Cz,(b) = W = 1. Then W acts on Z; and centralizes a nontrivial
subgroup of Z;, which acts on Z;. Thus X = Nz,(Z,) & 1 acts on [Z,, b] =
Vi< 1by3.4. SoV = Cy,(X) % lactson Zsand V = [VZ;, b] ] VZ;, and
therefore Z; acts on My = 6(C(V)), contradicting 3.4.

Thus W = 1. 80 Z1 = Cz,(e16)Cz,(e1 ¢5) acts on (8(C(ey e2)), 6(C(ey€3))
= M,, contradicting 3.4.

LemMA 3.9. Z3n 6(C(wv)) # land for M = M;,1 <1< 3, Mn M,
18 maximal and v tnverts (M a M,)'.

Proof. Let M; ¢ VI*(E), 1 < 7 < 4, choosing the groups with Z,
n 8(C(uv)) 5~ 1 if possible. If Myn M;n M, 5 1, then by 3.6, 3.7, and choice
of M;,M; n M; = My n Ma,so for each i thereis ze U* with Z; n 60(C(z)) # 1,
a contradiction. Thus w and v invert (M3 n M)’ = Y, 8o uv centralizes Y.
By 3.6 there exists e ¢ E* with Z; n 6(C(e)) # 1. Suppose 8(Cx,(e)) = 4,
Then e inverts Mi/Cz,(e) which is therefore abelian. So as

Mi/Cz,(e) = [A, Mi/Cz.(e)],

Z(M,:/Cz,(e)) =1 and thus [Z,, ¢] = 1. 8o Z, acts on M;, contradicting 3.4.

Therefore 1 = 0(Cu,(e))’ < Y, so as [Y, w] = 1, arguing as
above 8(C(uv)) £ Myor M,. So by 3.7 we may choose Zz n 6(C(uv)) #= 1.

As Mzn M, # A, it is maximal by 3.6 and 3.7.

We now complete the proof of Theorem 3.3. Let ¥ = (M; n M)’ and

uw ¢ W a 4-group in E with Cx(W) = 1. Y = (Ms n Ms)', some M; .
[uv, Y] = 1, 80

My = (0(Cr, (w): w e W¥) < YC(uv) < Cluv).
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W acts on Z, , so we may assume Z = Cjz (uv) # 1. By 34, [Z,, w] 5 1,80

15 [Zl ) uv] n C(Cza (Z)) < C(ZB)’
against 3.4.

4. The case m(G) > 3

Lemma 4.1. Assume m(@) = 8, G has no subgroup of index 2, and let u be
an wnwolution in G. Then there exists an elementary 2-subgroup E of rank 3
containing w. Let S be a Sylow 2-subgroup of G containing E. Then there
exists a 4-group W < 8 and an elementary subgroup V of S containing W with
m(V) 23and |EnV| > 4.

Proof. Let 8 be a Sylow 2-subgroup of G. As m(G) > 3, there exists a
4-group W 8. Let T = Cs(W). If E is an elementary subgroup of order
81in 8, then choose V = (E nT)W. Letu be an involution in S and suppose
m(Cs(u)) < 3. Then ueS — T. But as G has no subgroup of index 2,
u® n T is nonempty. So m(Ce(u)) > 3.

LEmMmA 4.2. Assume Hypothesis 3.1 and let m(G@) > 3. Then G has a
proper 2-generated core.

Proof. By 3.3, if E is an elementary 2-subgroup of rank 3, then VI*(E)
contains a unique member M. Choose E with M of maximal order. Let S
be a Sylow 2-subgroup of G containing & and W a 4-group normal in S. By
4.1 there exists an elementary subgroup V of S containing W, of rank at least
3,such that | EnV | > 4. Now by 3.2,

M = (6(C(z)) : z ¢ (B n V)¥),

go {M} = VI*(V). Therefore M = (8(C(w)) : w ¢ W*), and thus S normal-
izes M. Set T = Cs(W). Then m(Cg(u)) = 3 for any involution in 7, so
by 8.3, 6(C(u)) < M. Suppose 8(C(s)) £ M for some involution s in
S — T. Then m(Cs(s)) = 2, s0 Z(8) contains a unique involution 2. Let
R be a Sylow 2-subgroup of C(s) containing z. By 4.1, m(R) = 3. Further
if m(Cx(2)) > 3 then ¥*(Cx(2)) contains a unique member K and

M = (6(Cu(z)) : z ¢ (s, 2)*) < K.

So maximality of M implies M = K, contradicting the choice of s. Therefore
s is the unique involution in the center of R, so s is conjugate to z.
AsseS — T and T has index 2 in S, s is not rooted in S, a Sylow 2-subgroup
of C(2). Therefore z is not rooted in C(s), so Cs(s) is a 4-group. It follows
from a result of Suzuki [6] that S is dihedral or semidihedral, and thus in
particular m(8) = 2, a contradiction.
Set H = Ng(M) and let X < S with m(X) > 2. We have shown that
0(C(z)) : x e X*) = M, so N(X) < H. Thus H contains a 2-generated
core of G.



CHARACTERIZATION OF CERTAIN FROBENIUS GROUPS 425

5. The proof of Theorem 1

Let G be a minimal counterexample to Theorem 1. By 2.8, G is not solva-
ble, so minimality of G implies O,(G) = 1. Let M be a minimal normal sub-
group of G, and let A e D. M is not in the center of G, so [4, M] # 1. Thus
as [A, M] ] M, [A, M] is semisimple. Then A[A, M] is a nonsolvable D-
subgroup of @, 80 G = AM and M = [A, M]. M is the direct product of
simple subgroups M; permuted transitively by 4. Let S be a Sylow 2-sub-
group of M;. Then A[A, S]is a solvable D-subgroup and [4, S] is a 2-group,
80 [4, 8] = 1. Therefore @ = M = M, is simple.

Now by 4.2 either m(G) < 2 or m(G@) > 3 and G has a proper 2-generated
core. In the first case [1] implies M =< L.(q), Ls(q), Us(q), Az, or M1, q odd.
In the second case [2] implies M = L.(q), Sz(q), Ui(q), ¢ even, or Ji, the
Janko group of order 175,560.

Let A = {(a). By 2.9, ainduces an automorphism of M centralizing a Sylow
2-subgroup of M. L.(q), Sz(q), Us(q), g even, J1, A1, and My do not admit
such an automorphism of odd order. Then G does not contain a strongly
embedded subgroup, so for an involution u e @, 6(C(u)) is not cyclic. But
if M = Ls(q) or Us(q), g odd, L = Aut (M), and u is an involution in M,
then O(CL(u)) is cyclic. So M = L,(¢"), q odd, and a induces a field auto-
morphism on M.

Now if p divides the order of M, then ¢* is congruent to 0 or 1 modulo p,
and therefore | M : Cu(a) | = ¢" (¢ — 1)/(¢" — 1) = Omodp. So a
is not in the center of a Sylow p-subgroup of G, a contradiction. Therefore
p does not divide the order of M, so @ normalizes a subgroup @ of order ¢*
in M. Then 6(N(Q)) ¢ T, a contradiction.

This completes the proof of Theorem 1.

6. The proof of Theorem 3

Let § be the class of Frobenius groups whose kernel is an elementary 2-
group. Let G be a minimal counterexample to Theorem 3. Let A ¢D and
a a generator of A. For (b) e D write a ~ b if b is conjugate to a in (g, b).

Suppose p = 3 andlet A # BeD,and @ = (4, BY. Then B = A* for
some z € Q¥ s0 (4, B) = (4, ) and thus A actsirreducibly onQ. So|Q| =4
and (4, B) is isomorphic to the alternating group on 4 letters. Therefore [3]
yields a contradiction. Sop > 3.

Suppose 0,(G) # 1. Then minimality of G implies ¢ = AG' and ~ is
an equivalence relation. Further for b, ¢ ea® ab', bc™' and ac* have order
1or2, soas (ab?)(b¢") = ac ', ab' commutes with ac ’. But arguing as
in 2.6, @ "a® is normalized by @, so ' = (g 'a®) is an elementary 2-group.
S0 0,(G) = 1.

Let H be a proper D-subgroup of maximal order; we may assume A < H.
Minimality of @ implies H' is an elementary 2-subgroup. Let (b)) = BeD —
H with a ~ b. Define

A=1f{ac':cead” and b~}



426 MICHAEL ASCHBACHER

As|HnD|>p—1,(A) % 1. Butforac' = zeA, z, cb " and ab " all
have order 1 or 2, and z(cb™') = ab”’, so  commutes with ab™*. Thus
2t = 2" ¢H', s0 if (A) = H’, then G = (H, B) normalizes H’, impossible as
O.(@) = 1. So (A) < H'. Therefore

I={bd':dea” and b~ d}

hasorderatleast | H nD | /2. LetzeAanddea”. Thena® =2 =z
So I' © C(x). Therefore K = (T')  G. AlsoforeachyeT, (y) eD,so K
isa D-subgroup. Finally if bd ™" and bé" are in T with ¢ > d, then (b¢") "bd ' =
c¢d ! is an involution, so (bd ') = (b¢'). Therefore | KnD| > |HnD|/2.
But |HnD| — 2" and |KnD| = 2™ with 2" = 2" = 1 mod p, s0
r21l,and|KnD| > |HnD|. Thusmaximality of H implies| Kn D | =
|HnD|.

Nowif |T'| > |HnD|/2,thenQ = (v : w,vel') = H',s0z ¢ K < C(z),
a contradiction as minimality of G implies Z(K) = 1. Therefore |T'| =
|HnD|/2=|Q]|. SoP = (A)alsohasorder| HnD | /2. But asp > 3,
|HnD| > 4,50QnP = 1. Thuswemayassumeze@QnP < K < C(x),
a contradiction.

This completes the proof of Theorem 2.
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