ON FINITE SIMPLE GROUPS OF LENGTH 8

BY
ViapiMir CepuLIé!

1. Introduction

Let G be a finite group. Let Hy > Hy > -+ > H, be a chain of subgroups
of G, where H; is a proper subgroup of H;—; (1 < ¢ < n). Then we say that
the chain has length n. For a fixed group G we denote by I (G) the maximum
of chain lengths, where the chain ranges over all possible ones. We call I(G)
the length of G.

The purpose of this paper is to prove the following

THEOREM. Let G be a finite simple group of length 8 with S,-subgroups of
order 2'. Then G is isomorphic to PSL (2,127).

Using this statement together with the recent results’ of D. Gorenstein and
K. Harada on finite simple groups with S,;-subgroups of sectional rank 4 and
the characterization of finite groups with abelian S.-subgroups of J. H. Walter
[15], one can obtain a classification of all finite simple groups of length 8.
More precisely, we have the

CorOLLARY. Let G be a finite simple group of length 8. Then G has either
abelian S,-subgroups or Sy-subgroups of sectional rank 4. Especially, G is a
known group.

Proof of the corollary. Let T be an S,-subgroup of G. Suppose that T is
neither of sectional rank 4 nor abelian. Then | T'| = 2%, T > 1 and either
| T/D(T) | = 2% or there exists an elementary abelian subgroup E of T of
order 32. Assume that | T/D(T)| = 25. Now 71" = D(T) = (z), ¢ = 1.
By a theorem of Glauberman [3], there exists an element 2z, 2, ~g 2, 21 ¢ T\
@). Ttis |Cr(z)| > 25 as | T"| = 2. Since (z) = BY(T), for all S-sub-
groups T of C(2), it follows that 2; ¢ Z(T) and Cr(2;) is elementary abelian of
order 32.

Thus, in any case, T contains an elementary abelian subgroup E of order 32
and | Z(T)| > 2. If |Z(T)| = 23, then |T/Z(T)| = 28 with |T,E| =
2, Z(T) < E, and we get a contradiction by a result of Harada [5a]. There-
fore | Z(T) | = 2% Let ¢ be an element of order 4 in T and 2, an inovlution in
E\Z(T). Then z ¢ (Z(T), t) and by a result of Thompson [13, Lemma 5.38]
21 ~g 2 for some zeZ(T). Since E<] T < C(z), for some S;-subgroup
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Ty of C(z1), and Ty = T, it follows that N(E) = (T, T.) = TP, where P
is a subgroup of odd prime order.

Suppose that N(T) > T. Then N(T) = TQ, Q a subgroup of odd prime or-
der. It is not @ < N(E), because T <1 N(E). But there are at most two ele-
mentary abelian subgroups of order 32 in 7T, a contradiction.

Therefore N(T) = T. By a theorem of Burnside, it follows that two distinct
elements of Z(T') are never conjugate in G. Let v be an involution of

Z(T)n Z(T) < Z(N(E))n E.

Since N (E) is maximal in G, we have C(v) = N(E). Also | Z(T)n Z(Ty) | = 2.
By a result of Glauberman [3], there is an element v, ¢ T\Z(T), v; ~¢ v. Now
C(v) % C(v) and C(v) n C(vy) contains M = (Z(T), v,) with | M | = 28. Since
M contains the Se-subgroups of Z(C(v)) and Z(C(v1)), we have

V =Z(CW)n Z(Cw)) # 1.

It follows that C(V) > (C(v), C(n)) = G, a contradiction. The corollary is
proved.

In the whole paper G will denote a finite simple group satisfying the assump-
tions of our theorem. Moreover, if a group is given by its generators, then
the generators whose order is not stated are involutions, and the pairs of ele-
ments whose interaction is not stated commute, e.g.,

E=(@bc|)=(abcld=b=¢=1,0d=4a =a,b =b).
The other notation is standard (cf. Thompson [13]).

2. Some known and auxiliary results

Finite simple groups with short chains of subgroups were investigated by
Z. Janko in his papers [8] and [9], and by K. Harada in his paper [5]. They
have proved the following theorems, which we shall use frequently:

TaEOREM OF JANKO [8]. Let G be a finite non-abelian simple group whose
length 1(G) is at most four. Then G is isomorphic to PSL (2, p), where p = 5
or p vs such prime that p — 1 and p + 1 are products of at most three primes
and p = =3 or =13 (mod 40).

TurorEM OF JANKO [9]. Let G be a finite non-abelian simple group whose
length 1(G) is at most five. Then G is tsomorphic to PSL (2, q) for some prime
power q.

TreorEM OF HARADA [5). Let G be a finite non-abelian simple group whose
length 1(G) s at most seven. Then G is isomorphic to one of the following groups:
PSL (2, q) for a suitable prime power q; PSU (3, 8°); PSU (3, 5°); Ar, the
alternating group of degree seven; My , the Mathieu group of degree eleven; Jy ,
the first Janko group of order 175560.
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We note that I(J1) = (A7) = 6 and I(Mu) = U(PSU(33?)) =
(PSU(3,5%) = 1.

We shall often need the following

CriTERION OF NoONSIMPLICITY. Let G be a finite group of even order with
the properties:
(i) An Se-subgroup T of G is maximal in G.
(i) There is an tnvolution t in T, such that | T |:| C () |2 ts greater than 2
and C (t) contains precisely two conjugate classes of involutions under G.
Then G s not stmple.

Proof. Suppose that G is simple. By a theorem of Burnside it follows from
(1) and (ii) that Z (T) is cyclic. Let 2 be the involution of Z(T'). If wisan
other involution of 7' then the following relations are obviously equivalent:

@) wueZo(T),
(b) w2 T,
©) |T:Crlw)]| = 2.

Assume at first, there is an involution w in Z,(T)\Z (T'). Then by (b),
(u,2) <1 T and so (u, 2) e U(2). Hence by Lemma 5.38 of Thompson [13]
the group C (¢) contains a conjugate u; of u. By a result of Harada [5, p. 663]
and by (c) it follows uy ~¢ zand | T |:| C (w1) |2 = 2. Thus by the condition
(ii) of our criterion we have z ~vg u; ~v¢ t, which contradicts the same condi-
tion.

Therefore, z is the unique involution in Z, (7). Now, by (c), the group T
contains no involution » with | 7:Cz(») | = 2, and by (b) no elementary
abelian normal subgroup of order 8. Since also T' is maximal in G, all the
conditions of the main theorem of Janko-Thompson [11] hold. But none of
the groups in the statement of this theorem satisfies the conditions of our cri-
terion.

Hence @ is not simple. The criterion is proved.

In view of Lemma 5.38 of Thompson [13], our criterion has the following

CoroLLARY. Let G be a finite simple group of even order with the properties:
(i) An Se-subgroup T of G is maximal in G.
(ii) There is an tnwolution t in T, such that C (t) contains precisely two con-
Jugate classes of involutions under G.
Then G has precisely two classes of tnvolutions.

3. Solvability of 2-local subgroups
We shall prove at first the

LemMA. Let G be a finite simple group of length 8 with S,-subgroups of order
2", Then all 2-local subgroups of G are solvable.
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Proof of the lemma. Suppose a 2-local subgroup H of @ is not solvable.
We show in several steps, that this assumption is contradictory. The fol-
lowing propositions are all proved under the above assumption.

ProposiTioN 1.  In the group G there is an involution t such that the cen-
tralizer C of t in G 18 not solvable.

Proof. We can suppose that H = N (E), where E is elementary abelian.
By Huppert [6], I(H/E) > 4and so I(E) < 3. If I(E) < 2, then C(&) is
not solvable because A (E) is solvable. Let be | E| = 2°. Now H/C(E) is
isomorphic to a subgroup of PSL (2, 7) and H/E is a simple group of length 4.
Thus H = C(E). The assertion holds for some ¢ ¢ E¥ in both cases.

ProrosiTioN 2. If C/(t) is simple, then C = () X F, where F = PSL (2, q)
for some prime power q.

Proof. Since 1(C/(t)) is at most 6 it follows by Harada [5] that C/ () is
isomorphic to PSL (2, q) for some prime power g, or to the first Janko group
Ji or to the alternating group A7 .

Let S be an S,-subgroup of C and T an S,-subgroup of G containing S.
Then (t) X Z(T') < Z(S). Suppose first C/(t) = PSL(2,q), with 8 = ¢ = 9.
Then the Schur multiplier of C/{t) equals 2, as (PSL(2, p’)) > 7 for.f > 4.
Since S is not generalized quaternion we get C = (¢) X F with F = PSL (2, q).
If C/{t) = PSL(2, 8) or PSL(2, 9), S is elementary or a direct product of
(t) and a dihedral group of order 8 respectively, because all involutions in
C/(t) are conjugate, and thus C splits over (t) by Gaschiitz [2], as there are
involutions in C\(¢).

Suppose now that C/{t) =2 J; or A7 . As in the both cases just considered
we have C = () X F, with F = J; or 4, respectively, for the same reasons.
But every involution in F and therefore also in C contains a 3-element in its
centralizer. However, for a central involution z of G in C the group C(z) is
an S,-subgroup of G, a contradiction.

ProrosiTioN 3.  The group C/(t) is not simple.

Proof. Assume C/{t) is simple. By Proposition 2, C = () X F,
F =~ PSL(2,q),q = 9, paprime. Moreover f < 3 for p = 2. Therefore
an Sy-subgroup V of F is elementary of order 8 or dihedral of order at most 32.
The group 8 = (¢) X V is an S,-subgroup of C. Since the involutions of F
are all conjugate under F and 8 = {¢) X V is not an S,-subgroup of G there
are precisely two classes of involutions in S under G. Applying our criterion
we get a contradiction if | V| is smaller than 32. Thus we can suppose that
V = D3, , the dihedral group of order 32.

Let T be an S,-subgroup of G containing S. Since C(2) = T for any in-
volution zin Z (T') it follows that F = PSL(2,31). We can write

V=~(bla®=14d=a"
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for some a, b e V. Obviously (a*) = @ (5'(S)) < T and therefore C (@) = T

Choose v € T\S to be an element of smallest possible order. By a result of
Harada [5] it must be v® = v, for some v; ¢ S and some z ¢ G. It is clear that
ze¢T.

If [v] > 2 it follows »"'"* = &® = ™" Since @® ~ot, ¢ ~ ta’,
t ~ ta’b forallsand x ¢ T, we getv* = abforsome& Itis (a) =g (S) QT
and thus (a*)’ = a%, ¢ ¢{1, 38}. Now (@*)” = (@) =d*' = (@) = ¢,
a contradiction.

We conclude that |v | = 2. Since

@ty =Z(8) AT and veC@)\C({)

it must be £ = ta®. Since ta’b ~ ta® ~ t ~¢ a® ~ a’b we have b’ = ¢’b and
* = q". Using o’ = 1 we get

a’ =a.
=1 (mod 16); ¢ + ) = 0 (mod 16).
Replacing b by a’b for a suitable A, we can assume, that
(17) 0) € { (ly 0)7 (11 8)7 (7} 0)) (9’ 0), (15) O)’ (157 1)}-

Consider 8; = (4, o, b). We have Ne({@’, b)) = Z, because
F=PSL(2,31). AlsoN; = N(@S1)nC = {t) X Ne({@®, b)), | Ni| = 2*-3
and C(S;) = SnC(®) = 8;.

Suppose N1 < N (8S;). Then | N(81):N1| = 4 because ¢ is under N (S;)
conjugated into {{z, tb, tzb} and this set is a conjugate set under an 3-element
of N»({a® b)). Therefore | N(S;)| = 2°-3 and N (81)/S: & 24, the sym-
metric group of degree four, because 4 (S;) = PSL(2, 7). It follows that
|0:(N (S1)) | = 2°. Now o’ and b have under N (S;) precisely three con-
jugates and so C (b) n N(S,) and C (@®) n N (8;) are S;-subgroups of N (Sy).
It follows

0:(N(81)) <C(B)nC(®) and |C()nS| > 2*

as | T:8| =2 ButC(b)nS = S;with|S;| = 2% a contradiction.

Thus N (S;) = N;. ItfollowslNT(Sl)I = 2! and so Nz(S;) < S. But
veT\S and {, a®) = (t, a*), therefore b* ¢ T\S;. We conclude that
(n,¢) = (15,1), and

T={abv|a®=11¢=t'ad=a",a" =a’,b’ = ab).

Now |a® | =2, |ta® | = 4, | abv | -32foralla, T

Suppose tv is fused w1th an element of 8, i.e. ¢ 'z = s, with s e S, 2 ¢ G.
Since & = (') = d°, it would follow z ¢ C(a*) = T which is not possible.
Hence # is not fused with any element of S. By a simplicity criterion of
Harada [5] must ()’ = &’ be fused now with an element in T\S. We can
obviously suppose that v ~ a%. But ta‘eCr(v) and (ta‘)’ # v, while the
square of each element of order 4 in 7 = C(a*) equals a’, in contradiction
with v ~ a®. Proposition 3 is completely proved.
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ProrosiTioN 4. Let N be the maximal solvable normal subgroup of C and
K/N a minimal normal subgroup of C/N. Then K/N is simple and uniquely
determined. Moreover Coyn(K/N) = N/N. Thus C/N s isomorphic to a
subgroup of A (K/N ).

Proof. The simplicity of K/N is obvious. If Ki/N is also a minimal nor-
mal subgroup of C/N,wehave K = K;orKnK;=N. ButfromKnK;=N
we get | K/N | | Kiy/N | = | KKi/N ||| C/K || K/N |, and so | Ki/N | || C/K |
a contradiction to I(C/K) < 2, and to [(Ki/N) > 4 by Huppert [6]. There-
fore K = K, and K is unique.

Set Coyn(K/N) = L/N. We have K n L = N, as K/N is non-abelian.
It follows that | L/N ||| C/K |. Butl(C/K) < 2, L < C and so L is solva-
ble. Therefore L = N.

ProrosiTioN 5. We have N > (¢).

Proof. Assume N = (t). Then by Proposition 3, K # C. Thus
I(K/N) < 5and by Janko [9], K/N = PSL (2, q), g a prime power.

Assume that 2 { | C/K |. By Proposition 4 and by Dieudonné [1] it must
be K/N = PSL(2, p°) for some prime p. As in Proposition 2 we conclude
that K = (t) X F with F =~ PSL(2, p°). Since I(F) < 5, we have p = 2
or p = 3 and we get a contradiction in both cases applying our criterion.

Therefore 2 I | C/K |. Moreover |C/K| = 2. For otherwise we would
have I(K/N) = 4 and so, by Janko [8], K/N == PSL(2, p), p = 5. Hence
by Proposition 4 and by Dieudonné [1], it follows that C/N = PGL (2, p)
and so | C/K | = 2, a contradiction.

Assume now that p = 2. Since I(PSL(2,27)) > 6forf > 4 and PSL(2,4)
=~ PSL (2, 5) we can suppose that K/N = PSL(2,8). Butnow |[A(K/N) |
= 3-| K/N |, a contradiction to | C/K | = 2.

Thus we can assume that p s 2. Let S be an S,-subgroup of C
and S; = Sn K.

We prove next that for each S,-subgroup T’ of G containing S, we have
Z(T)n 8 = 1.

Assume conversely that there is an S;-subgroup T of G containing S such
that Z(T) n S; = 1. Because Z(T') < S and | 8:8;| = 2 we must have
Z(T) = () with |2| = 2,and S = 81 X (). As K/N = PSL(2, p’),
p# 2 I(K/N) <5 wehavef < 3. If f = 1orf = 3, then by Proposition
4 and by Dieudonné [1], we conclude that C/N = PGL(2, p’). But an S,-
subgroup of PGL (2, p”) is dihedral of order of least 8, a contradiction to
S/N = 8/N X (N/N. Thus f = 2, K/N = PSL(2, p’). Since
I(K/N) < 5, we must have p’ = 3°. So we can assume that

K/N = PSL(2,9) = A,.

We have A (K/N) = PTL(2, 9) and this group contains two subgroups iso-
morphic to PGL (2, 9) and to Zs, the symmetrie group of degree six, respec-
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tively, whose intersection is PSL (2, 9). Moreover
PTL(2,9)/PSL(2,9) 7, X Z,.

Thus by Proposition 4, C/N is isomorphic to one of the three subgroups of
index 2 in PTL (2, 9), which contain PSL (2, 9). The corresponding S,-sub-
groups can be easily computed and one gets

Bi=~{(abld=14d =a™"),
B (e, d,flc¢t=1,¢ =¢™),
By = (af,b| (af)* = 1, (of )’ = (af)") with v €(3,7),

where B;, By, B; correspond to PGL (2, 9), 2 and to the third of the men-
tioned subgroups respectively. It holds S/N = B; for some ¢, 7 = 1, 2, 3.
But |Z(B,) | = | Z(Bs) | = 2 and therefore S/N =~ B,,as | Z(S/N) | > 2%
We get C/N = Z;. Hence (z, t)/({¢) has an element z{t)/({t) of order 3 in
its centralizer. We can assume that | | = 3 and we have (z, t)° = (2, t).
But z acts nontrivially on (2, ) as 2¢ C(2) = T, which is a contradiction to
2z ~gt. Our assertion is proved.

Thus for each Sy-subgroup T’ of @ containing S, Z(T) n S; # 1. In the
following let z be an involution of Z (T') n S, for some T'.

The group Si/N is dihedral of order at most 16. Assume first that
Si/N = D,, D, denoting the dihedral group of order n. We know that all
involutions of S;/N are conjugate under K/N. This fact and z ¢ S; imply that
S; = (t) X 8o, and hence it follows that K = N X F, with F =~ PSL(2, p),
by a result of Gaschiitz [2]. Obviously F char K and so F < C. We have
2 =1f 7¢{0,1},f e F and Cc(f) is a 2-group because C(z) = T. Therefore
p’ =5 F=PSL(2,5)= As;. By Proposition 4 and Dieudonné [1] it fol-
lows that C/N = PGL(2,5) = Zs and so S/N =< Ds. Thus Z(S) is of order
at most 4 and we get Z(T') = (). Let V = (v1,0;|) = SinF. IfceS\Si,
thence N(S;)nN(F) < N(V). Moreover, by our criterion we can suppose
that ¢ = 1. Thus we can write

S = {wn,vs,clvy =00

Now, 8'(8) = (u), and Z(8) = {, ) = (¢, 2). We conclude that v; = 2
and ¢t ~rtz. Asknown, there is a subgroup Rof F, | B | = 3, with VR == A4, .
Therefore t ~ tn, ~g tv, ~g tv3 and 2 = v; ~p Uy ~g 110y. Hence
IN@S:)| = 2*3or |[N(8)| = 2°3, since N(S;:) n C = SR.

Assume first that | N (S;) | = 2°3,ie. N(S;) = SR. Let se¢T\S with
seSand (S,s) = Ty. Then

Ty = (v, 02, ¢ 8|8 = tvg, 05 = 00, 05 = D], 8, s eS).
Now & = 1, because s¢ N, (S1) = S. Since |12¢| = 4 it mustbey = 0,
ie. v = t*fc. Hence (v v:)" = t*i*c and we see that S has precisely two
classes of involutions, in contradiction with our criterion.
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Therefore | N (8;) | = 2°-3 and ¢t ~ tv ~ tv, ~ vy v, under N (S;). We
easily check that C'(S;) = S; and therefore N (S;)/8: = =4, N (S:)/8: being
isomorphic to a subgroup of PSL (2, 7). Hence O,(N (8S1)) = M is of order
2° and a Ss-subgroup R of C(t) n N (S:) acts faithfully on M/S;. It follows
that C@) n M = 8, and so t ~ t; ~ l1, ~ tv; %, under M. We can now
apply the theorem of Janko-Thompson [11]. As none of the groups of its
statement satisfies our condition it follows that there is an involution s in T
with |Cr(s)| = 2°. But now, s ~¢ 2, because otherwise N (Cr(s)) >
(T, C(s)) would be too great. We have (z, s) <{ T and there is a conjugate
(ur, us |y of (z, sy in 8, with (u1, uz) <1 C(urus), and | C(urus) | = 27, by
Lemma 5.38 of Thompson [13]. The elements u; , u, are conjugate neither
with ¢ nor with z. Therefore u; , u, belong to the set {c, v; ¢, tc, tn; c}. As
uy U is a central involution it follows

(us , us) e{(c, 1c), (tc, me)l and (ua, u2) < Cluaue) = C(vy) = T.

There is a u e MS with t* = . Also vf = vy, since Z(S) > Z(T) and
z = v, is the only central involution in Z (S), and thus 7' is unique, MS < T.
Hence with uy = tc, € € {0, 1}, we get (tc)* = tvic, ¢ €{0,1}. But on the
other hand (t¢c)* = %5 ¢*, hence ¢ = v51ic and we get ()" = (£°)" i.e.
tvy v, = lvy , a contradiction.

Thus Sl/N:'é D,.

Suppose next that Si/N = Ds. By Janko [8], [9], we have
K/N = PSL(2, p’) and I(K/N) = 5. Itis |Z(S:)| = 4 and thus
Z(S;) = {, z|). Since all involutions in K/N are conjugate we see that S,
possesses 11 involutions and 4 elements of order 4. Let (i, 2, a |) be an ele-
mentary abelian normal subgroup of S;. Then we can Wwrite

Si = (,2ab|d =t%a) = () X (a,b).
Thus, by a result of Gaschiitz [2],
K = () X F, with F= PSL(2,7p").

We have F char K char C and so F char C. Also K contains the element z
with C(z) = T. From this we conclude that F = PSL(2, 7) or
F=~PSL?2,9). LetbeceS\Si,S$inF = (hk|h =11 =hr"). We
have

8= {thkc|lh=17=1trE =1, 1=Kk =hk.

One easily sees that 8 < (h) and especially & (S’) = (h*). Assume first
that F =~ PSL(2, 7). Then by Proposition 4 and by Dieudonné [1],
C/N = PGL(2, 7) and S/{t) = Dys. Thus |Z(S)| = 4, and hence
Z(8) = (2, t) = ({4, k), Z(T) = {(2). Since (h’) char S we get z = h’ and
t ~pzt. All the involutions in F are conjugate in F. If there are no involu-
tions in S\S; , then there are exactly two classes of involutions in S under G,
by a result of Glauberman [3], and by our criterion we get a contradiction.
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Thus we can suppose that ¢ = 1 and we can write
S = hkc|b=1"=1"1="rKEKk=~hHr.
Now 8 = () X (b, k, ¢) and by a result of Gaschiitz [2] we have
C=({) XF, with F=PGL(2,7) and F < F;.
Since an S,-subgroup of F; is isomorphic with Dy , we now have
S =({dk|d=14d" =d?") with 4 =h,

for some d € S\S;. We have under S seven classes of involutions in S with
the representatives z = d', ¢, 2t, k, tk, dk, tdk. But z ~ k, tz ~ tk under F
and { ~ tzunder T, and s0o z ~ k, t ~ tz ~ tk. Thus there are at most four
classes of involutions in S under G with the representatives z, ¢, dk, tdk, all
involutions in 8; being fused either with 2z or with t. Applying the theorem of
Janko-Thompson [11] we conclude that there is an involution s in T with
| Cr(s)| = 2°and s ¢ 2, s g t. By Lemma 5.38 of Thompson [13], there
is a conjugate (uy us |) of {2, s) in S with (us,us) <1 (w1 u2) and uy us ~ 2. Now

Uy, uz € {dk, &k, d°k, d'k, ¢, tdk, td’k, td°k, td'k} and [uy, us] = 1.

Since t ~ td* ~ d* = z and uyus ~ 2 it must be that wyu» = 2z and
| Cr(us) | = 2°% for s = 1, 2. But then | Cs(ui) | > 2%, a contradiction to
Cs(u;) = (u;) X Z(8S) forz = 1, 2, as one can directly see.

Thus we can suppose that F = PSL (2, 9) = 4. We conclude as before
that C/N is isomorphic to one of the three subgroups of index 2 in PTL (2, 9)
which contain PSL (2, 9), and that S/N is isomorphic to one of the following
groups: Dy , Sis the semidihedral group of order 16 or Z; X Ds.

The case S/N =¢ Dy yields to a contradiction in the same way as in the case
F =~ PSL(2,7). Suppose next that

S/N =84 = (a,b|d® =1,a" = d).

Here 8;/N = (a’, b) and therefore all involutions of S are in S;. Also
|Z(S/N)| = 2 and thus Z(S) = (, 2), Z(T) = (). But 81 = ¢ X
(81 n F) and there are 3 classes of involutions in S; under K, with the repre-
sentatives ¢, tz, 2. By the theorem of Glauberman [3] we conclude that S;
contains precisely two classes of involutions under G. Applying our criterion
we get a contradiction.

Thus we may assume that S/N = Ds X Z,,

S/N = (¢ d, f|d =168 =¢)
with S;/N = (¢, d), ¢, d, feS, where £ = aN for all z¢C. In this case
C/N = 3.
We had S; = (¢, b, k|2* = 1, B* = »™). Without loss of generality we
may suppose that ¢ = h, d = k and we get

S =t bk flh=1f =t =" 1=n1K =k, ¢e01,
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as (h, k) Q1 8. If f* = t, then (t) = B'(Z(8)) char S, which contradicts
| S| =1CE)|:- Thus

S = (ta h, k’fih4 =1, h* = h_1> = <t> X <h) k> X (f>
By a result of Gaschiitz [2] we get
= <t> X Fl With Fl_g_ 26

and F < Fl,Fl = <F,f>,F§A3.
All the involutions of Fi\F have a 3-element in its centralizer and hence
there is no central involution in C\{{)#. Thus

QZ(T)) < Z(S8) = ¢, 1)

and @ (Z(T)) = {2) is of order 2. Thus Z(T) is cyclic and z = h? as
By = 8. But Z(8) = {t, K, f) is elementary abelian and therefore
Z(T) = (). Hence T containing S is unique and z = % is the unique central
involution of @, which isin Z(S). Thus

8 =N(Z(®8)) <T=CH).

Since S; > S the element ¢ has some conjugate & 5 ¢in Z (S).

Let S< Ty < T. Then |Z(Ty) n Z(S)| > 4, and |%W(Z(T1))| < 4,
as Z(T) = (). Hence W (Z(T1)) =V < Z(8)isof order4 and V < T.
With V = (2, s|) wehavet g s ~r sz %g 2

In view of conjugance of all the involutions of F we get the following con-
jugate classes in S: ¢, h* ~ k ~ hk ~ Bk ~ Bk, th’ ~ th ~ thk ~ th’k ~ th’k,
I~ hf ~ Bk, kf ~ Bf ~ Bkf, tf ~ thkf ~ th’kf, tkf ~ th’f ~ th’kf. Since
z is the unique central involution in Z(S:) it follows that b’ ~ k ~ hk ~
k% ~ B’k are all the central involutions of G in S. Also we easily see that

Ey = K, f, k) and E, = {t, I, f, hk)

are the unique elementary abelian subgroups of order 16 in S. Identifying
F; with Z we can take h = (1234)(56), k = (12)(34) and f = (56). The
element 7, = (123) normalizes E; and the element r, = (125) (346 ) normalizes
E,. Wehave

N(El) 2 <E’1,7‘1,hk> = W1 and N(Ez) Z <E2,1’2,’0> = Wz.

Also Wi/Ey = W,/E, = Z;. Since E; and E; contain each precisely 3 central
involutions 7% k, k%t and A%, hk, K’k respectively, and | N (E;) | = 2°-3p.,
with p; = 1 or p; a prime, it follows | N (:) | €{2°3, 2°3}, for ¢ = 1, 2. But
(E;, r;) < N(E;) and so all S;-subgroups of N (E;) are contained in C(¢).
As mentioned, ¢ has some conjugate & £ ¢ in Z(S) under 7. Now
(ry, 1)y < C(t) n C(t) because of symmetry and because of uniqueness of
7, and B, in S. But Cz () = &, f) and Czs () = (¢, h*f) and so
Cz ({1, 12)) = (t), a contradiction to ¢ = ¢ .
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Thus Sl/N ,'g Ds.

We can therefore assume that S;/N =< Dys. We have K/N = PSL(2, p’).
Since the Schur multiplier of K/N is 2 and {, 2) < Z(S) contradicting
K = SL(2, p’), it follows that K = N X F, with F =~ PSL (2, p’). We have
F = PSL(2, 17) because all the involutions of F are conjugate and z € K,
C(z) = T. By Proposition 4 and Dieudonné [1] we have C/N = PGL (2, 17)
and an S;-subgroup S/N of C/N is dihedral of order 32. Now

Sy = {t,hk|h =11=hr",
with F n S; = {h, k) and
S/N = (¢,d|é®*=d=1,6 =¢") withe,deS,

where £ = aN, for x ¢ S. We can set d = k. We also have |¢| = 16,
¢ = Kt', ¢ = ¢®t". Replacing if necessary k by 1’, we get ¢ = t'h.  Obvi-
ously F <1 C and thus F n 8§ <{ S. Hence (h, k) <{ S and so k° ¢ (h, k),
which yields ¢« = p. We get

S = (e k|c®=1("=th), =t

We have Z(8) = {t, ¢’y and S’ = (h). We conclude that Z(T) = (z), where
z2=2¢=h' Alsot~nytcd
Since all the involutions of F are conjugate in F and ¢ ¢ C (F') it follows that
t~pth* ~thkforallu e {0,1,2, ---,7}. Set B, = {t, h', ¥'k). We have
C(B,) =C@E)nTnCMHE) = B. By Huppert [7, I1.8.16], the normalizer
of (h*, Wk) in F is isomorphic to =4, because p = 17. Thus | Nx(B.) | = 2.
In B, there are two conjugate classes under G:

t~pth ~p Rk~ th™E and B ~p Bk~ b,

where L = Ng(B,).

Hence w = | N(B,):N¢(By) | {1, 4} and | N(B,):Nz(B,) | = 3. Assume
first, that = 4. Since |N¢(B.) | = |Nx(B.) | = 2'-3, it follows that
N¢(B,) = Ng(B,) and | N(B,) | = 2°3. This yields | N7(B,) | = 2° and
therefore | Ns(B,) | > 2°, a contradiction to Ns(B,) < N¢(B.) = Nx(B,).

Thus w = 1,i.e. N(B,) < C(¢). Since N(B,) is an Ss-subgroup of N (B,),
wehave Nz (B,) = Ns(B,) = (, k’, B'k) and so | N (B,) | = 2*-3 for every u.

Suppose ¢ = 1,ie.¢® = thand ¢ = tc®. Now @ (S) = 8; = (, h, k). We
have C(¢) n C'(th*) = S. Since t ~z th*, 8 is an S;-subgroup of C (th*) also.
Also 8; < T, as 8 < T. Therefore (K'k)’ = *h'k, as (h*)" = &', £ = th',
for every v ¢ T\S. Thus B} = B, is in C'(t) of the same type as in C (th*).
But then N(B,) < C(t) n C(th') = S, a contradiction. It follows that
¢ = 0 and we get

S={ck|cd®=1c=c"={ Xk with ¢=h

One can easily compute that 8 = (¢*), Z(8) = {, ), Z.(S) = {, c*),
Z5(8) = (¢, &) and Q.(8) = {, c).
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Let now v € T\S be an element of smallest possible order. Because of the
above relations we can write

T = (e, kov|cd®=1107=K, =t
&F=ce =k =fek) with 2 4 .

In S we now have the following conjugate classes of involutions under S:
t, 1%, & k ~ ¢k, ck ~ ¢* 'k, th ~ tc°k, tck ~ tc* 'k, for all « with 2 | a.  But
also ¢ ~¢ k, t ~ptc’ ~q tk.

For B = (¢, t, ko) with k, an arbitrary involution of S;\(c}, ¢} we have, as
shown, N(B) < C(¢) and 3||N(B)|. Assume SY = 81, for a w e T\S.
Then B < 8;n 8Y and so N(B) < C(t) n C(tc*), as t* = tc, which is a
contradiction to 3||N(B)|. Thus 8 n 8¢ = ¢, ¢) = Z(S). But
S/Zs(8) = E, and 8¢ = (, &, ck), as {t, c) is of exponent 16. We get
K = £c8ck ~g %k ~ &, (tk)’ = t*c¥ck ~ 1k ~ th ~ t, for some in-
tegers 8, {. We see that there are precisely 2 classes of involutions in 8, which
contain t and ¢’ respectively. Moreover k* = ¢k with 2 [ e.

For x e S\{, ¢*), | 2 | = 2, the group (t, c’, ) is of considered type B, either
in S; or in SY and so

N &) <C@) or N(¢ ¢, m) < C@e).
Since N ({, ', HE)) = (&, h?, W'k), we have
NT(<t’ h4, (h"k)w>) = NT"’(<t7 h4’ h“k>w) = <t1 h’27 hﬂk>w = (t7 h'2; (h”k)w>~

Hence Nz((, %, z)) = (, c*, z) and so 2” ¢ {t, ¢, z), for all z and all w chosen
as above.

Lety = t°k” ¢ S. Then y* = " Thus ¢ = ¢*¢k with arbitrary
a, 8. We have

2 &) 89+ 12 tPeokT —1)T
cv___(tc;)v=c+¢=cc =C(),

as2 4 . Hence 8¢ + /= (—1)" (mod 16). If ¢ = 0, then & = (—1)
(mod 16) and it follows that + = 0, ve{l, 7, 9, 15}. If ¢ = 1, then
8+ = (—1) (mod 16) and we get 7 = 0, v € {3, 5, 11, 13}.
Now
kvz - (tsc'k)" - t0e686+(;+1)ek = kP = c—zak

and hence 3¢ = 0 (mod 2), 8 + (1 + 1)e = —2¢ (mod 16). As2 { & we
get ¢ = 0, and we can write

T=(eckv|d=10=¢=tcd=c"c =c,k ="2ck),

with p, 6 €{0, 1}, 1 €{1, 7,9, 15}, 2 [ «.
Also we have the equation

(%) 20 = 8 — (. + 1) (mod 16).

We consider in the following the particular cases for ¢.
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Case ()« = 1. By (%), ¢ + ¢ = 45 (mod 8). Now (kv)® = 1, but
v* = ¢ # 1, because 2 1 ¢, 2| ¢ + & Thus we have a contradiction to the
minimality of order of v.

Case (b) « = 7. From (x) and 2 £ ¢ it follows that ce{0, 8} for § = 1,
and oe{4, 12} for 6 = 0.

Suppose first that § = 0. Since the order of v is minimal, v must be
conjugated under G with an element s ¢ S, by a criterion of Harada [5]. It
is|o| =|s| =8.Butz™lvx = s gives 2% = s% i.e. 2% = ¢8, which im-
plies z ¢ T = C(c*), a contradiction.

Therefore 8 = 1 and ¢ €{0, 8}. If p = 1 we would have (0*)" = o* = (&")"
= =t, as ¢ e Z(T). But® = ¢ and we get a contradiction. Thus
o = 0 and we have

T={ckv|lcdt=10"=c=tc=c"c=ck =ick),

with o €{0, 8}, 2 { «.

If ¢ = 8 then | v | = 4 and by the criterion of Harada [5] we get the same
contradiction as above. Therefore ¢ = 0, = 1.

One computes easily that | t*c’kv | = 32 foralla, 8; | t°c* | = 4fora + =1
(mod 2); | t°* | = 2for a + 8 = 0 (mod 2)

Consider the element . From tv = 2 ‘sz, s € S, z ¢ G it follows that z ¢ T,
a contradiction. Therefore by Harada [5], (v)> = c¢® is conjugate with some
involution in 7\S- of the form w = t°c*, a + 8 =0 (mod 2). Since v’ = z¢~*
and v* = t¢™v, with 2 £ ¢, all the involutions of T\ are conjugate with an-
other and therefore with ¢®. In particular v ~ ¢’ But tc* ¢ C (v), (tc*)* = ¢
# », while in C(c*) = T all the elements of order 4 have ¢® as its square, a
contradiction.

Case (¢) ¢ = 9. By (%) ¢ + 5¢ = 48 (mod 8). Itisnow (kv)® =1 = o5,
a contradiction to the minimality of the order of ».

Case (d) « = 15. The relation (x) gives ¢ = 45 (mod8), and so
o €{0, 4, 8, 12}. From (¢+!)’ = ¢’ it follows ¢ = 4p (mod 8). Thus p = .
If »* = 1 we get the same contradiction as in Case (b). Therefore v* = 1
and we can write

T={qcko|ld=1 =t =c', ¢=c", K =—c%k),

with2 f &. Now || = 2,|tc®v| = 4and | t°Ckv | = 32, foralla, 8. We
have v* = ¢ %, v* = ¢ v and therefore all the involutions in T\ S are conju-
gate. Considering the element iv we get the contradiction in the same way
as in the Case (b).

Proposition 5 is completely proved.

ProrosiTion 6. Let C % K. Then |C:K| = 2 and C/N = PGL(2, p)
with K/N = PSL(2, p), p a prime, p = 5. In particular, an Sg-subgroup of
C/N 1s dihedral of order 8 in the considered case.
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Proof. By Proposition 5 we have [(N) > 2. If C # K, then [(K/N) = 4,
as I(@) = 8, by Huppert [6]. Proposition 4 and the results of Janko [8] and
Dieudonné [1] give now the assertion.

ProrositioN 7. We have | N | = 4.

Proof. Assume [N | = 4. We shall prove that this assumption yields to
a contradiction.

Since K/N is simple, we conclude that C¢(N) > K and by Janko [9] we
have K/N = PSL(2, p’), p a prime. If p = 2, then p’ ¢{4,8}. Ifp = 2
then S/N = D, the dihedral group of order k, k € {4, 8, 16}, where S is an
Ss-subgroup of C. Let T be an S,-subgroup of G containing S, the chosen
S.-subgroup of C, and z € S a central involution of 7. Since C¢(N) > K we
have z ¢ S\NV.

Assume now that N is cyclic. We consider first the case ¢ = K. Ifp’ = 8,
then C/N =2 PSL(2, 8), S/N is elementary abelian and all the involutions of
S/N are conjugate in N¢on(S/N). Since () X N < Z(8) it follows S’ =
(1) and thus S = N n 8, with S; elementary abelian. Therefore (¢) = 8'(S),
which contradicts | C(t) |» = | S|. Hence p’ = 8.

If S/N = Dy, ke{4, 8, 16} we again have () X N < Z(8), and ) =
U'(Z(8)) in each case, which yields to the same contradiction as above.

Thus C = K if N is cyclic, and by Proposition 6 we have

|C:K| =2  K/N=~PSL(2,p), C/N=PGL(?,p).

Suppose that C(N) = C. Since S/N is dihedral of order 8, we would have
Z(8) = &) X N and so () = U(Z(8)), a contradiction. Therefore
C(N) = K. NowzeKand S; = SnK = &) X N is abelian. Since all
involutions of Si/N are conjugate in K/N, we have S; = N X L, for a sub-
group L of S;. By a result of Gaschiitz [2], it follows that K = N X F, with
F =~ PSL(2,p). Let SynF > (v, v | );hence Si = (n, 1,0, | n* = 1), with
(n) = N. Wehave F < C, SinF < 8. Since Z(8) < (2) X N, it follows
that Z(8) = (g, t) with n* = ¢ and one of the v, ¢ = 1, 2, say v belongs to
Z(8). Thus Z(8) = ', v). We have {t) = 8'(S:) and hence there is an
automorphism ¢ of S with S{ # S;. Obviously SiSf = S, Sin 8f < Z(8S)
and S n 87 is of order 8, a contradiction to | Z(S) | = 4.

We have proved that N is not cyclic.

Assume next that N is a four-group, N = {, n| ).

We consider first the case C = K. Here C(N) = C. Suppose at first
that C/N =~ PSL(2, 8). Because all involutions of S/N are conjugate in
C/N and (z) X N < Z(8), we conclude by a result of Gaschiitz [2] that
C = N X F with F = PSL(2,8). We know that there is an element r in
F,|r| = 7,such that S < SR, where R = (r). Denote Th1 = Nz(S). Then
N(8) = Ty R, where | T1| = 2°, and N(8)/8 = Dyw. Let se T\Ty. Then
Ty = 8-8,Z(Ty) >8n 8 < Tand|8Sn 8| = 2. By Suzuki [12
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there is a complement L of S in N(S) with
L={w|r=117"=7r",

as there are involutions in S\S and S = 0(N(S)). By Gorenstein [4,
5.2.3] we have S = Cs(R) X [8, R]. Obviously 8 n Z(T,) = Cs(w), with
T: = S{w) ~w Ti. Denote Cs(R) = U, [S,R] = V. Then |U| = 4,
| V| =8and| Cs¢(w) | =16. Wehave U’ = U, V* = V and hence Cs(w) =
Cy(w) X Cy(w). It follows Cy(w) = Uor Cy(w) = V. But U = N and
U = Cy(w) < Z(T:) wouldimply T> < C(N) = C, a contradiction.

Hence V = Cy(w). Let v1e V¥. Now o} = o = o} = 4} ', in contra-
diction with the faithful action of » on [R, S].

Suppose next, that S/N = D,, C/N = PSL(2, p’). Since PSL(2, 4) =
PSL(2, 5), we can assume without loss that p > 2. Similarly as in the previ-
ous cases we conclude that ¢ = N X F, with F =~ PSL(2, p’).
Since N < Z(C), C(2) = T and zeC\N, one easily sees that

F =~ PSL(2, 5) = A;.

In F thereis an r, | r | = 3, such that B = (r) normalizes the S;-subgroup
S of C. Therefore | N(S) | = 2°-3+k, k a prime or k = 1, where 8k < 12, as
the elements of N are not central involutions. Hence k € {1, 2, 3}.

Assume first that ¥ = 3. Let T: be an S,-subgroup of N(S) and
T <Te<T. Ifse T2\T1, then T = SS‘, SnS" < Z(Tl) and l SnS I =
2°. Since 8 = Cr,(8), the group T4 is not abelian and hence Sn 8' = Z(T4).
It follows that N n Z(T:) ¢ 1 and we may assume that n e Z(T:). Thus
n ~gt. But nowzeZ(T) n S would have 9 conjugates in S under N(S)
and ¢ would have the remaining 6 involutions as conjugates, because | Cws) (%) |
= 2*.3. This, however, contradicts t =~ n ~ 2. It follows that k& > 3.

Assume now k = 2, ie. N(S) = T.R, with |T,| = 2°. We have
T: AAN(S) asl(G) = 8. Lett, by, &, t; be the conjugates of £ in S under N(S).
Since R has no fixpoints on S\N it follows that ¢; ¢ S\N, forz = 1,2,3. Con-
sider C(#)) n C(t). Because of C = N X F, F = A;, t has no element of odd
order in its centralizer in C. Therefore C(4) n C(t) = 8. If 0:(N(8)) = 8,
it would be Oz, (N(8)) = SR < C(t) n C(ty), a contradiction. It follows
that 0o(N(S)) = Tyis of order 2°, and N(8)/Ty = D¢, N2o(S) = No(T1) =
T.
LetveT\T>,. Then 8-8°< T, S = 88" T.
Suppose that | §| = 2°. Then Sy = Sn 8* = Z(S§) isof order 8. Wehave
St 7 So,as T = T". Hence | S U Sy | = 12 and ¢, #, &, t are the only ele-
ments of S, which are conjugate with ¢ under G. Similarly, there is an ele-
ment of S5, which is not contained in S5 U S,. Since this is also not conju-
gate with ¢, there are at least 13 elements of S, which are not conjugate with
t, a contradiction to t ~ t; ~ &, ~ t3.

Therefore S = T:and | Sn S| = 4. Now T = S{ar, &2 | ), Sn{ay, az) = 1,
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(a1, az) < 8°, and by Gaschiitz [2], S has a complement B in N(S). Since
B==N(S)/Sand S T:. < TR < T: R = N(S8) is the corresponding
{2, 2}-series, we have T, /S = D, and

B=00)X (ralr*=1, =17

for some involutions a, b ¢ N(8S)\S, assuming B > R.

By Gorenstein [4, 5.2.3], we get S = Cs(R) X [8, R], with Cs(R) = N.
Since 8 = 8" = Sand R* = R’ = R, we now have N = N* = N° = N,
andso N <] N(8), a contradiction to ¢t e N, ¢ ~ys) t1 € S\N.

It remains to consider the case k = 1. Now ¢ has 2 conjugates under N(S).
Since R acts fixpointfree on S\N, we may suppose that ¢ ~x) n.

Let T1 be an S,-subgroup of N(8) and Ty < T. < T. For se T, \T1 we
have S8° = Ty and Z(T:) = Sn § is of order 8, as 8§ = Cr(8). Since S
has a complement in T4, it is N(S) = 8B, with B =2 Dgor B = Zs. We may
assume that

B = (rv|’=1r1r =1, aefl, —1}.

We have Ty ~ S(v) and thus | Z(S(v)) | =8. Wehaveagain S =U X V,
with U = Cs(R),V = [S,R]. Since U" = U, V" = V it follows that Cs(v) =

Cu(v) X Cyv(v) = Z(S{)). Because of |U| = | V| = 4, we must have
Cy(v) = U,or Cy(v) = V. ButteCs(R) and ' = t. Thus V = Cy(v).
If @ = —1 we get a contradiction to the faithful action of (r) on V. There-

fore T1 | N(S8) and we can write
N(8) = {t, n, by, hg, r, 0| 7" = 1,8 = n, 0’ = t, hi = hy, b = Iy ho),

where {t, n, b1, he) = S.
Now Z(N(8)) = (tn) and N(8) A N(T:) = T R. Thus

C(tn) > (N(Ty), C(t)) > N(T1) and I(N(T)) =17,

a contradiction.

Suppose now that S/N = Ds or Dy. Then K/N = PSL(2, p’) with
{(C/N) = 5 and thus I(C/N) = 7. Since Z(S/N) = Z, it follows that
Z(8) = N X Z(T) is elementary abelian of order 8. Let 8 < Ty < T with
| T:T1| = 2. Then | Z(T:) n Z(8)| > 4 and hence Z(Th,) n N 1, a
contradiction to C(n) = C(t) = C(in), because of maximality of C(¢).
Thus S/N 2¢ Ds, Dy also.

We have proved that C ¢ K. Hence by Proposition 6,

|C:K | =2, K/N = PSL(2, p), C/N = PGL(2, p),

where p is a prime, p > 5, and an Se-subgroup S/N of C/N is dihedral of
order 8.

Suppose first that C(N) = C(¢) = C. Now| S| = 32and wehave Z(S) =
@)XN. fS<Ti<T,then|Z(T:)nZ(8)| > 4,andso Z(Thy)nN = 1,
a contradiction to C(N) = C, because of maximality of C.

Thus we have C(N) = K. Let 8; = Sn K. Now Z(T) £ 8, because
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K = C(N). Since (¢) X N < Z(8:) and | 8;| = 16, S; is abelian. More-
over S is elementary abelian, as all involutions of S; /N are conjugate under
K/N. Thus K = N X F,with F = PSL(2,p). ItiszeK,C(z) = T and
all involutions of F are conjugate in F. Therefore we conclude, that
F >~ PSL(2,5) = As.

Let ce S\Si. Then C = (N X F){c). Since S/N = Ds the element ¢
does not act triviallyon SnF = V <{ 8. Let V = (v, 2| ). Then we can
write

S = ({t,n, 0,0, c|c = t'nvf o, n° = tn, v = v, v3 = v1),
yu v, a, Bel0,1}.

Itis Z(8S) = {t,2) = {t,mm), and Z(T) = {2), because Z(S/N) is of order
2. For 8 < Ti < T we get therefore t ~r, 2t = t'v, v, where either ¢ = 0
ore = 1. Since () = & €Z(8), we have ¢ = tvf v, with «, ¢ € {0, 1}.
But now (n*% ¢)* = 1, and replacing ¢ by n*%} ¢, we can write

c c
8= ({nv,v,c|n =in v =0 = n).

Consider now N(8;). Obviously | N(81) | = 2°-3k, k = 1 or k a prime,
as V has a normalizer VR = A,in F, R =2 Z;. Since 2z ¢ S; and z is not conju-
gated with any element of N, we have 3k < 12, and hence k € {1, 2, 3}.

Letk ¢ 2. Then S = N#(81). For S$; < S < T: < TandseT:1\Sit
follows that S; 81 = S and Sy n 81 < Z(S8) is of order 8, a contradiction to
| Z(8) | = 4.

Therefore k = 2, N(81) = T2 R, with | Ty | = 2°. If T, A N(S), T: would
have a too large normalizer. Thus T. €1 N(S,).

We have ¢ ~r, t°vy va ~g t0, Wwith @ = Qor @ = 1. Consider

Cy = C(t) n C(t%y).
We have Con K = Cg(v1) = S,as Ce(v1) = V. Since Co /K =, /(Con K)

and | Co K/K || 2, Cy is a 2-group.
If 0(N(S1)) = 8y, then

SiRAN(S8) and SiR < C(#).

But ¢ ~us, t°v, and therefore it must be also S; R < C(t*), a contradic-
tion to 3 £ | Co|.

Hence Ox(N(8y)) = Ts with | Ty | = 2°. Obviously we can suppose that
T, > S. But then Z(T.) < Z(8) and Z(8) is of order 4. Let v € T\To..
Then S 81 < Teand S 81 < T.

Suppose that | S; 87| = 2°. Then Sin 81 < Z(8; S1) and thus

| 2(Z(S8%)) | = 22

It follows that | Z(T.) | > 4 and therefore Z(T:) = Z(8) = ¢ nim), a
contradiction to 2° £ | C(¢) |.

Therefore | 81 S| = 2°%, i.e. 8181 = Th. But now S81n 81 < Z(T,) and
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hence | Z(T:) | = 4, which yields the same contradiction as in the preceding
case.
We have shown that the assumption | N | = 4 yields a contradiction in all

cases, The Proposition is completely proved.
Proposition 8. The group N s not a 2-group.

Proof. Since I(C/N) > 4 and therefore I(N) < 3, it remains by Proposi-
tions 5 and 7 to show, that | N | = 2°.

Assume the contrary, i.e. | N| = 8. By Huppert [6] and Janko [8], the
group C/N is simple and C/N = PSL(2, p), p a prime, p > 5,
with I(C/N) = 4.

We have shown in the proof of the Proposition 1, that N < Z(C) if N is
elementary abelian. One can easily see that the same holds also in the other
cases, where N is abelian, because of the simplicity of C/N. In all cases an
Ss-subgroup of C/N is dihedral of order 4, by Janko [8], and C/N contains
alternating groups 4..

Suppose at first that N =< Ej, the elementary abelian group of order 8. In
C there is a subgroup M, with | M | = 2°-3, M/N = Ay, and | 0:(M) | = 2°.
Denote 02(M) = A. If N = Z(A),then N<] A forA < A;with | 4;::4 | =
2, which contradicts C = Ng(N) and |C | = | A|. Therefore Z(A) > N
and A is abelian. We have M = AR, with |R| = 3. Since M/N = A,
the group R acts faithfully on A and therefore on @1(4). Since N < %(4) n
C(R), it follows ¢ (A) = A and A is elementary abelian. By Gaschiitz [2]
N has now a complement F in C, i.e. C = N X F, with F =2 PSL(2, p).
Consider now N(4). Weseethat N(A)/A = Dg. Let Ay be an S;-subgroup
of N(A), A < A < T, where T is an S;-subgroup of G. For v e T\4; we
have AA” = Arand Z(A4:) > An A’ because A ¢ T. Thus| Z(4,) | = 2"
With a ¢ A"\A we have A, = A(a), and hence A has a complement L in
N(A) = A1 R. Wecan write N(A) = AL, with

L= {,m|=1+"=7r"),

Now, by Gorenstein [4, 5.2.3], we have A = U X V, where U = C4(R),
V =[A4,R]. Obviously U" = U" = U,V "= V™ = V. Therefore C,(m) =
Co(m) X Cy(m). Since A(m) ~nyp A1, we have | Z(A(m)) | > 2'. If
A{m)y = Z(A{m)), then Cu(m) = A, otherwise C.(m) = Z(A(m)). We
have U = N and | V | = 4 because of the faithful action of Ron 4. It follows
that U = Cy(m) or V = Cy(m). But U = Cy(m) = N implies Z(T1) n N
1 for the Se-subgroup T of G containing A(m). But this is impossible, be-
cause C(N) = C. Hence V = Cy(m), which contradicts again the faithful
action of R on V.

Therefore N ¢ Es.

Suppose now that N =2 Z, X Z; or N =2 Zzs. We know that N < Z(C).
Let S be an Ss-subgroup of C. Since N = Z(C), we have N n Z(T) = 1 for
each S;-subgroup T of G containing S. It follows that there is a central
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involution z € Z(T) in S\N. But N(8S) = SR, with B = (r) of order 3 and
SR/N = A,. It follows that S = N X (&) X &"). Now 8'(8) < N and
N(?(8)) = C, which contradicts 2 { | C: S |.

Assume at last that N = Dg or N = @s, the quaternion group of order 8.
Since C/N is simple and 4 (N) is solvable it must be again C = C(N). Now,
the contradiction follows as in the preceding case.

The proposition 8 is proved.

Prorosition 9. We have I(N) > 2.

Proof. Inview of Propositions 5 and 7 it remains to show that | N | 5= 2-¢,
where ¢ is an odd prime.
Assume the contrary, i.e. | N| = 2-¢, ¢ an odd prime. Then

N = @ X (m),

with | m | = ¢. Since A(N) is solvable it must be C(N) = Kor C(N) = C.
But there are central involutions in C and thus C(N) = K  C, as Se-sub-
groups of G are maximal. By Proposition 6 we now have

C/N =~ PGL(2,p), K/N = PSL(2, p)

and an S,-subgroup S/N of C/N is dihedral of order 8. Let S; = Sn K and
z2eZ(T),|2| = 2, where T is an S;-subgroup of G containing S. But then
S/N = S1/N X ()N/N, a contradiction to S/N = Ds.

ProrosiTioN 10. If ¢ is an tnvolution of G, then C = C(t) is solvable. (This
contradicts Proposition 1, proving our lemma.)

Proof. By Propositions 8 and 9 it remains to consider the case, where
I(N) = 3, | N| = 2q1 ¢z, with ¢, ¢o primes, which are not both even. By
Janko [8] we have C/N = PSL(2, p), p aprime, p > 5,as[(C/N) = 4.

Suppose at first that ¢, and ¢» are both odd.

If g1 5 qq, let be ¢ > ¢» and @, the S, -subgroup of N. Then @, < C,
C/C (@) is eyclic and it must be that C 5 C¢(Q1), as C contains some central
involution of G, which cannot be in C¢(Q1). Now C > Co(@1) > Q) >
@1 > 11is a normal series and C > N > @Qi{¢) > @ > 1is already a chief series.
It follows that C/Ce(Q1) = N/Q1(t) is of odd order and so C¢(@Q:) contains
nevertheless an Se-subgroup of C, a contradiction.

Thus we can assume that ¢1 = ¢ = ¢ is an odd prime. Now N = () X @,
where | @ | = ¢*. Since C¢(Q) contains no central involutions of G and C
does contain such involutions, it must be that C¢(Q) = N, No(Q) = C.
Therefore C/N is isomorphic to a subgroup of 4(Q) and @ must be elementary
abelian. Let S be an S;-subgroup of C and T an S,-subgroup of G containing
T. Since SN/N == 8/8Sn N = Dsand Z(T)* < S\Sn N, Sis abelian. If
S is not elementary abelian, then () = 8'(S) char S, which is a contradiction.
Hence C = () X F, with @ < F, F/Q = PSL(2, p) and @ = C,(Q). Let
V be an S;-subgroup of L. Then V = (v, v | ) and 11 Q@ ~r 12 Q@ ~ 5 Q,
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where v = vy v5. It follows v ~p v ~, v;. By a result of Brauer and Wie-
landt [16], we get

| Q11 Ca(V) ' = | Ca(tn) |-] Co(w) || Ca(ms) | = | Calm) I"

It follows that | Co(1) | = ¢°, a contradiction to @ = C.(Q).

Suppose now that | N | = 2°g, ¢ an odd prime. Now N = QM, | Q| = gq,
| M| =4. Obviously @ < C and also C = N-N (M), by the Frattini argu-
ment. Assume that M < C(Q). Since C/C¢(Q) is cyclic and C¢(Q) > N,
it follows C¢(Q) = C, a contradiction, because C contains central involutions
of C. Now, C/N = N-N¢(M)/N = N(M)/M = PSL(2, p) and so
| C:No(M) | = q. Since | M| = 4, it follows that Co(M) = N(M) and
hence Co(M)/M = PSL(2, p). In particular M contains no central involu-
tion of G.

Let S be an S,-subgroup of C contained in C¢(M). Since

Co(M)/M = PSL(2,p), p25

there is a subgroup U/M in C¢(M) isomorphic to A4 with S/M < U/M.
Now U = SR,R = (r), |r| = 8. Let T be an Se-subgroup of G containing
S. Then Z(T) < Z(8) and Z(T) n M = 1. Thus there is an involution
2eZ(T)in S\M and so 8 = M X () X ). Consequently Cc(M) =
M X F, with F = PSL(2, p). It must be now M = D,, because otherwise
() = ©'(8) char S, a contradiction. Hence from it follows C = () X L.
Obviously F < LyasLnF JF. AlsoQ < L. LetMnL = (m). Then

Qm)=NnL<L and L/N L= PSL(2,p).
Consider CL(Q). Since meCL(Q), L/CL(Q) = W < A(Q) and

Cu(Q) 2 Q, it follows that | L:Cr(Q) | = 2, L = C'(Q)(m), with C1(Q)/Q =
PSL(2, p). One can easily see that F < C(Q), @ n F = 1 and thus

CuQ) =QXF, L=(QXPF)m)=FXQm).
From C = () X L, it follows now that
C=({ XQm) XF,

with F = PSL(2, p) and Q(m) = Dy,.

The group S contains a central involution z of G and z is of the form t*m°h,
heFnS. Since C(z) = T is an S;-subgroup of G, wehave 3 = 1 and h = 1.
In particular | k| = 2. It follows now, that p = 5, F = PSL(2, 5).

Let V=SnF = (v,v]|) Then

S = mov,v|) Ne(V)=VR = (o, v, 7|7 = 1,00 = 05, 05 = vy o)

with B = (r).

Therefore | N(S) | = 2°-3k, with k = 1 or k a prime. Since the central
involutions of G in S have the form mentioned above, one easily sees, that z
has at most 6 conjugatesin S. Thusk = lork = 2.
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Assume first that k = 2, i.e. N(S) = Ty R, where | T1| = 2°. Obviously
Ty 41 N(S). Since ¢ has 4 conjugates under N(S), ¢, &, &, { say, and R acts
fixed-point-free on S\M, it follows that #, &, & ¢ S\M. Moreover we can
suppose that {; = &, tz = t.

If 0,(N(S)) = 8, then 0:o(N(8)) = 8Rchar N(S). Consider
C(t) n C(t). Sincet ~xs b, it follows SR < C(t) n C(t1), a contradiction
to Cs(R) =M

Thus Ox(N(8)) = T, with | Ty | = 2°, N(S)/T: = Ds. We can assume
that T > Ty > T > 8. LetveT\Tw. Itis Sy = 88 < Tiand S, T.
Also S; = Sn 8" < T, because T, = Nz(S).

Suppose at first that | 8 | = 2% Then 8 = Z(8) is of order 8,
as 8 = Cx(8S). If S" =8 ,for ' = ', 85’ would have a too great normal-
izer. Thus S, S, S;" are all different a,nd their union contains at least 13
elements, as their pairwise intersections contain 4 elements. But ¢ is not
conjugate with any element of arbitrary group 85 , because S;° < Z(81),
but 2° £ | C(t) |. Therefore ¢ would have at most 3 conjugates, a contradic-
tion.

Thus we can suppose that S; has order 2°, 8; = Ty, and S, is of order 4.
Now 8 has a complement in T, and by Gaschiitz [2] also in N(8),i.e. N(S) =
SB, Sn B = 1, where B is a subgroup of N(8).

Wehave S A T: A T R < 'R = N(8) as a {2, 2}-series of N(S) and
Ty /S = D,. We may suppose that r ¢ B, and we can write

=0|YX (nal®=171=7r").

Let us denote U = Cs(R) = (¢, m). NowU = U" = U* = U’ = {t,m) and
therefore (t, m) <\ N(8), a contradiction to t ~ns & € S\{, m).

Therefore we must have k = 1 and so N(8) = Th R, with | Ty | =
Since (¢, m) = Cs(R) it must be t ~n( t'm = mi, where either 7 = O or
7 = 1, because t has precisely 2 conjugates in N(8).

Let Ty < T. < T, where T is an S;-subgroup of G. If s € T2 \T1, we have
88 = Ty, Z(T:) = Sn 8 isof order 8, and Shas a complement in 7y. There-
fore also N(8) = SB, with B = Dg or B =2 Zs.

Let B = (r,a|r® = 1,7 = r*), ee{—1, 1}. Then (8, a) ~ Ty, hence
| Z({8S, a)) | = 8. By Gorenstein [4, 523], we get 8 = U X V, where
U=CsR),V=I[S,R,and U* = U" = U, V*=V" = V. Moreover,

Z(8{a)) = Cs(a) = Cy(a) X Cv(a).

Since U and V have order 4 and Cs(a) has order 8, it must be U < C(a) or

V< C(a) Butte U, [t a] = 1. ThusV< C(a) Let V = (v, v | ) and

V=, th = Ife= —1,wegetol =o] =01 = 0;° =i, a contra-

diction to the faithful action of r on V. Therefore ¢ = 1. We have now
N(S) = (t: mi, 0, v, Q, rlrs = 1, = ml;v; = 1y, 1); = ”1”2)-

For Ty = {t, mi, », v2, a) we have now Z(T:) = (n, ve, tm1). Consider
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C(tmy). Ttis Ty < C(tmy), | Ti| = 2° and F < C(tmy), F = PSL(2, 5).
Thus C(tmy) is not solvable. Let N be the maximal solvable normal sub-
group of C(tm;). By Proposition 9, I(N;) = 3 and therefore C(imy)/N, =
PSL(2, p) by Janko [8] and an S;-subgroup of C(¢tm;)/Ni is of order 4. But
2% is a divisor of the order of C/(#m;) and therefore | Ny | = 2°, which contra-
dicts the Proposition 8.

Thus I(N) = 3 also yields to a contradiction and Proposition 10 is proved.
We conclude that all the centralizers of the involutions in G are solvable. This
however contradicts Proposition 1 and so completes the proof of our lemma.

4. Proof of the theorem

By our lemma, all the 2-local subgroups of @ are solvable. In the following
T will always denote an S,-subgroup of G' and z an involution in Z(T). We
shall prove the theorem in several steps.

ProposiTion 11. Two different elements of Z(T') are never conjugate in G.
Each element of Z(T) is conjugate under G with an element of T\Z(T). If
Z(T) n T° # 1, with g € G, it follows that (Z(T), Z(T°)) < T n T°. It s
[Z(T)| =2o0r |Z(T)| = 4.

Proof. By a theorem of Burnside and by Glauberman [3], the first and the
second assertion follow. Supposev e Z(T) n T°. Then Z(T°) < C(») =T
and thus Z(T°) n T # 1. Hence also

Z(T) £ T° and (Z(T),Z(T°)) < TnT.
By the second assertion, for every s e Z(T)* there is some % € G, such that
"¢ T\Z(T). Thuss"eZ(T") n T, with T" % T and so
(Z(T), Z(T") £ Tn T
Because of maximality of 7 we have Z(T) n Z(T") = land also | Tn T"| | 2°.

Since
| (Z(T), Z(T") | = | Z(T) X Z(T) | = | Z(T) || Tn T"|

it follows that | Z(T) | = 2or | Z(T) | = 4. The proposition is proved.
In Propositions 12-20 we shall suppose that SCN3(2) 5 0, the case SCN3(2)
= 0 remaining to be considered in the following.

Prorosirion 12. Let U be an element of SCNs(T). Then the set Vig(U;2')
18 trivial.

Proof. By Gorenstein [4, 8.5.6] and by our lemma, the assertion follows,
because of maximality of T'.

ProrosiTion 13. If A belongs to U(2), then the set VIg(A:2') is trivial.

Proof. Let U*(2) be the set of B such that
(i) B < G and B is of type (2, 2),
(ii) N(B) = T°, for some g € G.
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Since we have supposed that SCNs(2) # 0, we have U*(2) 5 0.

Let N(B) = T, B e U*(2). Since|A(B)| =6,|T:C(B)||2 Suppose
that C(B) centralizes some non-trivial 2’-subgroup @ of G. Then C(B) = T
because of maximality of T and so | C(B) | = 2°. Since I(G) = 8, it must be
that | @ | = ¢ a prime. If U e SCN3(T), then by Proposition 12, V¢(U; 2')
is trivial. Thus U £ C(B) and therefore C(B)U = T. But now | % (U) n
C(B)| > 2°. Also B £ U, since otherwise U < C(B). It follows that
C = B(2(U) n C(B)) is elementary abelian of order at least 2°. Thus there
exists a subgroup Y with C < Y ¢ SCN3(T). Asabove wehave C(B)Y = T.
But now

B < Z(C(B)) n Z(Y) < Z(C(B)Y) = Z(T)

and thus C(B) = T, a contradiction. Thus for a B ¢ U*(2), C(B) centralizes
no nontrivial 2’-subgroup of G.

Therefore Hypothesis 7.1 of Thompson [14] holds, and by Lemma 7.1 of
Thompson [14], any subgroup A of G belonging to U(2) centralizes all the
elements of Y ¢(4; 2').

If1 5 HeVlg(4;2') then HA = H X A and thus H < N(A) =T, a
contradiction to 2 4 | H|. Hence Y4(A4;2') is trivial.

ProrosiTion 14. Let A e U(2) and A < H < @G, H a solvable group.
Then Oy (H) = 1, H/Oy(H) s faithfully represented on O(H)/D(0:(H)) and
Cx(0:(H)) < 0.(H). Moreover I(H) € {2, 8, 5, 7, 31}.

Proof. By Proposition 13, YI¢(A4; 2') is trivial and therefore Oy (H) =
By Gorenstein [4, 6.3.4], the first assertion holds. Since

[ O«(H)/D(0x(H)) || 2°,

we have | H/O.(H) | | | GL(6,2) | = 2°.3*.5.7°.31. Hence the second
assertion follows.

Prorosition 15. Let A € U(2) and let B be a p-subgroup of G satisfying
one of the following conditions:

(a) p=3and B = ZgO’I‘33||B|,

(b) pel5 7,81 andp’||B;

(¢) pef2,8,5,7, 31}.
Then the group (A, B) 18 not solvable.

Proof. Suppose the contrary holds. If (4, B) = H is a solvable group,
we can apply the Proposition 14. Denote E = 0.(H)/D(0.(H)). Since
| B | | 2, (H) < 7, H/0,(H) =~ L < A(E) and as GL(4, 2) and GL(5, 2)
have elementary abelian Ss-subgroups of order 3°, the assertion follows.

ProrosiTion 16. Z(T) contains no elementary abelian group of order 4.

Proof. Let H = N(U), U a nontrivial 2-subgroup of G and O.(H) < T.
Then U < Tandso Z(T) < H. Since Z(T) e U(2) we have, by Proposition
14, that H/O:(H) is faithfully represented on O:(H)/D(0Oy(H)). Suppose
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there is in H a non-cyclic S,-subgroup P, for an odd prime p. Then9 < | P |.
Since I((H) < 7and 0.(H)P < H, it follows that | 0.(H) | | 2°. Any element
8 € Z(T) has | P| different conjugates under P. Since Z(T) < Z(0:(H)),
0:(H) has, by Proposition 11, at least | Z(T)* || P | > 3-9 = 27 involutions
in its center. Consequently, O;(H) is elementary abelian of order 2° and
| H/O,(H) | = 3’ Since 0,(H) < H and 0,(H) < T, it follows that
2%.3? l | N(Os(H)) |, a contradiction to I(G) = 8. Thus all S,-subgroups in
H, for odd primes p, are cyclic. Therefore we can apply the theorem of
Janko [10]. But none of the groups in the list of the theorem satisfies our
conditions. The assertion follows.

ProrosiTioN 17. Suppose that Z(T) contains a cyclic group of order 4.
Let t be an involution of G and C = C(t). Then | C | = 2°3° with a ¢ {3, 4, 5,
6) 7}’ ﬂe {O’ 1}'

Proof. Let T'n C be an S;-subgroup of C. By Thompson [13, Lemma 5.38],
C(t) contains a subgroup 4 € U(2). By Proposition 14, 0»(C) = 1 and
C/0:(C) is faithfully represented on 0:(C)/D(0:(C)). It follows that
®Z(T) < 0:(C) and so (HZ(T) < Z(0:(C)) = X. Obviously, we may
assume that ¢ is non-central. Let P be an S,-subgroup of C, p an odd prime.
Then X = Cx(P) X [P, X] and P is represented faithfully on & (X) as
Z(T) < X. Assume|P| > 3. Then | 2(X) | > 2*and hence | X/0'(X) |
> 2" But|0'(X)| > 2 asze0'(X). This is however a contradiction to
I(C) £ 7. The proposition is proved.

ProrosiTioN 18. Z(T) contains no cyclic group of order 4.

Proof. Let N = N(U), where U is a nontrivial 2-subgroup of G. Suppose,
there is an odd prime p such that p | | N | and let P be an S,-subgroup of N.

Obviously, we can suppose, that U is elementary abelian and also that
N n T is an S;-subgroup of N. Denote M = C(U).

Clearly | U| < 2°. If |U| = 2’ it would be | Z(T)U | > 2° a contradic-
tionto I(N) < 7, because Z(T)U < M < N.

Suppose | U | = 2'. Since I(N) < 7 it must be U n Z(T) = (z). Now
N = (UZ(T))P, with | P| = p’, and UZ(T) is abelian. Itis M = C(U) =
UZ(T), because none element of P¥ centralizes z ¢ U. Now

(z) = B'(M) char N,

which contradicts C(z) = T.

Suppose next, that | U | = 2°or 2°. If U n Z(T) = (2), then z ¢ U would
have p° > 9 conjugates in U, which is impossible. Therefore U n Z(T) = 1,
UXZ(T) <M. Assume first, that O (N) % 1. Then M > UZ(T)0«(N)
and Ox(N) =< Z; by Proposition 17. But Z; has not an automorphism of
order 4, which contradicts C(Z(T)) = T, Z(T) < N. Thus O»(N) = 1.
By Gorenstein [4, 6.3.4], N/O(N) is faithfully represented on
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02(N)/D(02(N)). Therefore
Z(T) < 0(N) and |O0x(N)/D(0:«(N))| 2 2,

as p2| [N/OAN)|, p # 2. It follows that |Oy(N)| = 2° and
{z) = D(02(N)) char N, a contradiction to C(z) = T.

Suppose at last that | U| = 2. Then Proposition 17 contradicts the as-
sumption p* | | N(U) |.

We have proved that p*/ | N(U) | for all nontrivial 2-subgroups U, if p is
an odd prime. Hence all S,-subgroups of N(U) are cyclic and we can apply
the theorem of Janko [10]. This yields a contradiction again as in the proof
of Proposition 16.

ProrosiTionN 19. Let Z(T) be cyclic of order 2 and t an involution of G,
C = C(t). Then|C| = 2%, pel3,7},xe{23,4,5,6,7),8e{0,1}. If
0:(C) is not abelian, then p = 3.

Proof. Let T n C be an S.-subgroup of C. By Thompson [13, Lemma
5.38], C contains a subgroup A ¢ U(T). By Proposition 14, we get O (C) =1
and C/0:(C) is faithfully represented on 0:(C)/D(0:(C)). Therefore
Z(T) = () < 0,(C). If Cis a 2-group the assertion holds. Thus we can
suppose that C is not a 2-group and sot ~¢ 2. Wehave (z) X () £ Z(0:(C)).
Also | 0:(C) | | 2° because otherwise 0:(C) would have a too large normalizer.

Assume first that 0:(C) is not abelian. Then | Z(0:(C)) | | 8 and since C
is solvable, there exists a Hall 2’-subgroup B of C. Because of C(z) = T and
z wgt, it must be that | B| < 6 andso |B| = 50or3. Butif |B| = 5,
then | Z(02(C)) | = 8 and B acts faithfully on Z(0.(C) ), which is impossible.
Therefore | B | = 3, if 0(C) is nonabelian.

Assume now that 0,(C) is abelian. Let B be again a Hall 2’-subgroup of
the solvable group C. Then | B| 4+ 2 < | 2(0:(C)) |. But

| 2(0:(0)) | < 2,

because T contains no elementary abelian subgruop of order 2°, as | Z(T) | = 2-
1t follows that | B| < 14 and thus | B|€{3,5,7,11,13} or | B| = 9. Let
%(0:(C)) = K. Then by Gorenstein [4, 5.2.3], K = Cg(B) X [K, B] and
B acts faithfully on [K, B] if | B | is a prime.

Therefore | B| # 11, 13. Suppose | B| = 9. Then | %(0:(C)) | = 16.
First let 0:(C) = ©(0:(C)). Then B acts faithfully on 0.(C) and thus on
[K, B]. The element z has precisely 9 conjugates under B because C(z) = T.
Therefore some conjugate of z under B is in [K, B] and thus all nine are in
[K, B]. It follows that [K, B] = K, a contradiction to ¢ ¢ Cx(B). Hence
0:(C) > %(0,(C)) and thus | 05(C) | = 2°. But now N(0:(C)) would be
too large, a contradiction. Thus|B | = 9.

If | B| = 5,then | K | {8, 16} as C(z) = T,ze K. Since B acts faithfully
on K, it must be that | K | = 16 and Cx(B) = 1, which contradicts ¢ e Cx(B).
The assertion of the proposition is completely proved.
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ProrostTion 20. Z(T) ¢s mnot cyclic of order 2. The assumption
SCN3(2) # 0 1s contradictory.

Proof. Tt is clear that the fi.st assertion, together with the Propositions
11, 16, and 18, implies the second.

Suppose that Z(T) = (z). By the theorem of Janko [10], we can suppose,
that there is an elementary abelian 2-subgroup A of G, such that N(A) = N
has a non-cyclic S,-subgroup for some odd prime p.

Let M = C(A) and aeA. Then M < C(a). Let C(a) n T be an S,-
subgroup of C(a) containing A. By Thompson [13, Lemma 5.38], C(a) con-
tains a subgroup BeU(2). By Proposition 14, O0x»(C(a)) = 1 and
C(a)/0:(C(a)) is faithfully represented on 0:(C(a))/D(0:(C(a)). Thus
Z(T) = (2) < 0:(C(a)) an M < M. Obviously z € O,(M).

Suppose that Ox(N) % 1. Then [0x(N), Ox(M)] = 1. because O.(M)
char M <{ N. But this is impossible, as z ¢ 0.(M), C(z) = T.

It follows that Ox»(N) = 1. Now N/Oy(N) is faithfully represented on
0:(N)/D(0x(N)). Since I(N) < 7 and p*|| N/Oy(N) |, p an odd prime,
it must be that

| 0x(N) [|2° and | 0«(N)/D(0(N)) | = 2.

If | 0o(N) | = 2°, then | 0.(N)/D(0(N)) | = 2*, because G contains no
elementary abelian subgroup of order 2°, as | Z(T) | = 2. Hence

D(0y(N)) = (d) char N, with |d| = 2.

It follows C(d) > N, a contradiction, as p* { | C(d) |, by Proposition 19.

Thus O;(N) is elementary abelian of order 2'. We can obviously replace
A by 0y(N) and set A = O,(N). Since p*||GL(4, 2) | it must be that
p = 3and [N | = 2°3°. Moreover, an Ss-subgroup P of N is elementary
abelian.

Let R = NnT. Then R is an S;-subgroup of N. Let By < T, R, > R
and | Bi:R| = 2. Then A 4 R;, R < R, and thus there exists some r € Ry,
with AA” = R. We see that A has a complement in B and therefore also in
N. WegetN =A4AK,AnK =1,with K < N. We cansuppose that P < K.
Then P <] K, K = P(s), with | s| = 2. Sincez € 0(M) < 0y(N), it follows
that 2 € A and 2 has 9 conjugates in A under N. We denote the set of these
conjugates with Z.

Let 1« A¥\Z. Then Cp(x1) = (my), with |mi| = 3. If m e P\(m,), for
22 = 11", 23 = 22 it holds Cp(x1) = Cp(x2) = Cp(xs), 2122 = x3, because
21 has not more than three conjugates in A under T and because of Proposition
19. Similarly, there is an element

y1e A\B\{a1, 22, x4}
with Cp(y1) = me, |me| = 8, and for y» = 1%, ¥s = yz*, we have
Ce(y1) = Ce(y2) = Ce(ys) and w1y = ys.

One easily checks, that P = (my) X (m.), and we may assume that m = ms .



ON FINITE SIMPLE GROUPS OF LENGTH 8 415

Let A1 = (@1, ), A2 = (y1,¥2). Thend = 4; X 4,.

Consider now the action of s on O(N)P. Let A(s) < S < T and
veS\A(s). Then A(s) = AA® and Z(A(s)) > A n A°. Since N/A acts
faithfully on 4 = O0y(N), it follows that C(4) = A and thus A(s) is not
abelian. Hence Z(A(s)) = C4(s) = A n A’ is of order 8 and thus s fixes
precisely 8 elements of A.

The element s fixes the set 4; U A,. If A7 5 A, then we can suppose
21 = y1. We now have z3 # x5 because 2z 23 = 21 . For the same reason it
is not true that z2 = ., 23 = xs. Thus a; = y;, with 4, j ¢ {2, 3}, implying
that s fixes only 4 elements in 4, a contradiction.

Therefore A7 = A;and A2 = A;. Now we can suppose without loss, that
Yi= %, Y2 = Ys = Y1¥e, &1 = 1, &z = X, because | C4(s) | = 8 and
A = A; X A;. One easily sees that this implies mj = m;' and mj = ms.
Thus we can write

3 3 m m
N={(xt1,2,%,%,m,m,s|m=m=121"=2,29% = 2122,
m. m 8 8 -1
Y1t =Y, Y2 = 1Y, Y2 = Yrye, M= my ).

Consider again S and v chosen as before. We have

Z(A(S)) = (@, 2z, y) < 8.

Since Z(T) = (2) is of order 2, it must be that | 2(Z(S))| < 4. But
2 (Z(8)) contains the group Cz(sy(v) and therefore is of order at least 4.
Consequently, €,(Z(8)) = Z(8) = Cazusy(v) and this group is of order 4,
because C(A) = Aand 4 < 8.

Let Z(S)* = {s1,8:,2}. Now (s1,8) < T and 2°| | C(s1) | = | C(ss) |,
assi~rs. If [C(s)| = |C(s) | = 2, then N(C2(Z(8))) > (C(s),
C(sz)) and thus C(s1) = C(sz). Since Z(T) has order 2, this implies s; = s,
which is a contradiction. Therefore C(s;) are not S,-subgroups of G and es-
pecially s; g2, for< = 1, 2.

Itis Z(8S) < Z(A(s)) = (x1, %2, %). Butsi,s; are not central involutions
and hence s1, Sz € {Z1, 22, Ts, Y1}. Also s182 € (1, T2)y1, 888182 = 2. Thus
Wwe can suppose Sy = Y1, Se = Z;, for some 7 e¢{l, 2, 3}. It follows that
m~m~Tg~yp~ye~yand | C(x) | = | C(y) | = 2°-3,fori = 1,2, 3,
as 81 ~r 8 and (my) < C(x1).

Consider again A(s) = AA®. Since | Z(A(s)) | = 8 one can easily see,
that all the involutions of A(s) are contained in 4 U A°. Thus s e 4"\4
and A(s)\A contains precisely 8 involutions which belong to A* = C.(S) X
(8). Here C4(s) = {(z1, 22, ¥1), as one checks directly. Since the groups 4
and A° are conjugate and C4(s) contains 4 non-central and 3 central involu-
tions, A"\ A must contain still 2 non-central and 6 central involutions.

Since ms = m., s is not central. Also y1'? = y; and thus (y18)™ = .
Therefore y1 s and s are the both non-central involutions of A™\4. We see,
that oy ~ 2o ~ 25 ~ y1 ~ Yo ~ ys ~ 8 ~ y1 8 form a class of involutions in
A (s) under G, all the others involutions of A (s) being central in G.
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We have proved that | C(y1) | = 2°-3 and that A (s, m) < C(y1). We can
suppose that 4(s) < 8 < C(y) with T = N(8), S being an S;-subgroup of
C(n). Now (8, me) < N(A(s)) and hence N(A(s)) = C(y1). In S\A(s)
there exists an involution ». Otherwise A(s) = @(8) < T, a contradiction.
Weget S = (1,42, 1, ¥2,8,0v). Wehave

(@1, 2, 9) = Z(4¢)) 1 8.

Since 1 € Z(S), we have (x1, 22)’ = (21, 22) and 80 (21, x2) <I S. We can
suppose that x; = x;, Ziq1 = 42, for some ¢, where the indices are taken
mod 3. Here we have used the fact that Z(T') is of order 2. On the other
hand (y1, 1) 1 S, as 4 1 S. Especially (51, 12)’ n (A(s)\A) # 0. Since
Y1 = W1, it follows that y3 € {s, y18}. Now

v L
S=<w!,m2)yl»y2’3)”]x‘ =i, Tit1 = Ti41 Ty,

Y= thip, ¥r =y s, 8" =yl )

where i€ {l1, 2, 3}, 2 €{0, 1}, and 21 2> = 25.
Obviously Z(8) = (z;, y1). From here we get

8/Z(8) = 8 = (Fit1,5,50|9: =58 = f)

where M = mZ(S) for m ¢ S. One can easily compute that Z(S) = (Fi1,
2 8) and therefore

Zy(8) = (@i, y1, Titr, Y28) = (w1, 22, 12 8) = (&1, 22) X (2 8).

But now (%2:8)* = w(y12) = »1. Thus (1) = 0'(Ze(S)) char S A T. It
follows that C(y,) = T, a contradiction, because s; is not a central involution
in G.

Thus, Z(T') is not of order 2, and the Proposition 20 holds, as noted at the
beginning of the proof.

Now, we are in the position to prove our theorem.

From Proposition 20 it follows that SCN3(2) = 0. Thus we can apply the
theorem of Janko-Thompson [11]. One can easily see, that among the groups
listed in this theorem only PSL(2, 127) satisfies the conditions of our theorem.

The theorem is proved.
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