
ON FINITE SIMPLE GROUPS OF LENGTH 8

BY

1. Introduction
Let G be a finite group. Let H0 > H1 > > H be a chain of subgroups

of G, where H is a proper subgroup of H_I (1 _< i _< n). Then we say that
the chain has length n. For a fixed group G we denote by (G) the maximum
of chain lengths, where the chain ranges over all possible ones. We call (G)
the length of G.
The purpose of this paper is to prove the following

THEOREM. Let G be a finite simple group of length 8 with S-subgroups of
order 27. Then G is isomorphic to PSL (2,127).

Using this statement together with the recent results of D. Gorenstein and
K. Harad on finite simple groups with S-subgroups of sectional rank 4 and
the characterization of finite groups with abelian S-subgroups of J. H. Walter
[15], one can obtain a classification of all finite simple groups of length 8.
More precisely, we have the

CORO’LAIY. Let G be a finite sinple group of length 8.
abelian S-subgroups or S-subgroups of sectional rank 4.
known group.

Then G has either
Especially, G is a

Proof of the corollary. Let T be an S-subgroup of G. Suppose that T is
neither of sectional rank 4 nor abelian. Then T 26, T’ 1 ad either
IT/D(T) 25 or there exists an elementary abelian subgroup E of T of
order 32. Assume that T/D(T) 25 Now T’= D(T) {z, z 1.
By a theorem of Glauberman [3], there exists an element z, z -a z, zl e T\
(z). It is Cr(z) >_ 25, as T’J 2. Since (z) 31(T), for all S-sub-
groups T of C(z), it follows that z Z(T) and Cr(zl) is elementary abelian of
order 32.

Thus, in any case, T contains an elementary abelian subgroup E of order 32
and IZ(T) >- 2. If JZ(T) 2, then JT/Z(T) 2 with iT,El
2, Z(T) <_ E, and we get a contradiction by a result of Harad [ha]. There-
fore Z(T) 2. Let be an element of order 4 in T and z an inovlution in
E\Z(T). Then zl (Z(T), t) and by a result of Thompson [13, Lemma 5.38]
z a z for some z e Z(T). Since E <:l T _< C(z), for some S-subgroup
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T1 of C(zl), and T T, it follows that N(E) (T, T) TP, where P
is a subgroup of odd prime order.

Suppose that N(T) > T. Then N(T) TQ, Q a subgroup of odd prime or-
der. It is not Q

_
N(E), because T N(E). But there are at most two ele-

mentary abelian subgroups of order 32 in T, a contradiction.
Therefore N(T) T. By a theorem of Burnside, it follows that two distinct

elements of Z(T) are never conjugate in G. Let v be an involution of

Z(T) n Z(T)

_
Z(N(E)) E.

Since N(E) is maximal in G, we have C(v) N(E). Also Z(T) Z(T) >- 23.
By a result of Glauberman [3], there is an element vl e T\Z(T), v "a v. Now
C(v) C(v) and C(v) C(vl) contains i (Z(T), vl) with M 25. Since
M contains the S2-subgroups of Z(C(v)) and Z(C(v)), we have

V-- Z(C(v)) Z(C(vl)) 1.

It follows that C(V) >_ (C(v), C(vl)) G, a contradiction. The corollaryis
proved.

In the whole paper G will denote a finite simple group satisfying the assump-
tions of our theorem. Moreover, if a group is given by its generators, then
the generators whose order is not stated are involutions, and the pairs of ele-
ments whose interaction is not stated commute, e.g.,

E (a,b, cl) (a,b, cla b c 1, a a a,b b).

The other notation is standard (cf. Thompson [13]).

2. Some known and auxiliary results
Finite simple groups with short chains of subgroups were investigated by

Z. Janko in his papers [8] and [9], and by K. I-Iarada in his paper [5]. They
have proved the following theorems, which we shall use frequently:

THEOREM OF JANKO [8]. Let G be a finite non-abelian simple group whose
length l(G) is at most four. Then G is isomorphic to PSL (2, p), where p 5
or p is such prime that p 1 and p 1 are products of at most three primes
and p =- +/-3 or +/-13 (mod 40).

THEORE O JNO [9].
length (G) is at most five.
power q.

Let G be a finite non-abelian simple group whose
Then G is isomorphic to PSL (2, q) for some prime

THEOREM OF HARADA [5]. Let G be a finite non-abelian simple group whose
length (G) is at most seven. Then G is isomorphic to one of the following groups:
PSL(2, q) for a suitable prime power q; PSU(3, 3); PSU(3, 52); A, the
alternating group of degree seven; Mu the Mathieu group of degree eleven; J
the first Janko group’ of order 175560.
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We note that l(J1) l(AT) 6 and l(M) I(PSU(3,3))
I(PSU(3,5)) 7.

We shall often need the following

CRITERION OF NONSIMPLICITY. Let G be a finite group of even order with
the properties:

(i) An S-subgroup T of G is maximal in G.
(ii) There is an involution in T, such that T C (t) I. is greater than 2

and C (t contains precisely two conjugate classes of involutions under G.
Then G is not sbnple.

Proof. Suppose that G is simple. By a theorem of Burnside it follows from
(i) and (ii) that Z (T) is cyclic. Let z be the involution of Z (T). If u is an
other involution of T then the following relations are obviously equivalent"

(a) u eZ(T),
(b) (u, z} <:] T,
(c) T’Cr(u) 2.

Assume at first, there is an involution u in Z. (T)\Z (T). Then by (b),
(u, z} <:l T and so (u, z} e (J (2). Hence by Lemma 5.38 of Thompson [13]
the group C (t) contains a conjugate u of u. By a result of Harada [5, p. 663]
and by (c) it follows ul -o z and T i:i C (ul) I 2. Thus by the condition
(ii) of our criterion we have z ul t, which contradicts the same condi-
tion.

Therefore, z is the unique involution in Z (T). Now, by (c), the group T
contains no involution v with IT: Cr(v) 2, and by (b) no elementary
abelian normal subgroup of order 8. Since also T is maximal in G, all the
conditions of the main theorem of Janko-Thompson [11] hold. But none of
the groups in the statement of this theorem satisfies the conditions of our cri-
terion.
Hence G is not simple. The criterion is proved.

In view of Lemma 5.38 of Thompson [13], our criterion has the following

COROLLAaY. Let G be a finite simple group of even order with the properties:
(i) An S-subgroup T of G is maximal in G.
(ii) There is an involution in T, such that C (t contains precisely two con-

jugate classes of involutions under G.
Then G has precisely two classes of involutions.

3. Solvability of 2-local subgroups
We shall prove at first the

LEMMA. Let G be a finite simple group of length 8 with S-subgroups of order
27. Then all 2-local subgroups of G are solvable.
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Proof of the lemma. Suppose a 2-local subgroup H of G is not solvable.
We show in several steps, that this assumption is contradictory. The fol-
lowing propositions are all proved under the above assumption.

PROPOSITION 1. In the group G there is an involution such that the cen-
tralizer C of in G is not solvable.

Proof. We can suppose that H N (E), where E is elementary abelian.
By Huppert [6], l(H/E) >_ 4 and so l(E) _< 3. If l(E)

_
2, then C(E) is

not solvable because A (E) is solvable. Let be EI 28. Now H/C (E) is
isomorphic to a subgroup of PSL (2, 7) and HIE is a simple group of length 4.
Thus H C (E). The assertion holds for some e Ea in both cases.

PROPOSIrION 2. If C/ (t} is simple, then C (t} X F, where F " PSL (2, q)
for some prime power q.

Proof. Since l(C/(t)) is at most 6 it follows by Harada [5] that C(t} is
isomorphic to PSL (2, q) for some prime power q, or to the first Janko group
J1 or to the alternating group A.

Let S be an S,.-subgroup of C and T an S,.-subgroup of G containing S.
Then (t} Z(T)

_
Z(S). Suppose first C/ (t) PSL (2, q), with8 q 9.

Then the Schur multiplier of C(t} equals 2, as I(PSL(2, pl)) >_ 7 for.f >_ 4.
Since S is not generalized quaternion we get C (t) X F with F -- PSL (2, q).
If C (t} . PSL (2, 8) or PSL(2, 9), S is elementary or a direct product of
(t} and a dihedral group of order 8 respectively, because all involutions in
C(t} are conjugate, and thus C splits over (t} by Gaschtitz [2], as there are
involutions in C(t).
Suppose now that C/(t} J or AT. As in the both cases just considered

we have C (t) X F, with F . J or A respectively, for the same reasons.
But every involution in F and therefore also in C contains a 3-element in its
centralizer. However, for a central involution z of G in C the group C (z) is
an S-subgroup of G, a contradiction.

PROPOSITION 3. The group C/ (t} is not simple.

Proof. Assume ClOt} is simple. By Proposition 2, C (t) X F,
F PSL (2, q), q pl, p a prime. Moreover f

_
3 for p 2. Therefore

an S-subgroup V of F is elementary of order 8 or dihedral of order at most 32.
The group S (t} X V is an S.-subgroup of C. Since the involutions of F
are all conjugate under F and S (t} X V is not an S.-subgroup of G there
are precisely two classes of involutioas in S under G. Applying our criterion
we get a contradiction if V is smaller than 32. Thus we can suppose that
V --- Ds., the dihedral group of order 32.
Let T be an S-subgroup of G containing S. Since C (z) T for any in-

volution z in Z (T) it follows that F " PSL (2, 31 ). We can write

V (a, bla6 1, a a-1)
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for some a, b V. Obviously (aS) 21 (1 (S)) <:] T and therefore C (as) T.
Choose v e T\S to be an element of smallest possible order. By a result of

Harada [5] it must be v vl for some vl. e S and some x e G. It is clear that
xcT.

If Iv > 2 it follows v1/ a x-lvll/x Since a t, ta,
tab for all and x T, we get v ab for some i. It is (a) i (S) < T

and thus (a) a,e{1,3}. Now (a) (a)’ a (a’) a-,
a contradiction.
We conclude that vl 2. Since

(a ,t) Z(S) < T and veC(as)\C(t)
a ab andit must be t" tas. Since tab ta ,-( ab we have b

a" a. Usingv lweget--- 1 (mod 16); t(1 - y) 0 (mod 16).

Replacing b by aXb for a suitable , we can assume, that

(,, )e {(1, 0), (1, 8), (7, 0), (9, 0), (15, 0), (15, 1)}.

Consider $1 (t, a b). We have N,((as, b)) . Y,4 because
F.PSL(2,31). AlsoN1 N(S)nC (t) X N,((aS, b)), iNI 2’.3
and C(S) S C(b) S.

Suppose N < N(SI). Then N(S):NI 4 because is under N(S)
conjugated into {tz, tb, tzb} and this set is a conjugate set under an 3-element
of Np((as, b)). Therefore N(S) 26"3 and N(S)/SI Y,4, the sym-
metric group of degree four, because A (S) " PSL(2, 7). It follows that
O.(N (S))I 25. NOw a and b have under N (S) precisely three con-

jugates and so C(b) n N(S) and C(as) N(S) are S-subgroups of N(S).
It follows

O_(N(S1)) _< C(b)C(a and IC(b)Sl >- 24
as T" S 2. But C (b) S S with S 2, a contradiction.
Thus N(S1) N. Itfollows Nr(S) 24 and so Nr(S) <_ S. But
T\S and (t, aS) (t, aS), therefore b T\S. We conclude that

(,, ) --- (15, 1 ), and

tas,a -1 a b ab).T (t,a,b, vla16 1, a a-1,
Now a"v 2, ta"v 4, ta"bvl 32 for all a, r.

Suppose tv is fused with an element of S, i.e. x-ltvx s, with s e S, x e G.
Since s (tv) as, it would follow x e C (as) T which is not possible.
Hence W is not fused with any element of S. By a simplicity criterion of
Harada [5] must (tv) a be fused now with an element in T\S. We can
obviously suppose that v as. But ta4 Cr(v) and (ta) v, while the
square of each element of order 4 in T C (as) equals as, in contradiction
with v as. Proposition 3 is completely proved.
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PROPOSITION 4. Let N be the maximal solvable normal subgroup of C and
K/N a minimal normal subgroup of C/N. Then K/N is simple and uniquely
determined. Moreover Cc/(K/N) N/N. Thus C/N is isomorphic to a
subgroup of A (KIN).

Proof. The simplicity of KIN is obvious. If K/N is also a minimal nor-
mal subgroup of C/N, we haveK K orK nK N. But fromK K N
we get iK/NI] K/N KK/N]IIC/KII KIN I, and so
a contradiction to (C/K) <_ 2, and to l(K/N) >_ 4 by Huppert [6]. There-
fore K K and K is unique.

Set Cc(K/N) L/N. We have K L N, as KIN is non-abelian.
It follows that L/N I[] C/K I. But l(C/K) <_ 2, L < C and so L is solva-
ble. Therefore L N.

PROPOSITION 5. We have N >

Proof. Assume N (t}. Then by Proposition 3, K C. Thus
l(K/N) _< 5 and by Janko [9], KIN . PSL(2, q), q a prime power.
Assume that 2 C/K ]. By Proposition 4 and by Dieudonn6 [1] it must

be KIN
_

PSL (2, pa) for some prime p. As in Proposition 2 we conclude
thatK (t} FwithF-PSL(2, pa). Sincel(F) _< 5, we havep 2
or p 3 and we get a contradiction in both cases applying our criterion.

Therefore 21] C/K I. Moreover C/KI 2. For otherwise we would
have l(K/N) 4 and so, by Janko [8], K/N . PSL (2, p), p >_ 5. Hence
by Proposition 4 and by Dieudonn6 [1], it follows that C/N . PGL (2, p)
and so C/Ki 2, a contradiction.
Assume now that p 2. Since (PSL (2, 2) >_ 6 forf >_ 4 and PSL (2, 4)-- PSL (2, 5) we can suppose that K/N --- PSL (2, 8). But now
3. K/N ], a contradiction to lC/Ki 2.
Thus we can assume that p 2. Let S be an S2-subgroup of C

andS SnK.
We prove next that for each S2-subgroup T of G containing S, we have

Z(T) nS 1.
Assume conversely that there is an S-subgroup T of G containing S such

thatZ(T) S 1. BecauseZ(T) _< Sand S’SI 2wemusthave
Z(T) (z) with zl 2, and S S X (z). AsK/N

_
PSL(2, p),

p 2, l(K/N) <_ 5, we have f _< 3. If f 1 or f 3, then by Proposition
4 and by Dieudonn [1], we conclude that C/N PGL (2, p). But an S-
subgroup of PGL (2, p) is dihedral of order of least 8, a contradiction to
SIN S/N (z}N/N. Thus f 2, KIN PSL(2, p). Since
l(K/N) <_ 5, we must have p] 3. So we can assume that

KIN PSL (2, 9) A
We have A (K/N) . PFL (2, 9) and this group contains two subgroups iso-
morphic to PGL (2, 9) and to 2, the symmetric group of degree six, respec-
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tively, whose intersection is PSL (2, 9). Moreover

PrL (2, 9)/PSL (2, 9) . Z Z.
Thus by Proposition 4, C/N is isomorphic to one of the three subgroups of
index 2 in PrL (2, 9), which contain PSL (2, 9). The corresponding S2-sub-
groups can be easily computed and one gets

B1 -- (a, b a 1, a a-l,
B2 (c, d,f c 1, c c-),
B . (af, b (af) 1, (af) (af)) with e{3,7},

where B, B., B correspond to PGL (2, 9), and to the third of the men-
tioned subgroups respectively. It holds SIN - B for some i, i 1, 2, 3.
ButlZ(B1) Z(B)I 2 and therefore S/N- B, aslZ(S/N) >_ 2.
We get C/N --_ Y,. Hence (z, t)/(t) has an element x(t)/(t) of order 3 in
its centralizer. We can assume that xl 3 and we have (z,
But x acts nontrivially on (z, t) as z C (z) T, which is a contradiction to
z -a t. Our assertion is proved.
Thus for each S:-subgroup T of G containing S, Z (T) S 1. In the

following let z be an involution of Z (T) S for some T.
The group S/N is dihedral of order at most 16. Assume first that

S/N ’ D, D, denoting the dihedral group of order n. We know that all
involutions of S/N are conjugate under KIN. This fact and z e $1 imply that
S (t) X So, and hence it follows that K N X F, with F . PSL (2, p),
by a result of Gaschtit [2]. Obviously F char K and so F <:] C. We have
z t’f, {0, 1}, f e F and Co(f) is a 2-group because C (z) T. Therefore
p 5, F ._ PSL (2, 5) A. By Proposition 4 and Dieudonn [1] it fol-
lows that C/N -- PGL (2, 5) 2 and so SIN

_
Ds. Thus Z (S) is of order

at most4andwegetZ(T) (z). LetV= (v,v.]) SF. IfceS\S,
then c e N (S) N (F) <_ N (V). Moreover, by our criterion we can suppose
that c 1. Thus we can write

V2>.S (t, v, v, c v2 v

Now, 81(S) (v>, and Z (S) (t, v) (t, z). We conclude that v z
and tz. As known, there is a subgroup R of F, R 3, with VR A.
Therefore tvi tv2 , tva and z v , v2 vv. Hence
N (S) 2" 3 or N (S) 2s" 3, since N (S) a C SIC.
Assume first that IN (S) 2’3, i.e. N (S) SR. Let s T\S with

s2Sand(S,s> T. Then

cT1 (t, Vl, v2, c, sit tyl, Y2 Vl v2, v2 Vly2 c,

Nowi 1, becausesNrl(S1) S. Since I.cl 4itmustbe/ 0,
i.e. v2" t"vc. Hence (vl v)’= t"v+c and we see that S has precisely two
classes of involutions, in contradiction with our criterion.
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Therefore N ($1)1 26’3 and tvj tv tvl v under N ($1). We
easily check that C ($1) $1 and therefore N (St)/S - Y,4, N ($1)/S being
isomorphic to a subgroup of PSL (2, 7). Hence O (N (S)) M is of order
2 and a Sa-subgroup R of C (t) n N ($1) acts faithfully on M/S. It follows
that C (t) n M $1 and so tvl ti tvl i under M. We can now
apply the theorem of Janko-Thompson [11]. As none of the groups of its
statement satisfies our condition it follows that there is an involution s in T
with ICr(s) 26 But now, s -a z, because otherwise N(Cr(s)) >_
(T, C (s)} would be too great. We have (z, s} <l T and there is a conjugate
(ua, us I) of (z, s) in S, with (ux, us) <1 C (u u.), and C (u u.) 27, by
Lemma 5.38 of Thompson [13]. The elements ul, u. are conjugate neither
with nor with z. Therefore ua, us belong to the set {c, vl c, tc, tv c}. As
uj us is a central involution it follows

(u,u){(c,vc), (tc, tvxc)} and (u,u2) <l C(uu) C(vx) T.

There isaueMSwitht tv. Alsov’ vl, sinceZ(S)

_
Z(T) and

z va is the only central involution in Z (S), and thus T is unique, MS < T.
Hence with u tc, e {0, 1}, we get (t"c)" tv c, {0, 1}. But on the

(t) i.e.other hand (tc)’ tv c hence c v c and we get (t)
tva v tv a contradiction.
Thus Sa/N D4.
Suppose next that S/N -- Ds. By Janko [8], [9], we have

KIN -- PSL(2, p) and l(K/N) 5. It is IZ(Sx) 4 and thus
Z (S) (t, z i). Since all involutions in K/N are conjugate we see that S
possesses 11 involutions and 4 elements of order 4. Let (t, z, a I) be an ele-
mentary abelian normal subgroup of Sx. Then we can vrite

S (t, z, a, b la t"za) (t) X (a, b).

Thus, by a result of Gaschtitz [2],

K (t) XF, with E.PSL(2, p).

We have F char K char C and so F char C. Also K contains the element z
with C(z) T. From this we conclude that F _-- PSL(2, 7) or

h h-). WeF = PSi (2, 9 ). Let beceS\S,St3F (h, k h 1,
have

S (t,h,k, clh l,c t’h"k,h h-x,h h,k hk>.
One easily sees that S’ <_ (h) and especially t2 (S’) (h). Assume first
that F --- PSL(2, 7). Then by Proposition 4 and by Dieudonn6 [1],
C/N -- PGL(2, 7) and S/<t) D6. Thus IZ(S) 4, and hence
Z(S) (z, t) <t,h),Z(T) (z). Since (h)charSwegetz hand
-. zt. All the involutions in F are conjugate in F. If there are no involu-

tions in S\S1, then there are exactly two classes of involutions in S under G,
by a result of Glauberman [3], and by our criterion we get a contradiction.
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Thus we can suppose that c 1 and we can write

S (t,h,k, clh 1, h h-,h= h,l= hk}.
Now S (t) X (h, k, c) and by a result of Gaschiitz [2] we have

C (t} XF with FPGL(2,7) and F <F.
Since an S0.-subgroup of F1 is isomorphic with D16, we now have

S (t,d,/ld 1, d d-) with d h,

for some d S\S. We have under S seven classes of involutions in S with
the representatives z d4, t, zt, k, tic, dk, tdlc. But z It, tz tk under F
and tz under T, and so z It, tz tk. Thus there are at most four
classes of involutions in S under G with the representatives z, t, dk, tdlc, all
involutions in S being fused either with z or with t. Applying the theorem of
Janko-Thompson [11] we conclude that there is an involution s in T with
Cr(s) 26 and s q z, s a t. By Lemma 5.38 of Thompson [13], there

is a conjugate (ul u. I) of (z, s) in S with (u, u2) <3 (u u2) and u us z. Now

Ul us {dr:, d3.lc, dSk, dTk, t, tdl, td3k, tdSk, tdTk} and [Ul, us] 1.

Since td d z and ulus z it must be that ulu. z and
]Cr(u)l 26 for i 1, 2. But then Cs(u) >_ 24 a contradiction to
Cs(u) (ui) X Z(S) for i 1, 2, as one can directly see.
Thus we can suppose that F " PSL (2, 9) _-- A6. We conclude as before

that C/N is isomorphic to one of the three subgroups of index 2 in PFL (2, 9
which contain PSL (2, 9), and that SIN is isomorphic to one of the following
groups: D6, $16 the semidihedral group of order 16 or Z.
The case SIN

_
D6 yields to a contradiction in the same way as in the case

F PSL (2, 7). Suppose next that

S/N S6 (a, b a 1, a aa).
Here S/N . (a2, b> and therefore all involutions of S are in S. Also
Z(S/N)] 2 and thus Z(S) (t, z), Z(T) (z). But $1 (t) X
($1 o F) and there are 3 classes of involutions in S under K, with the repre-
sentatives t, tz, z. By the theorem of Glauberman [3] we conclude that S
contains precisely two classes of involutions under G. Applying our criterion
we get a contradiction.
Thus we may assume that SIN -- Ds X Z.

with S/N (,3), c, d, feS, where xN for all xeC. In this case
C/N " .We had S (t, h, /c[h 1, h h-). Without loss of generality we
may suppose that c h, d /c and we get

S (t,h,k, flh 1, f t,h h-l,h h,k k}, e{0,1},
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as (h, k) <3 S. If f t, then (t) I(Z(S)) char S, which contradicts
SI IC(t) 12. Thus

S (t,h,k, fih 1, hA h-1)
By a result of Gaschtitz [2] we get

C (t) F with F
andF < F1,F (F,f},F--

All the involutions of FI\F have a 3-element in its centralizer and hence
there is no central involution in C\(t}F. Thus

(z (T)) < Z (,) (t,h

and tI(Z(T)) (z) is of order 2. Thus Z(T) is cyclic and z h, as
(h) S’. But Z(S) (t, h, f} is elementary abelian and therefore
Z (T) (z). Hence T containing S is unique and z h is the unique central
involution of G, which is in Z (S). Thus

S, N(Z(S))

_
T C(h).

Since Sj > S the element has some conjugate t in Z (S).
Let S < T < T. Then Z(T) a Z(S) >_ 4, and e(Z(T))i <_ 4,

as Z(T) (z). Hence t(Z(TI)) V

_
Z(S) is of order 4 and V <3 T.

With V (z, s i} we have o s --r sz o z.
In view of conjugance of all the involutions of F we get the following con-

jugate classes in S" t, h k hk hk hk, th tic thk thk th3k,
f hkf h3kf, kf hf hkf, tf thkf thkf, tkf thf thkf. Since
z is the unique central involution in Z (S) it follows that h
hk hk are all the central involutions of G in S. Also we easily see that

E (t,h,f,k) and E (t,h

re the unique elementary abelin subgroups of order 16 in S. Identifying
F with 2 we en tke h (1234) (56), k (12) (34) nd f (56). The
element r (123) normalizes E nd the element r (125) (346) normalizes
E.. We have

N(E1)_> (El,r,hk} W, and N(E2)_> (E,r,k} W.

Also W/E " W/E -- Y.. Since E and E. contain each precisely 3 central
involutions h, k, hk and h, hk, hak respectively, and IN (E)I 2’3p,
with p 1 or p a prime, it follows IN (E) e {23, 23}, for i 1, 2. But
(Ei, r) <1 N (E) and so all Sa-subgroups of N (E) are contained in C (t).
As mentioned, has some conjugate t. in Z(S) under T. Now
{r, r.)

_
C (t) C (t) because of symmetry and because of uniqueness of

E1 and E. in S. But Cz()(r) (t, f} and Cz()(r.) (t, hf} and so
Cz() ((r, r}) (t), a contradiction to t.
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Thus S/N Ds
We can therefore assume that S/N D. We have K/N " PSL (2, p/).

Since the Schur multiplier of KIN is 2 and (t, z)

_
Z(S) contradicting

K . SL (2, pr), it follows that K N X F, with F PSL (2, pr). We have
F -- PSL(2, 17) because all the involutions of F are conjugate and z e K,
C(z) T. By Proposition 4 and Dieudonn [1] we have C/N . PGL(2, 17)
and an S.-subgroup SIN of C/N is dihedral of order 32. Now

S (t, h,/[h 1, h h-),
with F S (h, ]) and

where xN, for xeS. We can set d k. We also have cl 16,
c h’t; c clot. Replacing if necessary h by h’, we get c t’h. Obvi-
ously F <3 C and thus Fn S <3 S. Hence (h, /c) <3 S and so
which yields p. We get

S (t,c,llc6 l(d t’h),c

We have Z (S) (t, cs) and S’ (h). We conclude that Z (T) (z), where
h4.z c Alsottc.

Since all the involutions of F are conjugate in F and C (F) it follows that
trththElforall e {0,1,2, ...,7}. SetB (t,h,h/). We have
C(B,) C(t) T C(h"k) B. By Huppert [7, II.8.16], the normalizer
of (h, h"]) in F is isomorphic to 2, because p 17. Thus N(B) 23.

In B, there are two conjugate classes under G"

"r th " thk ’ th+k and h .. hk h+k,
where L N(B ).
Hence o N(B,):Nc(B,) {1, 4} and N(B,):Nr(B,) 3. Assume

first, that 4. Since Nc(B,) >_ N(B)] 2’3, it follows that
Nc(B) N(B) and IN(B) 2.3. This yields INr(B) 2 and
therefore Ns (B) >- 2, a contradiction to Ns (B) <_ Nc (B) N(B,).
Thus o 1, i.e. N (B,)

_
C (t). Since Nr(B,) is an S-subgroup of N (B,),

wehave Nr(B,) Ns(B,) (t, h, hk} and so N(B) 2.3 for every
Suppose 1, i.e. c th and c tc. Now [t (S) S (t, h,/c}. We

have C (t) C (th) S. Since -r th, S is an S.-subgroup of C (th) also.
Also S <3 T, as S <:l T. Therefore (h’/) th’tc, as (h) h, t" th,
for every v T\S. Thus B B, is in C (t) of the same type as in C (th).
But then N (B,)

_
C (t) C (th) S, a contradiction. It follows that

0andweget

One can easily compute that S’ (c), Z(S) (t, cS}, Z(S) (t,
Z(S) (t, c} and t(S) (t,
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Let now v T\S be an element of smallest possible order. Because of the
above relations we can write

T (t, C, , V iC16 1, v tPc’k", t" tc8,
c c-*,c" toe ’,It" tck) with 2 .

In S we now have the following conjugate classes of involutio under S"
t, tc, , k c"k, ck c"+k, tk tc"k, tck tc"+k, for all th 2 a. But
also c c k, tc c t.

For B (cs, t, k0) with k0 an arbitrary involution of S(cs, t) we have, as
shown, N(B) g C(t) andallN(B) . Assume S S, for a weTS.
ThenB g Sn S andsoN(B) C(t) n C(tcS), ast tcs, whichisa
contradiction to 3IIN(B). Thus S n $7 (t, c) Z(S). But
S/Za(S) E and S (t, c, ck), as (t, c) is of exponent 16. We get
k" tcck tck cs, (tk )" tcStcck t+ck t t, for some in-
tegers , . We see that there are precisely 2 classes of involutions in S, which
contain and respectively. Moreover k" tck th 2 e.
For x S(t, cS), x 2, the group (t, cs, x) is of considered type B either

in S or in S and so

N((t, cs, x)) C(t) or N((t, cs, x)) C(tca).
Since Nr((t, h, h"k)) (t, h, h"k), we have

N,((t, h’, (h"k)’)) N, ((t, h’, hk)) (t, h, h"k) (t, h’, (h"k)).

Hence Nr((t, cs, x)) (t, c, x) and so x (t, cs, x), for all x and all w chosen
as above.

Let y t"ck S. Then y c+(-). Thus x t"ck with arbitrary
a, . Wehave

C80+ cck C(--1)C (tOC’) C

as2 . Hence80+ (-1) (modl6). If 0, then (-1)
(mod16) and it follows that r 0, e{1, 7, 9, 15}. If 1, then
8 + (-1) (mod 16) and we get r 0, {3, 5, 11, 13}.
Now

k (tck) tcS+(’+)k k" (2"k

and henceOe 0 (mod2),8+ (+ 1)e -2a (modl6). As2 ewe
get 0, and we can write

T (t,c,k,vc 1, v td,t tc8,c ,c c’,k =tck),
th p, {0, 1}, e {1, 7, 9, 15}, 2 e.

Also we have the equation

2---- 8i-- (e+ 1)e (mod16).

We consider in the following the particular cases for .
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Case (a) 1. By (.), a - e 4 (mod 8). Now (kv) 1, but
v c" 1, because 2 e, 21a -I- . Thus we have a contradiction to the
minimality of order of v.

Case (b) 7. From (.) and2 eitfollows thatae{0, 8} for t 1,
and ae{4, 12 for i 0.
Suppose first that 0. Since the order of v is minimal, v must be

conjugated under G with an element s e S, by a criterion of Harada [5]. It
is lvl ]sl 8. But x-lvx s gives x-v4x s, i.e. x-lcSx cs, which im-
plies x e T C (cS), a contradiction.

Therefore i 1 and a e {0, 8}. If p l we would have (v) v (tc*)
tVc t, as c* e Z(T). But tc and we get a contradiction. Thus

p 0 and we have

2 --1 c ]c, tck},T (t,c,,v[c 1, c, tcs,c c c7,

with o-e {0, 8}, 2 e.
If a 8, then vi 4 and by the criterion of Harada [5] we get the same

contradiction as above. Therefore 0, v 1.
One computes easily that t"calcv 32 forall,/; t"cav 4 for + f --- 1

(mod 2); t"cav 2 for a -t- t 0 (mod 2).
Consider the element tv. From tv x-sx, s S, x G it follows that x e T,

a contradiction. Therefore by Harada [5], (tv) c is conjugate with some
involution in T\S. of the form w t"cav, a + =-- 0 (mod 2). Since w xc-’
and v tc-v, with 2 e, all the involutions of T\S are conjugate with an-
other and therefore with ca. In particular v cs. But tc C (v), (tc) c

v, while in C (cs) T all the elements of order 4 have c as its square, a
contradiction.

Case(c) = 9. By(.)aW5e43(mod8). It is now(kv) 1 vs,
a contradiction to the minimality of the order of v.

Case (d) 15. The relation (.) gives 43(modS), and so
ae{0,4,8, 12}. From (v) v it follows a 4p(modS). Thusp 3.
If v # 1 we get the same contradiction as in Case (b). Therefore v 1
and we can write

c k" c),T (t,c,k, vlc 1, tc, c c-, c-,
with2 (e. Now lcvl 2,1tcvl 4and[t"ckv[ 32, for alla,. We
have v c-2v, v c-v and therefore all the involutions in T\S are conju-
gate. Considering the element tv we get the contradiction in the same way
as in the Case (b).

Proposition 5 is completely proved.

PROPOSITION 6. Let C K. Then C’K 2 and C/N -- PGL(2, p)
with KIN --_ PSL(2, p), p a prime, p >_ 5. In particular, an S.-subgroup of
C/N is dihedral of order 8 in the considered case.
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Proof. By Proposition 5 we have l(N) _> 2. If C # K, then l(K/N) 4,
as l(G) 8, by Huppert [6]. Proposition 4 and the results of Janko [8] and
Dieudonn6 [1] give now the assertion.

PROPOSITION 7. We have IN[ .# 4.

Proof. Assume IN[ 4. We shall prove that this assumption yields to
a contradiction.

Since K/N is simple, we conclude that Co(N) > K and by Janko [9] we
haveK/N..PSL(2, pl),paprime. Ifp 2, thenpfe{4,8}. Ifp # 2
then SIN .. Dk, the dihedral group of order/c,/ e{4, 8, 16}, where S is an
S2-subgroup of C. Let T be an S2-subgroup of G containing S, the chosen
S2-subgroup of C, and z e S a central involution of T. Since Co(N) >_ K we
have z e S\N.
Assume now that N is cyclic. We consider first the case C K. If p 8,

then C/N PSL(2, 8), SIN is elementary abelian and all the involutions of
SIN are conjugate in NcIN(S/N). Since (z} X N _< Z(S) it follows S’
(1) and thus S N n $1, with $1 elementary abelian. Therefore (t) 51(S),
which contradicts C(t) I. IS 1. Hence p # 8.

If SIN " D, k e {4, 8, 16} we again have (z) X N < Z(S), and (t}
3(Z(S) in each case, which yields to the same contradiction as above.
Thus C # K if N is cyclic, and by Proposition 6 we have

C’K] 2, KIN
__

PSL(2, p), C/N PGL(2, p).

Suppose that C(N) C. Since SIN is dihedral of order 8, we would have
Z(S) (z) >( N and so (t) I(Z(S)), a contradiction. Therefore
C(N) K. NowzeKandS SnK (z) Nisabelian. Since all
involutions of S/N are conjugate in K/N, we have S N L, for a sub-
group L of S. By a result of Gaschtitz [2], it follows that K N X F, with
F - PSL(2, p). Let S n F _> (vl, v2 ); hence S (n, v, v n 1), with
(n) N. We haveE<] C,SnF< S. SinceZ(S) < (z) N, itfollows
that Z(S) (z, t) with n and one of the v., i 1, 2, say v belongs to
Z(S). Thus Z(S) (n, vl). We have (t) 3(S) and hence there is an
automorphism 9 of S with S* # S. Obviously SS[ S, $1 n S[ <_ Z(S)
and $1 n Si is of order 8, a contradiction to ]Z(S) 4.
We have proved that N is not cyclic.
Assume next that N is a four-group, N (t, n ).
We consider first the case C K. Here C(N) C. Suppose at first

that C/N PSL(2, 8). Because all involutions of SIN are conjugate in
C/N and (z) N <_ Z(S), we conclude by a result of Gaschtitz [2] that
C N X F with F

__
PSL(2, 8). We know that there is an element r in

F, r 7, such that S <:l SR, where R (r). Denote T1 Nr(S). Then
N(S) TR, where]Tl 2,andN(S)/S--D. LetseT\Tx. Then
[T S.S*,Z(T) > S n S < T and IS n S*I 2. By Suzuki [12
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there is a complement L of S in N(S) with

L

as there are involutions in $8\S and S Os(N(S)). By Gorenstein [4,
5.2.3] we have S C(R) X [S, R]. Obviously S a Z(Ts) C(w), with
Ts S(w) r() T1. Denote C(R) U, [S, R] V. Then U! 4,
V] =8andlC(w)

Cv(w) C,(w). It follows Cv(w) U or C,(w) V. But U N and
U Cv(w) <_ Z(Ts) would imply T.

_
C(N) C, a contradiction.

yr-1 in contra-HenceV C.(w). LetvleV. Nowv vl v
diction with the faithful action of r on [R, S].
Suppose next, that SIN

PSL(2, 5), we can assume without loss that p 2. Similarly as in the previ-
ous cases we conclude that C N )< F, with F PSL(2, pl).
Since N _< Z(C), C(z) T and z C\N, one easily sees that

F PSL(2, 5) --’ A_-----

In F there is an r, r] 3, such that R (r) normalizes the S2-subgroup
S of C. Therefore N(S) 2’3"k, k a prime or k 1, where 3k _< 12, as
the elements of N are not central involutions. Hence 1 e {1, 2, 3}.
Assume first that k 3. Let T1 be an Ss-subgroup of N(S) and
T< T< T. IfseT.\T,thenT= SS’,SS"<_Z(T)andlSaS’l
2. Since S Cr(S), the group T is not abelian and hence S n S’ Z(T).
It follows that N n Z(T) 1 and we may assume that n e Z(T). Thus
n a t. But now z e Z(T) n S would have 9 conjugates in S under N(S)
and would have the remaining 6 involutions as conjugates, because

24. 3. This, however, contradicts n z. it follows that k 3.
Assume now k 2, i.e. N(S) T.R, with ]Tsl 2s. We have

Ts q N(S) as l(G) 8. Let t, h, ts, ta be the conjugates of in S under N(S).
Since R has no fixpoints on SN it follows that t e SN, for i 1, 2, 3. Con-
sider C(t) n C(t). Because of C N X F, F A, t has no element of odd
order in its centralizer in C. Therefore C(h) n C(t) S. If Os(N( S) S,
it would be Os,, (N(S)) SR <_ C(t) a C(tl), a contradiction. It follows
that Os(N(S)) T is of order 2, andN(S)/T D, Nr(S) Nr(T)
T.
Let v e T\Ts. Then S. S <_ T., SS <3 T.
Suppose that 2. Then 0 S n S Z() is of order 8. We have

0, asT T. Hence]U0] 12 andt, t,h, ta are the only ele-
ments of S, which are conjugate with under G. Similarly, there is an ele-
ment of ", which is not contained in U q0. Since this is also not conju-
gate with t, there are at least 13 elements of S, which are not conjugate with
t, a contradiction to

Therefore T and S S 4. Now T. S(a, as ), S a (al, as) 1,
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(al, a2) <_ S’, and by Gaschtitz [2], S has a complement B in N(S). Since
B -N(S)/S and S < TI < TR < T2R N(S) is the corresponding
{2, 2’}-series, we have T/S D4 and

S (b I} X (r, alr 1, ra-- r-}
for some involutions a, b e N( S)\S, assuming B > R.
By Gorenstein [4, 5.2.3], we get S C(R) IS, R], with Cs(R) N.

SinceS S SandR R R, wenowhaveN N" N Nr,
and so N <3 N(S), a contradiction to e N, r(s) tl e S\N.

It remains to consider the case k 1. Now has 2 conjugates under N(S).
Since R acts fixpointfree on SN, we may suppose that --(s) n.

Let T be an S-subgroup of N(S) and T1 < T < T. For s T. \T1 we
haveSS TandZ(T1) Sn S’isoforderS,asS Cr(S). SinceS
has a complement in T, it is N(S) SB, with B D6 or B -- Z6. We may
assume that

B (r, v lr 1, r r"}, a e {1, -1}.

We have T S(v) and thus Z(S(v)) 8. We have again S U X V,
with U Cs(R), V IS, R]. Since U U, V VitfollowsthatCs(v)
Cv(v) C(v) Z(S(v)). Because of lUi VI 4, we must have
Cv(v) U, or C(v) V. ButteCs(R) andt rs t. ThusV C(v).
If a -1 we get a contradiction to the faithful action of (r> on V. There-
fore T <3 N(S) and we can write

N( S) (t, n, h, h2, r, v lr 1, n, t, h" h,h h

where (t, n, hi, h> S.
Now Z(N(S) (tn} and N(S) <3 N(T) T R. Thus

C(tn) > (N(T), C(t)> > N(TI) and l(N(T)) 7,

a contradiction.
Suppose now that SIN -- Ds or Ds. Then KIN PSL(2, p) with

l(C/N) 5 and thus l(C/N) 7. Since Z(S/N) -- Z it follows that
Z(S) N X Z(T) is elementary abelian of order 8. Let S < T < T with
T’T] 2. Then lZ(T1) n Z(S) > 4 and hence Z(T) a N 1, a

contradiction to C(n) C(t) C(tn), because of maximality of C(t).
Thus S/N Ds, DI also.
We have proved that C - K. Hence by Proposition 6,

C:K 2, KIN --- PSL(2, p), C/N PGL(2, p),

where p is a prime, p >_ 5, and an S-subgroup S/N of C/N is dihedral of
order 8.

Suppose first that C(N) C(t) C. Now S 32 and we have Z(S)
(z) XN. If S< T< T, thenlZ(T)Z(S)I>_4,andsoZ(T)N 1,
a contradiction to C(N) C, because of maximality of C.
Thus we haveC(N) K. LetS SK. NowZ(T) _< Sl, because
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K C(N). Since(z) N_< Z(S) and ISI 16, Sisabelian. More-
over S is elementary abelian, as all involutions of S/N are conjugate under
KIN. ThusK NF, withFPSL(2, p). It iszeK, C(z) Tand
all involutions of F are conjugate in F. Therefore we conclude, that
F PSL(2, 5) --- A.Let ceSS. Then C (N F)(c). Since SIN Ds the element c
does not act trivially on S F V S. Let V (v, v ). Then we can
write

S (t, n, v, v, c c t’nv v, d in, v v, v

,,a,e{0,1}.
It is Z(S) (t, z) (t, v v), and Z(T) (z), because Z(S/N) is of order

2. For S < T < T we get therefore r zt tv v, where either e 0
ore 1. Since (c:) ceZ(S),wehavec t’vTv,tha, e{0, 1}.
But now (n"v c) 1, and replacing c by n"v c, we can write

S {t, n, , , c[d tn, v , s

Consider now N(S). Obviously ]N(S) 2.3k, 1 or k a prime,
as V has a normalizer VR A in F, R Z. Since z e S and z is not conju-
gated th any element of N, we have 3k 12, and hence k e 1, 2, 3}.
Letk 2. ThenS Nr(S). ForS < S < T < TandseTSit

follows that S S S and S S Z(S) is of order 8, a contradiction to
[z() .

Therefore k 2, N(S) T R, with T 2. If T N(S), Ts would
have a too large normalizer. Thus T N(S1).
We have rs tv tv, with a 0 or a 1. Consider

C0 c(t) C(

We have CoK C(v) $1, as C(v) V. Since Co/K Co/(CoK)
and C0 K/K[[ , o is a 2-group.

If O(N(S) S, then

SRN(S) and SR C().

But s) tv, and therefore it must be also S R C(tv), a contradic-
tion to 3 [c0 ].
Hence O(N(S)) T with T[ 2. Obviously we can suppose that

Ts > S. But thenZ(Ts) Z(S) andZ(S) isoforder4. LetveTTs.
Then S S STsand S T.

Suppose that S S 2. S S[ ThenS Z(S1 )andthus

e(z( ) 2.
It follows that Z(T) 4 and therefore Z(T) Z(S) (t, ), a
contradiction to 2 C(t) .
ThereforeSiS[ 2s,i.e. SIS T. But nowS S Z(T) and
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hence Z(T1) 4, which yields the same contradiction as in the preceding
case.
We have shown that the assumption NI 4 yields a contradiction in all

cases. The Proposition is completely proved.

PROPOSITION 8. The group N is not a 2-group.

Proof. Since l(C/N) >_ 4 and therefore l(N)

_
3, it remains by Proposi-

tions 5 and 7 to show, that NI 23.
Assume the contrary, i.e. NI 8. By Huppert [6] and Janko [8], the

group C/N is simple and C/N PSL(2, p), p a prime, p >_ 5,
with l( C/N) 4.
We have shown in the proof of the Proposition 1, that N

_
Z(C) if N is

elementary abelian. One can easily see that the same holds also in the other
cases, where N is abelian, because of the simplicity of C/N. In all cases an
S2-subgroup of C/N is dihedral of order 4, by Janko [8], and C/N contains
alternating groups A4.
Suppose at first that N Es, the elementary abelian group of order 8. In

C there is a subgroup M, with M 25. 3, M/N .. A4, and 02(M) 25.
DenoteO(M) A. IfN Z(A), thenN<:] AlforA < AwithlA:A
2, which contradicts C No(N) and lC Is A I. Therefore Z(A) > N
andA is abelian. We haveM AR, with R! 3. SinceM/N -- A4
the group R acts faithfully on A and therefore on 2(A ). Since N

_
](A n

C(R), it follows 21(A) A and A is elementary abelian. By Gaschtitz [2]
N has now a complement F in C, i.e. C N X F, with F PSL(2, p).
Consider nowN(A). We see that N(A)/A -- D6. Let A be an S.-subgroup
of N(A), A < A1 < T, where T is an S2-subgroup of G. For v e T\A we
have AA AI and Z(A) >_ A n A, because A l T. Thus Z(A) 24.
With a e A\A we have A A(a), and hence A has a complement L in
N(A AIR. We can write N(A AL, with

L (r, m lr 1, r r-l).
Now, by Gorenstein [4, 5.2.3], we have A U X V, where U C(R),

V [A,R]. Obviously Ur= U’= U, Vr= V’= V. Therefore C(m)
Cv(m) X C(m). Since A(m) ,() A, we have Z(A(m))l >_ 24 If
A(m) Z(A(m)), then C(m) A, otherwise C(m) Z(A(m)). We
have U N and V 4 because of the faithful action of R on A. It follows
that U Cv(m) or V C(m). But U Cv(m) NimpliesZ(T) N
1 for the S-subgroup T of G containing A (m). But this is impossible, be-
cause C(N) C. Hence V C(m), which contradicts again the faithful
action of R on V.

Therefore N Es.
Suppose now that N Z4 X Z or N Zs. We know that N

_
Z(C).

Let S be an S-subgroup of C. Since N Z(C), we have N n Z(T) 1 for
each S.-subgroup T of G containing S. It follows that there is a central
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involution z e Z(T) in S\N. But No(S) SR, with R (r) of order 3 and
SR/NA4. It follows that S N (z} (zr}. Now31(S)

_
Nand

N(h(S)) C, which contradicts 2 C:S I.
Assume at last that N Ds or N Qs, the quaternion group of order 8.

Since C/N is simple and A (N) is solvable it must be again C C(N). Now,
the contradiction follows as in the preceding case.
The proposition 8 is proved.

PROPOSITION 9. We have l(N) > 2.

Proof. In view of Propositions 5 and 7 it remains to show that N 2.q,
where q is an odd prime.
Assume the contrary, i.e. NI 2.q, q an odd prime. Then

N (t)

with m q. Since A (N) is solvable it must be C(N) K or C(N) C.
But there are central involutions in C and thus C(N) K C, as S2-sub-
groups of G are maximal. By Proposition 6 we now have

C/N .. PGL 2, p KIN -- PSL(2, p)

and an S-subgroup SIN of C/N is dihedral of order 8. Let $1 S n K and
z e Z(T), zl 2, where T is an S-subgroup of G containing S. But then
S/N SI /N (z)N/N, a contradiction to S/N Ds.
PROPOSITION 10. If is an involution of G, then C C( t) is solvable.

contradicts Proposition 1, proving our lemma.)
(This

Proof. By Propositions 8 and 9 it remains to consider the case, where
l(N) 3, IN[ 2q q2, with q, q primes, which are not both even. By
Janko [8] we have C/N --- PSL(2, p), p a prime, p >_ 5, as l(C/N) 4.

Suppose at first that q and q are both odd.
If ql - q:, let be ql > q and Q the Sql-subgroup of N. Then Q1 <:1 C,

C/Cc(Q1) is cyclic and it must be that C Cc(Q), as C contains some central
involution of G, which cannot be in Cc(Q). Now C > Cc(Q) > Q(t} >
Q > I is a normal series and C > N > Q(t} > Q > i is already a chief series.
It follows that C/Cc(Q) ._ N/QI(t} is of odd order and so Cc(Q) contains
nevertheless an S-subgroup of C, a contradiction.
Thus we can assume that q q. q is an odd prime. Now N {t} X Q,

where QI q2. Since Co(Q) contains no central involutions of G and C
does contain such involutions, it must be that Co(Q) N, No(Q) C.
Therefore C/N is isomorphic to a subgroup of A (Q) and Q must be elementary
abelian. Let S be an S-subgroup of C and T an S-subgroup of G containing
T. Since SN/N S/S N D4 and Z(T)

_
SS n N, S is abelian. If

S is not elementary abelian, then (t} 1(S) char S, which is a contradiction.
Hence C (t} F, with Q <_ F, F/Q PSL(2, p) and Q C,,(Q). Let
Vbean S-subgroupofL. Then V (vl, vl} andvlQw.QvaQ,



408 YLADIMIR EPULI

where v8 vl w.. It follows vl , v L vs. By a result of Brauer and Wie-
landt [16], we get

QI" ICe(V) co(vx) I" co(w.) I’l co(v,) co(v,)

It follows that C,(v) q, contradiction to Q Cz.(Q).
Suppose now that NI 2q, q a odd prime. Now N QM, Q q,
M 4. Obviously Q <1 C and lso C N.Nc(M), by the Frttini rgu-

ment. Assume that M < C(Q). Since C/Co(Q) is cyclic and Co(Q) >_ N,
it follows Co(Q) C, s contradiction, because C contains central involutions
of C. Now, C/N N.Nc(M)/N Nc(M)/M - PSL(2, p) nd so
!C:Nc(M) q. Since ]Mi 4, it follows that Ce(M) No(M) nd
hence Cc(M),/M PSL(2, p). In particular M contains no central involu-
tion of G.

Let S be an &-subgroup of C contained in Co(M). Since

Cc(M)/M PSL(2, p), p>5,

there is a subgroup U/M in Co(M) isomorphic to A4, with S/M <3 U/M.
Now U SR, R (r}, r 3. Let T be an S-subgroup of G containing
S. Then Z(T) _< Z(S) and Z(T) n M 1. Thus there is an involution
z eZ(T)in SM and so S M X (z} X (zr). Consequently Co(M)
M F, with F PSL(2, p). It must be now M D4, because otherwise
(t} 1(S) char S, a contradiction. Hence from it follows C (t) X L.
ObviouslyFEL, asLnF<lF. AlsoQ<_L. LetMnL (m>. Then

Q<m} N nL <I L and L/N nL --’ PSL(2, p).

Consider C,(Q). Since mC,(Q), L/C,(Q) _. W <_ A(Q) and
C,(Q) > Q, it follows that L’C(Q) 2, n C(Q)(m), with CL(Q)/Q
PSL(2, p). One can easily see that F <_ Cz,(Q), Q n F 1 and thus

C(Q) Q F, L (Q X F)(m) FX
From C (t) X L, it follows now that

C (t) X Qm} F,

with F --- PSL(2, p) and Q(m)
The group S contains a central involution z of G and z is of the form

h e F n S. Since C(z) T is an S-subgroup of G, we have/ 1 and h 1.
In particular h 2. It follows now, that p 5, E . PSL(2, 5).
Let V S n F (Vl, V2 ). Then

S (t,m, vl, vl) N(V) VR (v,,v,rlr 1, v v,v v

with R (r).
Therefore IN(S) 25"3k, with k 1 or k a prime. Since the central

involutions of G in S have the form mentioned above, one easily sees, that z
has at most 6 conjugates in S. Thus k 1 or k 2.
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Assume first that k 2, i.e. N(S) T R, where] TI 2. Obviously
T N(S). Since has 4 conjugates under N(S), t, h, b, say, and R acts
fixed-point-free on SM, it follows that h, t, t, SM. Moreover we can
suppose that t t, t t.

If O(N( S) S, then O,..,(N( S) ) SR char N(S). Consider
C() n C(h). Since h, it follows SR _< C(t) C(h), a contradiction
to C(R) M.
Thus O.(N(S)) T, with TI 2, N(S)/T D. We can assume

thatT> T > T > S. LetveT\T. It isS SS_< Tand S< T.
Also S S S<I T, because T Nr(S).
Suppose at first that S.] 2. Then S Z(S) is of order 8,

as S Cr(S). If S S’, for r r, S’ would have a too great normal-
izer. Thus S, S, S are all different and their union contains at least 13
elements, as their pairwise intersections contain 4 elements. But is not
conjugate with any element of arbitrary group S’ because S’’ < Z(S[’)
but 2 C(t) I. Therefore would have at most 3 conjugates, a contradic-
tion.
Thus we can suppose that S has order 2, S T, and S,. is of order 4.

Now S has a complement in T and by Gaschiitz [2] also in N(S), i.e. N(S)
SB, S B 1, where B is a subgroup of N(S).
We have S <:l T. <:l T R T R N(S) as a {2, 2’}-series of N(S) and

T/’S D. We may suppose that r e B, and we can write

S (bl X (r, alr 1, r r-).
Let us denoteU= C(R (t, m). NowU= U U U {t, m and
therefore (t, m) < N(S), a contradiction to

Therefore we must havek 1 and soN(S) TR, with TI 2.
Since (t, m) Cs(R) it must be ’m m, where either r 0 or
r 1, because has precisely 2 conjugates in N(S).
Let T <: T,. < T, where T is an S,.-subgroup of G. If s e T \T, we have

SS T, Z(T) S n S" is of order 8, and Shas a complement in T. There-
fore also N(S) SB, with B --- D or B Z.
LetB (r, air 1, r r), e{-1, 1}. Then (S,a)-. T,hence
Z((S, a))] 8. By Gorenstein [4, 5.2.3], we get S U X V, where
U C(R), V [S,R],andU U--- U,V= V-= V. Moreover,

Z(S(a)) Cs(a) Cv(a) X C,(a).

Since U and V have order 4 and C(a) has order 8, it must be U <_ C(a) or
V <_ C(a). But U, [t, a] l. ThusV_< C(a). LetV=

" "- v’" vv v,v vv. If --1, wegetv v v,acontra-
diction to the faithful action of r on V. Therefore e 1. We have now

N(S) (t, 1, v, v,., a, r lr 1, m, v[ v,, v v

For T (t, m, Vl, V2, a) we have now Z(T) (v, v2, ll>. Consider
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C(trn). It is T <_ C(tm), TI 2 and F <_ C(trn), F PSL(2, 5).
Thus C(trn) is not solvable. Let N be the maximal solvable normal sub-
group of C(tm,). By Proposition 9, l(N) 3 and therefore C(tm)/N
PSL(2, p) by Janko [8] and an S-subgroup of C(trn)/N is of order 4. But
2 is a divisor of the order of C(tm,) and therefore N,] 2, which contra-
dicts the Proposition 8.
Thus l(N) 3 also yields to a contradiction and Proposition 10 is proved.

We conclude that all the centralizers of the involutions in G are solvable. This
however contradicts Proposition 1 and so completes the proof of our lemma.

4. Proof of the theorem
By our lemma all the 2-local subgroups of G are solvable. In the following

T will always denote an S-subgroup of G and z an involution in Z(T). We
shall prove the theorem in several steps.

PROPOSITION 11. Two different elements of Z( T) are never conjugate in G.
Each element of Z( T) is conjugate under G with an element of T\Z( T). If
Z( T) n T - 1, with geG, it follows that (Z( T), Z( T) <_ T n T. It is
Z(T) 2 or Z(T) 4.

Proof. By a theorem of Burnside and by Glauberman [3], the first and the
second assertion follow. Suppose v e Z(T) T. Then Z(T) <_ C(v) T
and thus Z(T) T # 1. Hence also

Z(T) <_ T and (Z(T), Z(T)) <_ T T.
By the second assertion, for every s e Z(T) * there is some h e G, such that
s e T\Z(T). Thus s e Z(T) n T, with T T and so

(Z(T), Z(T)) <_ T T.
Because of maximality of T we have Z(T) n Z( T) 1 and also T n T I[ 2.
Since

I(Z(T),Z(T))I ]Z(T) Z(T) IZ(T) II[TnT1
it follows that Z(T) 2 or Z(T) 4. The proposition is proved.

In Propositions 12-20 we shall suppose that SCNa(2) 0, the case SCNa(2)
0 remaining to be considered in the following.

PROPOSITION 12. Let U be an element of SCNa( T). Then the set a( U; 2’)
is trivial.

Proof. By Gorenstein [4, 8.5.6] and by our lemma, the assertion follows,
because of maximality of T.

PROPOSITION 13. If A belongs to U(2), then the set Yla(A’2’) is trivial.

Proof. Let U*(2) be the set of B such that
(i) B _< G and B is of type (2, 2),
(ii) N(B) T,forsomegeG.
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Since we have supposed that SCN8(2) 0, we have U*(2) 0.
LetN(B) T, BeU*(2). SincelA(B) 6,1T’C(B) ll2. Suppose

that C(B) centralizes some non-trivial 2’-subgroup Q of G. Then C(B) T
because of maximality of T and so C(B) 26. Since l(G) 8, it must be
that QI q a prime. If U e SCNs(T), then by Proposition 12, Ylo(U;2’)
is trivial. Thus U

_
C(B) and therefore C(B)U T. But now 21(U)

C(B) I>_ 2. Also B $; U, since otherwise U <_ C(B). It follows that
C B(21(U) n C(B) is elementary abelian of order at least 28. Thus there
exists a subgroup Y with C <_ Y e SCNs(T). As above wehave C(B) Y T.
But now

B <_ Z(C(B)) Z(Y) <_ Z(C(B)Y) Z(T)

and thus C(B) T, a contradiction. Thus for aB e U*(2), C(B) centralizes
no nontrivial 2’-subgroup of G.

Therefore Hypothesis 7.1 of Thompson [14] holds, and by Lemma 7.1 of
Thompson [14], any subgroup A of G belonging to U(2) centralizes all the
elements of Ylo(A 2’).
Ill Hero(A;2’) then HA H A and thusH_< N(A) T,a

contradiction to 2 X H I. Hence Ylo(A; 2’) is trivial.

PROPOSITION 14. Let A e U(2) and A < H < G, H a solvable group.
Then O.,(H) 1, H/O2(H) is faithfully represented on O2(H)/D(O:(H) and
C,(O.(H)) <_ O(H). Moreover n(H) e {2, 3, 5, 7, 31}.

Proof. By Proposition 13, o(A; 2’) is trivial and therefore O.,(H) 1.
By Gorenstein [4, 6.3.4], the first assertion holds. Since

O.(H)/D(O.(H))II 26,
we have H/O(H) I]GL(6, 2) 215"34"5"7’31. Hence the second
assertion follows.

PROPOSITION 15. Let A e U(2) and let B be a p-subgroup o G satisfying
one of the following conditions"

(a) p 3 and B . Z9 or 3811
(b) p e {5, 7, 31} and Pll B I;
(c) pc {2, 3, 5, 7, 31}.

Then the group (A, B) is not solvable.

Proof. Suppose the contrary holds. If (A, B) H is a solvable group,
we can apply the Proposition 14. Denote E O.(H)/D(O2(H)). Since

EII 26, l(H) <_ 7, H/O2(H) L <_ A(E) and as GL(4, 2) and GL(5, 2)
have elementary abelian Ss-subgroups of order 3, the assertion follows.

PROPOSITION 16. Z( T) contains no elenentary abelian group o order 4.

Proof. Let H N(U), U a nontrivial 2-subgroup of G and O.(H) <_ T.
Then U _< T and so Z(T) _< H. Since Z(T) e U(2) we have, by Proposition
14, that H/O(H) is faithfully represented on O(H)/D(O.(H)). Suppose
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there is in H a non-cyclic S-subgroup P, for an odd prime p. Then 9 <: P I.
Since l(H) _< 7 and O(H)P <_ H, it follows that O(H) II 25. Any element
s e Z(T) has P different conjugates under P. Since Z(T)

_
Z(O(H) ),

O(H) has, by Proposition 11, at least Z(T) II P -> 3.9 27 involutions
in its center. Consequently, O(H) is elementary abelian of order 25 and
H/O.(H) 3. Since O.(H) <:] H and O(H) < T, it follows that

26.311 N(O(H)) I, a contradiction to l(G) 8. Thus all S-subgroups in
H, for odd primes p, are cyclic. Therefore we can apply the theorem of
Janko [10]. But none of the groups in the list of the theorem satisfies our
conditions. The assertion follows.

PROPOSITION 17. Suppose that Z(T) contains a cyclic group of order 4.
Let be an involution of G and C C( t). Then C 2"38 with a {3, 4, 5,
6, 7}, {0, }.

Proof. Let T n C be an S,.-subgroup of C. By Thompson [13, Lemma 5.38],
C(t) contains a subgroup A e U(2). By Proposition 14, O,(C) 1 and
C/O(C) is faithfully represented on O(C)/D(O(C)). It follows that
(t}Z(T)

_
O.(C) and so (t}Z(T) <_ Z(O.(C)) X. Obviously, we may

assume that is non-central. Let P be an S-subgroup of C, p an odd prime.
Then X Cx(P) X [P, X] and P is represented faithfully on I(X) as
Z(T) _< X. Assume P > 3. Then 121(X) -> 24 and hence X/I(X)
_> 24. But I(X) -> 2a as z e I(X). This is however a contradiction to
l(C)

_
7. The proposition is proved.

:PROPOSITION 18. Z( T) contains no cyclic group of order 4.

Proof. Let N N(U), where U is a nontrivial 2-subgroup of G. Suppose,
there is an odd prime p such that PII N and let P be an S-subgroup of hr.

Obviously, we can suppose, that U is elementary abelian and also that
N n T is an S.-subgroup of N. Denote M C(U).

Clearly U < 26. If U 25, it would be Z(T)UI >_ 26, a contradic-
tion to l(N) _< 7, because Z(T) U _< M _< N.

Supposel U 24 Sincel(N) _<_ 7itmustbe UZ(T) (z). Now
N (UZ(T) )P, with P P, and UZ(T) is abelian. It is M C(U)
UZ(T), because none element of P centralizes z e U. Now

char N,

which contradicts C(z) T.
Suppose next, that U 2 or 2. If U Z(T) (z), then z e U would

have p: >_ 9 conjugates in U, which is impossible. Therefore U n Z(T) 1,
U X Z(T) _< M. Assume first, that O,(N) 1. ThenM >_ UZ(T)O,(N)
and O.,(N) . Za by Proposition 17. But Za has not an automorphism of
order 4, which contradicts C(Z( T) T, Z( T) <_ N. Thus O.,(N) 1.
By Gorenstein [4, 6.3.4], N/O.(N) is faithfully represented on
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O:(N)/D(O(N) ). Therefore

Z( T) <_ O.(N) and O(N)/D(O(N) >_ 2’,
as p [] N/O2(N) I, P 2. It follows that 102(N) and
(z) D(O.(N) char N, a contradiction to C(z) T.
Suppose at last that U 2. Then Proposition 17 contradicts the -sumption p2[ N(V) .
We have proved that p2 N(U) for all nomrivial 2-subgroups U, if p is

an odd prime. Hence all S-subgroups of N(U) are cyclic and we can apply
the theorem of Janko [10]. This yields a contradiction again as in the proof
of Proposition 16.

PROPOSITION 19. Let Z( T) be cyclic of order 2 and an involution of G,
C C(t). Then lC 2p,pe{3,7},a{2,3,4,5,6,7},{O, 1}. If
O(C) is not abelian, then p 3.

Proof. Let T n C be an S2-subgroup of C. By Thompson [13, Lemma
5.38], C contains a subgroup A e U(T). By Proposition 14, we get 02,(C) 1
and C/O(C) is faithfully represented on 02(C)/D(O(C)). Therefore
Z(T) (z) <_ O(C). If C is a 2-group the assertion holds. Thus we can
suppose that C is not a 2-group and so z. We have (z) X (t) <_ Z(02(C) ).
Also 02(C) II 2 because otherwise 0(C) would have a too large normalizer.
Assume first that O(C) is not abelian. Then Z(O(C)) ]1 8 and since C

is solvable, there exists a Hall 2’-subgroup B of C. Because of C(z) T and
zt, it must be that BI _< 6andso BI 5or3. But iflBI 5,
then Z(O(C) 8 and B acts faithfully on Z(O(C) ), which is impossible.
Therefore B 3, if 0(C) is nonabelian.
Assume now that 02(C) is abelian. Let B be again a Hall 2-subgroup of

the solvable group C. Then B + 2 _< 2(0(C)) I. But

because T contains no elementary abelian subgruop of order 2, as Z(T) 2.
It fonows that B -< 14 and thus ]B {3, 5, 7, 11, 13} or BI 9. Let
(O.(C)) K. Then by Gorenstein [4, 5.2.3], K C(B) X [K, B] and
B acts faithfully on [K, B] if lBI is a prime.

Therefore BI 11, 13. Suppose BI 9. Then I,(O(C)) 16.
First let 0(C) 2(0(C) ). Then B acts faithfully on 0.(C) and thus on
[K, B]. The element z has precisely 9 conjugates under B because C(z) T.
Therefore some conjugate of z under B is in [K, B] and thus all nine are in
[K, B]. It follows that [K, B] K, a contradiction to C(B). Hence
O(C) > (O.(C)) and thus O(C) 2. But now N(O(C)) would be
too large, a contradiction. Thus B 9.

If B 5, then K e {8, 16} as C(z) T, z e K. Since B acts faithfully
on K, it must be that K 16 and C(B) 1, which contradicts e C(B).
The assertion of the proposition is completely proved.
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PROPOSITION 20. Z(T) is not cyclic of order 2.
SCNa(2) 0 is contradictory.

The assumption

Proof. It is clear that the fi.st assertion, together with the Propositions
11, 16, and 18, implies the second.
Suppose that Z(T) (z). By the theorem of Janko [10], we can suppose,

that there is an elementary abelian 2-subgroup A of G, such that N(A) N
has a non-cyclic S-subgroup for some odd prime p.
LetM C(A) andaeA. ThenM _< C(a), Let C(a) n Tbean S3-

subgroup of C(a) containing A. By Thompson [13, Lemma 5.38], C(a) con-
tains a subgroup BeU(2). By Proposition 14, 03,(C(a)) 1 and
C(a) /O3( C(a) is faithfully represented on O.(C(a))/D(O.(C(a)). Thus
Z(T) (z) <_ O(C(a) n M <:1 M. Obviously z e 0.(M).
Suppose that O,(N) 1. Then [O.,(N), 03(M)] 1. because O.(M)

char M <:1 N. But this is impossible, as z O.(M), C(z) T.
It follows that O,(N) 1. Now N/O(N) is faithfully represented on

O.(N)/D(O2(N)). Since l(N) _< 7 and p311N/O3(N)i, P an odd prime,
it must be that

[03(N) I[ 25 and O.(N)/D(O3(N)) >- 24.
If 03(N) 25, then lO.(N)/D(O(N))l 24, because G contains no

elementary abelian subgroup of order 25, as Z(T) 2. Hence

D(03(N)) (d) charN, with ]dl 2.

It follows C(d) >_ N, a contradiction, as p3 ( C(d) I, by Proposition 19.
Thus 03(N) is elementary abelian of order 24. We can obviously replace

A by 02(N) and set A O(N). Since Pll GL(4, 2) it must be that
p 3 and NI 2533. Moreover, an S-subgroup P of N is elementary
abelian.
LetR Nn T. Then R is an S-subgroup of N. LetRl_< T, R1 > R

and R’R 2. Then A , R, R R and thus there exists some r e R,
with AA R. We see that A has a complement in B and therefore also in
N. We get N AK, A K 1, with K _< N. We can suppose that P _< K.
Then P <:] K, K P(s), with s 2. Since z e O.(M) <_ O2(N), it follows
that z e A and z has 9 conjugates in A under N. We denote the set of these
conjugates with .

Let xl , A\l!f. Then Cp(x) (m), with ]m 3. If m e P\(m), for
x3 x xa x_ it holds Ce(xt) Ce(x3) Ce(xa), xl x. xa, because
xt has not more than three conjugates in A under T and because of Proposition
19. Similarly, there is an element

y e A\7,\{x, x., x}
with C(y) m, m. 3, and for y y, y y", we have

Ce(yl) Ce(y) Ce(ya) and yy3 ya.

One easily checks, that P (m} (m}, and we may assume that
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Let A (x x.), A (y y.). Then A A A.
Consider now the action of s on O(N)P. Let A(s) < S .< T and

veSA(s). ThenA(s) AA and Z(A(s)) A A. Since N/A acts
faithfully on A O(N), it follows that C(A) A and thus A(s) is not
abelian. Hence Z(A(s)) C(s) = A A is of order 8 and thus s fixes
precisely 8 elements of A.
The element s fixes the set A A. If A A, then we can suppose

x y. We now have x x because x x x. For the same reason it
with i, j .{2, 3}, implyingis not true that x x,x x. Thusx, y,

that s es only 4 elements in A, a contradiction.
Therefore A A and A A. Now we can suppose without loss, that

because C() 8 andy y,y ya yy,x x,x x,
m andA A1 As. One easily sees that this implies m

Thus we can write

N (Xl, x2, y, y2, 1, 2, 8 l] 1, x x2, x x x,

y2, Y2 y Y, y2 y Y2, m

Consider again S and v chosen as before. We have

Z(A(s)) (Xl, X2, y) S.

Since Z(T) (z) is of order 2, it must be that [I(Z(S)) 4. But
(Z(S)) contains the group Cz(,))(v) and therefore is of order at least 4.
Consequently, I(Z(S)) Z(S) Cz((,))(v) and this group is of order 4,
because C(A) A and A g S.
LetZ(S) {Sl,S,z}. Now(s,s2) Tand2’[C(sl)[

as s r s2. If ]C(sl)[ [C(s2) 2, then N(Cr(Z(S))) (C(s),
C(s2)) and thus C(s) C(s2). Since Z(T) has order 2, ts implies Sl s,
which is a contradiction. Therefore C(s) are not S2-subgroups of G and es-
pecially s a z, for i 1, 2.

It is Z(S) g Z(A(s)) (Xl x2 y). Buts, s are not centralinvolutions
and hence Sl, s e {x, x, x, yl}. Also s s e (Xl, x)y, as s s z. Thus
we can suppose s y, s2 x, for someie{1, 2, 3}. It follows that
Xl x2 x y y y and[ C(x) C(y) 26.3, fori 1, 2, 3,
as Sl r s2 and (ml) C(x).

Consider again A(s) AA. Sce Z(A(s))[ 8 one can easily see,
that all the involutions of A (s) are contained in A A. Thus s
and A(s)A contains precisely 8 involutions wch belong to A C(S) X
(s). Here C(s) (Xl, x2, y), as one checks directly. Since the groups A
and A" are conjugate and C(s) contains 4 non-central and 3 central involu-
tions, AA must contain still 2 non-central and 6 central involutions.

Since m2 m2, s is not central. Ao y y and thus (y s)m y s.
Therefore y s and s are the both non-central volutions of AA. We see,
that Xl x2 x y y2 y s yl s form a class of involutions in
A (s) under G, all the others involutions ofA (s) being central in G.
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We have proved that C(y) 2e.3 and that A (s, m2) _< C(y). We can
suppose that A(s) < S < C(y) with T N(S), S being an S2-subgroup of
C(y). Now (S, ) <_ N(A(s)) and hence N(A(s)) C(y). In
there exists an involution . Otherwise A (s) (S) < T, a contradiction.
We get S (x, x, y, y, s, v). We have

(Xl, X2, y,) Z(A(s)) < S.

Since yl e Z(S), we have (x, x)" (Xl, x.) and so (x, x) < S. We can
x" for some i, where the indices are takensuppose that x. x, + x+,

rood 3. Here we have used the fact that Z(T) is of order 2. On the other
hand (y, y.)4 S, as A , S. Especially (y, y)" (A (s)\A) O. Since
y" y, it follows that y e {s, y s}. Now

y y y, y2 Yl 8, y Y2)

where i e 1, 2, 3}, a e {0, 1}, and x x2 xa.
Obviously Z(S) (x, y). From here we get

where mZ(S) for m e S. One can easily compute that Z() (+1,
) and therefore

Z.(S) (x, y, x,+, y. s) (x, z, y

But now (ys) y(yy) y. Thus (y) 8(Z(S)) char S < T. It
follows that C(yl) T, a contradiction, because s is not a central involution
in G.

Thus, Z(T) is not of order 2, and he Proposition 20 holds, as noted at the
beginning of the proof.
Now, we are in the position to prove our theorem.
From Proposition 20 it follows that SCN(2) 0. Thus we can apply the

theorem of Janko-Thompson [11]. One can easily see, that among the groups
listed in this theorem only PSL(2, 127) satisfies the conditions of our theorem.
The theorem is proved.
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