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1. Introduction
1.1 Let V be a vector space over C of complex dimension n with an inner

product. If x and y are in V, then we will denote by (x, y) the inner product
of x and y. We will denote by B the class of all x in V such that (x, x) < 1,
by/ the class of all x in V such that (x, x) <: 1, and by S the class of all x
in V such that (x, x) 1. We recall that the Poisson kernel of B is the func-
tion "/ X B --. (0, defined by

(x, y) [(1 (y, y))/(1 (x, y))(1 (y, x))].
With regard to why is called the Poisson kernel of B we refer to Proposition
2.4. (We remark that is the Poisson kernel with respect to the Bergman
metric on B and not the Euclidean metric.) If Y is a locally compact Haus-
dorf space, then we will denote by M+(Y) the class of all Radon measures on
Y. Thus ifeM+(Y) andE Y, then(E) >_ 0. We will denote by
M( Y, 1) the real linear span of those in M+(Y) for which (Y) < and
we will denote by M(Y, C) the complex linear span of those in M+(Y) for
which (Y) < . (Thus if Y is compact, then M(Y, C) is the complex
linear span of M+(Y).) We recall that if X and Y are sets, if f is a function
defined on the Cartesian product X X Y, and if (s, t) e X X Y, then f, and
f are the functions defined on Y and X respectively by f,(y) f(s, y) and
f(x) f(x, t). If e M(S, C), then we define B -- C by

(y) fB d.
CThus a e (B)

The purpose of this paper is to prove the theorems that follow 1.3, 1.5, 1.7,
1.13, 1.15, 1.17). These theorems with one exception (Theorem 1.5) are on
measures whose Poisson integrals are pluriharmonic.

1.2. If e M(S, C), then we will denote by spt () the support of .
1.3. THEOREM. If n >_ 2, if e M(S, C), if is pluriharmonic, and if
0, thenspt() S.

1.4. If Z is a topological space and if Y Z, then we will denote (as is
usual) by y0 the interior of Y. Furthermore we will denote (as is usual) by
C(Z) the class of all continuous functionsf" Z --. C. We will denote by A(B)
the class of all functions in C(/) that are holomorphic on B. We will denote
(as is usual) by T the class of all z in C such that z$ 1.
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1.5. THEOREM. Let f and g be in A B and let

If yO 0 and if n >_ 2, then f cg where c T.

1.6. We will denote by a the Radon measure on S which assigns to each
open subset of S its Euclidean volume (for the purpose of defining a we regard
S as the Euclidean sphere of real dimension 2n 1).

1.7. THEOREM. If e M(S, C), if is pluriharmonic, if E c S, and
if zE E for every z in T, then

1.8. If k is a positive integer, then we will denote by H the class of all
members of the polynomial ring C[x x e V*] that are homogeneous of degree
k.

1.9. COROLL.RY. If n >_ 2, if M(S, C), if is pluriharmonic, if
f e (Jl H, iff O, and if [0, o ), then

1.10. If a e [0, ), then we will denote by H the Hausdorff measure on
S of dimension a.

1.11. COROLLARY.
if H’*-(E) O, then

If M S, C), if is pluriharmonic, if E c S, and

(U,.r zE) O.

1.12. Let W be a linear subspace of V of complex dimension m and let P
be the orthogonal projection of V onto W. We will denote by U(V) the
class of all unitary transformations of V. We remark that if z e T, then
P -z(I P) U(V).

1.13. TEOREM. Let m <_ n 1, let eM(S, ), and let be pluri-
harmonic. If we define f" S W ---> C by f(x) (Px), then f L(a).
If E S, if E is ( measurable, and if (P - z(I P) )E E for every z in
T, then

(E)
a(S) f dq.

If e M+( S), if O, and if x e S W, then f(x) > O.

1.14. We remark that if m 0, then by Theorem 1.7 Theorem 1.13 holds.

1.15. THEOREm. If n >_ 2, if M( S, ), if is pluriharmonic, if x V,
and if m <_ n 1, then ll (x - W) S) O.

1.16. Let r be a skew-Hermitian transformation of V. Thus iv is Hermi-
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tian. We recall that if e R, then et U(V). Furthermore let ir <_ 0.
We will denote by H the class of all z in C such that Im (z) > 0 and we will
denote by H- the class of all z in C such that Im (z) >_ 0. Thus if z e H-
and if x e S, then ex e/). Furthermore if z e tI and if rx 0, then ex B

1.17. THEOREM. Let r O, let N be the null space of r, let z
let eM(S, C), and let be pluriharmonic. If we definer" S N C by

Lf(x) (ex) thenf (). IrE S, ifEiszmeasurable, andifetE E
for every in R, then

(E)=
z(S) fdz.

If e M+( S), ff O, and if x e S N, thenf(x) > O.

1.18. CoaoRv. If r O, if M(S, ), if is plurirmonic, if
E S, if et*E E for every in R, and if z(E) O, then (E) O.

1.19. We ll denote by G(B) the class of all holomorphic homeomorphisms
of B. With regard to G(B) we refer to Section 2.1.

1.20. Coaov. Let Z G(B), let r O, let N be the null space of r,
let z e H, let e M(S, C), and let be pluriharmonic. If we define

f" S-- Z(N n S) C

o o L Z(N n B), if E S,byf(x) a((Z e Z-)(x)) thenfe (). If re
if E is measurable, if E is llmeasurable, and if (Z o e’*o Z-)E E for
every in R, then

f.(1.1) d (S) f d.

If M+( S), if O, and if x S Z(N n S), then f(x) > O.

1.21. Coaozav. Let Z G(B), let r O, le E S, let

(Z o e o )E E

for every in R, let e M+(S), and let be pluriharmonic. If (E) O, then
#(E) O. If # Oand #(E) O, thenz(E) O.

1.22. We ll denote by H(B) the class of 11 holomorphic functions on B.
We recall the follong fct of the theory of functions on B.

1.23. PuoeosIO. (8) U f e H(B) and Re (f) > 0, then Re (f)
where #eM+(S). (b) If e M(S, R) and is plurihaonic, then
#* Re (f) where f e H(B).

1.24. It is becsuse of Proposition 1.23 thst theorems such as 1.3, 1.7, 1.13,
1.15, 8nd 1.17 8re of interest. If the hypotheses of Theorem 1.3 hold, then
we do not know if either (d#/dz) dz 4 or (d/d#) d# d can hold.
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2.1.
form

2. The Poisson kernel of B
We will regard SL(2, 1) as the class of all 2 X 2 matrices M of the

where a and b are in C and a b 1. We define

" SL(2, R) X S X B---. B

by

a(y, x) -I- b 1
,(M, x, y) (y, x) -t- d

x -t- [}(y, x) -t- (y (y’ x)x)

and we define U(V) X SL(2, It) X S X/ --/ by

(t, M, x, y) t[’(U, x, y)] "(M, t(x), t(y) ).

With regard to the definition of we remark that if x e S and y V, then
y (y, x}x is the orthogonal projection of y into V Cx. Furthermore we
remarkthat (..) G(B) for everytriple (t,M,x) in U(V) X SL(2,1) X S.
We recall the following fact of the theory of functions on B.

2.2 PaoeOSTmN. If Z G(B), then there is a triple (t, M, x) in

such that
U(V) X SL(2, R) X S

Z(y) $(t, M, x, y)
for all y in B.

2.3. If Y is a topological space, then we will denote by F+(Y) the class of
all Borel functions $: Y --. [0, ). The following proposition (which is
well known) follows from Proposition 2.2.

2.4. PROPOSITION. If (Z, f) e G(B) X F+(S), then

ffo Z da ff

(Proposition 2.4 may be proved by means of the following identity which
serves to define a. If x e S, if

T {y:yeV, Re(y,x) 0},

and if T -- S {-x} is defined by

t(y) [(4y -{- 2x)/(4(y, y} - 1)] x,

then

f f f f(t(y))[4/(4(y, y) + 1)]’n-1 dy.)
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2.5. The following proposition follows from Proposition 2.4.

2.6. PROPOSITION. y e , () ().

2.. If ff(), then we define C by

1

We ll denote (as is usual) by D the class of aH z C such that z < 1 d
by D- the class of all z in C such that z 1. We recall the follong fcts
(2.8, 2.9, 2.10) of the theory of Poisson integrals.

2.8. PROPOSITION. If f C( S) and if g C
a g S L then g e C( ).

2.9. PROPOSm. U e M(S, C),if] C{S), and i] z D, then

1

2.10. PaOPOSTmN. If M(S, C) a z D, then

The following proposition follows from Proposition 2.8 d Proposi-

PROPOSITION. If e M( S, C) and if O, then O.

3. The proofs of Theorems 1.3 and 1.5
3.1. We will denote by h the class of all pairs (x, y) in V V such that

(x, y) 0 and x -t- y e .S. If x e V and r > 0, then we will denote by B(x, r)
the class of all y in V such that Y x < r (where x /(x, x)).

3.2. LEMMA. Let v S and let r (0, 1). If (x, y) A, if x B(v, r), and
if z D-, then x W zy e B(v, 3/r).

Proof. We have

(y,y) 1 (x,x) (1W Ixl )(1 -Ixi)
<_ 2(1 Ixl) 2(Ivl Ixl) <: 2Iv-- xl < 2r,

hence
Ix - zy v <_ Ix v T zY < r W /(2r) < 3/r.

3.3. We will now prove Theorem 1.3. Let G be an open subset of S, let
v G, and let r in (0, 1) be such that B(v, 3vr) n S c G. Furthermore let
xeB(v, r) n B. Sincen >_ 2, there isayin Vsuchthat (x, y) eh. If
z e T, then (by Lemma 3.2) x - zy e G.

If ]] (G) 0 and if we define on G by (w) 0 (w G), then it
follows from the definition of/ that a e C(B u G). We define f" D- --. C
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by f(z) a(x - zy). It follows that f e C(D-), that f is harmonic on D,
and thatf 0onT. Hence f(0) 0, thatistosay(x) 0. Thus
a 0 on B(v, r) n B. It follows by Proposition 1.23 or by the fact that a
is analytic that 0. Thus 0 by Proposition 2.12. This completes
the proof of Theorem 1.3.

3.4. We will denote by A(D) the class of all functions in C(D-) that are
holomorphic on D.

3.5. We will now prove Theorem 1.5. (With regard to the following proof
we refer to the proof of Theorem 1.3.) If g(x) 0 for all x in y0, then
g 0 and f .= 0. We suppose then that there is a vector v in y0 such that
g(v) 0. Letrin(0,1) besuchthatB(v, 3/r) S Y and f(w)g(w) 0
if w B(v, 3v/r) /. Furthermore let x e B(, r) B. Since n >_ 2, there
is a y in V such that (x, y) e A. If z e T, then (by Lemma 3.2) x - zy e Y.
We define h D- --* C by

h(z) f(x + zy)/g(x + zy).

It follows that h e A(D), that h(z) 0 if z e D, and that ih(z) 1 if
z eT. Hencelh(0) 1, that is to say f(x Ig(x) l. Thuslfl Igl
on B(v, r) B; hence f cg where c e T which completes the proof of Theorem
1.5.

3.6. Let n >_ 2 and let v e S. With regard to the proof of Theorem 1.5
Rudin (unpublished) uses the map z x - zy to prove that if ] is an inner
function on B and if the cluster set of f at is not all of D-, then f is constant.
In particular iff is continuous at v, thenf is constant.

4. The proof of Theorem 1.7
4.1. If Y, Z, and N are sets, if Y --. Z, and if --. N, then we define

*()" 2zNby

*()(E) ({y" y e Y, (y) e E}).
With regard to this definition we recall the following fact of measure theory
[Federer, p. 72].

4.2. PROPOSiTiON. If Y and Z are compact Hausdorff spaces, if Y Z
is continuous, and if eM+(Y), then*() eM+(Z). Thus if eM(Y, C),
then *() M(Z, C).

4.3. With regard to Proposition 4.2 we remark that if f e C(Z), then

ff d*(,) ff o,d,.
The following proposition follows from Proposition 4.2.

4.4. PROPOSTmN. If Y and Z are locally compact Hausdorff spaces, if
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Y --* Z is continuous, if M+(Y), and if(Y) < oo, thenO*() M+(Z).
Thus if i( Y, C), then *() M(Z, C).

4.5. Let (G, X, T) be a topological transformation group. (Thus by
definition G is a locally compact Hausdorff group, X is a locally compact
Hausdorff space, T" G X X -- X, etc.) It is assumed that G and X are
metric spaces whose closed balls are compact. We will denote by a right
tIaar measure on G. Thus if (s, f) e G X F+(G), hen

ff( ts) d,( t) ff
It is assumed that 3,(G) 1 if G is compact. If Q is compact and
if M(X, C), hen we define * in M(X, C) by

T*(’ X ).

4.6. PROPOSITION. Let X be compact. If E G, if F X, if E is com-
pact, and if F is open, then , T(F) is open.

Proof. We have

in.. T(F)]’ Ut,B T(F’) T(E X F’)

which completes the proof of Proposition 4.6.

4.7. PROPOSITIOn. Let X be compact. If # M+(X), if E c X, and
if Tt(E) Efor every in G, then there is an F X such that F is a G, E F,
T(F) F for every in G, and I(E) I(F).

Proof. If e > 0, then since t is a Radon measure there is an open set Q
such that E c Q and #(Q) <_ t(E) -t- e. If

Qe nt,a T(Q),
then E Qe, (Q) <_ (E) q- , T(Q) Q for every in G, and (by
Proposition 4.6) Q is a G. Thus if

F nk--1 Qllk,

then F satisfies the conclusions of Proposition 4.7.

4.8. POeOSITION. Let X be compact. If X M(G, ), if )(G) 1, if
M(X, C), ire X, and if T(E) Efor every in G, then

(4.1) (E) T*(h X )(E).

Proof. By Proposition 4.7 there is an F c X such that F is a G, T(F) F
for every in G, (E) #(F), and T*(), X t)(E) T*(X X )(F). If
f is the characteristic function of F, then

f fro TdX(t),
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hence

:,o
hence the identity (4.1) holds.

4.9. For the purpose of the proof of Theorem 1.7 we let G T, X S,
and we define T by T(z, x) x.

4.10. PROPOSXTIO. If (, y) M( S, C) X B, hen

(4.2) (,*)$(y)

Proof. We have

(*)(y) f d*

(4.3) fo T d(/ X

Furthermore (e-x, y) (x, ey), hence the last term of the string of
identities (4.3) is equal to the fight side of (4.2) which completes the proof
of Proposition 4.10.

4.11. PROPOSITION. If M(S, C) and if is pluriharmonic, then

(4.4) v(S)* (S)v.

Proof. If y B, then since $ is pluriharmonic the right side of the identity
(4.2) is equal to (0); hence (*) (S) and hence by Proposition 2.6
and Proposition 2.12 the identity (4.4) holds.

4.12. We will now prove Theorem 1.7. By Proposition 4.8 and Proposi-
tion 4.11 we have

()() ()*() ()(E)

which completes the proof of Theorem 1.7.

5. The proof of Corollary 1.9
Let

{’, f()l }.

By Theorem 1.5 the function ( ) S is not identically 0. Furthermore
( t2) lS is analytic; hence a(E) 0 [Federer, p. 240] and hence by
Theorem 1.7 (E) 0 which completes the proof of Corollary 1.9.
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6. The proof of Corollary 1.11
6.1. We recall the following fact of the theory of Hausdorff measures.

6.2. PROPOSITION. If a e (0, ), if E c S, and if H"(E) O, then

H zE) O.

6.3. Corollary 1.11 follows from Theorem 1.7, Proposition 6.2, and the
fact that

g’-(S) a(S)H’-’.
7. The proof of Theorem 1.13

7.1. Let m

_
1. If w is the general point of W, then we let dw d be the

2n-dimensional Lebesgue measure on W. Furthermore we let B(W)
B W and S(W) S W. We define " [0, ) --. (0, by

The following proof (Proposition 7.2) is due to Rudin. It replaces an
unnecessarily complicated proof of ours.

7.2. PROPOSZZO. If

_
n 1 and f e F+(W), then

Proof. We define F" (0, ) --. [0, ] by

F

and we define G" (0, ) - [0, :] by

By the Fubini theorem we. have

(7.1) F(r) aG(r)

where the constant a is equal to the (2n 2m)-dimensional Lebesgue meas-
ure of B(V G W). If g e F+(V), then

where

g(x ) dx d b g(tx) d(x) ’- dt

b 2n f, dx dla(S),
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(7.2)

Likewise

hence if f is continuous, then

f’(1) b I f Pd.

where
/.’IS ]G(r) c f(tw)(r (tw, tw)) dr(w) -1 dt

2n/ d d/(Z(W))
(r)

and (for the purpose of this proof) r is the Radon measure on S(W) which
assigns to each open subset of S(W) its Euclidean volume; hence if ;f is con-
tinuous, then

(7.3) G’(1) 2(n d.

Proposition 7.2 follows from (7.1), (7.2), and (7.3).

7.3. LEIMA. If (Z, f) e D X F+(V), then

z l: i:I(zx) dz d <_ f:S(x) dx d,.

Proof. For the purpose of the proof of Lemma 7.3 we define V --. V
byt(x) zx. Ifz0, then

Proof.

(7.4)

limit fB I/(z) --/(x) dx d, O.
D,I

Let > 0 and let g in C(/) be such that

f. f(x) g(x) dx d < e.

If z e D, then by Lemma 7.3 and the inequality (7.4) we have

.f, ](z) -1()I dx d _< (I z -" + 1) + j’, (zz) ()I dx d,

hence

lim,_>lsup fB f(zx) f(x) dx d.

_
2

which completes the proof of Proposition 7.4.
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7.,.5. PROPOSITION.

by f(x) (Px).
(7.5)

for every y in B, then

(7.6)

Let m <_ n 1, let M(S, C), and define

f" S-W---*C

(y) (Py)

d (1/(r( S) )f &r.

Furthermore if O, then f(x)

Proof. Let Y be a linear subspaee of V of complex dimension n 1 that
contains W and let Q be the orthogonal projection of V onto Y. We have

(7.7) PQ P.

If y e B, then by (7.5) and (7.7), (y) (Py) a(PQy) u(Qy).
Thus if z D and x S, then

(7.8) u*(zx) u*(zQx),
hence by Proposition 2.10,

(7.9) f (zQx) da(x) a(S) (S).

If z e D, then by Proposition 7.2 (th W replae by Y),

hence by (7.9) and the Fatou-Lebesgue lemma,

(7.10) a(0) f,()la(y)idyd#
If x e X Y, then by (7.5) and (7.7),

(7.11) f(x) (Px) (PQx) u(Qx);

hence by (7.9) and the Fatou-Lebesgue lemma, flfl
and thus f L (a).

If z e D, then by (7.8), (7.11), and Proposition 7.2 (th W replaced by Y),

a(y) dyd;

hence by (7.10) and Proposition 7.4 (th V replaced by Y),

(7.12) lit f ](zx) -f(x)[(x) O.
zD,zl
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If (g, z) ff() D, hen by Proposition 2.9,

1

hence by (7.12) and Proposition 2.8,

1
a(S) f gf da f gd ,

and hence (7.6) holds.
If
E= {x:xS- Y,f(x) =0} and F= {y’yB(Y),ua(y) 0},

then by (7.11) and Proposition 7.2

(7.13) a(E) O(o)f dyd.

If F is of positive (2n 2)-dimensional Lebesgue mease, then (sce a is
analic) 0 on B(Y) hence by (7.5) and Proposition 2.12 0. Thus
if 0, then F is of ero (2n 2)-dimensional Lebesgue mease; hence by
(7.13), a(E) 0 which completes the proof of Proposition 7.5.

7.6. We refer to Section 4.5 for the meanings of the ter that follow.
For the ppose of the proof of Theorem 1.13 we let G T, X S, and we
define T by T(z, x) Px + (I P)x.

7.7. PaoeosoN. If (, y) M(S, ) X B, then

,) 1 "(7.14) ( (y) (Py + I P)y) .
Proof. If (z, x) e T X S, then (T(z, x), y) (x, Py + z(I P)y).

Ts fact and the proof of Proposition 4.10 will sere to prove Proposition 7.7.

7.8 PoosmN. If M(S, ) and is plurionic, then

(7.15) (*)(y) (Py)

f every y in B.

Proof. Sce u is plurarmonic the right side of the identity (7.14) is
equal to the right side of (7.15) which completes the proof of Propositioa 7.8.

7.9. Paoeosxxo. Let m n 1, let M(S, ), a fine

f:S
by f(x) (Px). If is plurionic, then

(7.16) d* (1/a(S))f da.
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Furthermore if * O, hen f(x) 0 for r almost all x in S.

Proof. Proposition 7.9 follows from Proposition 7.8 nd Proposition 7.5.

7.10. The first assertion of Theorem 1.13 follows from Proposition 7.9.
The second assertion of Theorem 1.13 follows from Proposition 4.8 nd Prop-
osition 7.9. The third assertion of Theorem 1.13 follows from the fact that
>0.

8. The proof of Theorem 1.15

8.1. POOSITON. I] M(S, C), if is pluriharmonic, and i m <_
n 1, then la (S(W)) O.

Proof. If E S(W), then a(E) 0, hence by Theorem 1.13 a(E) 0
from which fact Proposition 8.1 follows..

8.2. PROOSITO. If (Z, x, y) e G(B) X 1 X B, then

(Z(x), Z(y) ) (x, y)(Z(x), Z(O) ).

Proof. This follows (by direct verification) from the definition of and
Proposition 2.2. If x e S, then Proposition 8.2 also follows from Proposition
2.4.

8.3. :PROPOSITION. If lz eM(S, C), i$ (Z, Y) eG(B) X G(B), if Z o y
I, and if y B, then

[(z(0) o Z) Y*(a)](y) a(Z(y)).

Proof. By Proposition 8.2,

[(z(0) o Z)Y*(/)](y) f z(0) o Z dY*()

8.4. We will now prove Theorem 1.15. If Z G(B) and Y Z-, then
by Proposition 8.3, [(z(0) o Z)Y*(#)]a is pluriharmonic; hence by Proposition
8.1,

(8.1) Ii (Z((W))) O.

Furthermore if (M, x, y) e SL(2, R) X S(W) X/}(W), then

"(M, x, y) (b/d)x + (1/g)y
where

thus if Z (.), then

(8.2) Z(S(W)) [(b/a)z + W] f] 8.
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Theorem 1.15 follows from (8.1) and (8.2).

9. The proof of Theorem 1.17
9.1. For the purpose of the proof of Theorem 1.17 we let G R, X S,

and we define T by T(t, x) e-x. We recall that the Poisson kernel of H
is the function a:l X H -- (0, o defined by

weletz ell, and weletd (1/)ad. It is assumed that,/((0, 1)) 1.)

9.2. PROPOSITIOn. If (, y) e M(S, C) X B, then

(9.1) (T*( X #))(y) f (ey) d(t).

Proof. If (t, x) el X S, then (T(t, x), y) (x, ey). This fact and
the proof of Proposition 4.10 will serve to prove Proposition 9.2.

9.3. PROPOSITION. If e M(S, C) and is pluriharmonic, then

(9.2) T*(k X ) )(y) (ey)

for every y in B.

Proof. Since/a is pluriharmonic the right side of the identity (9.1) is equal
to the right side of (9.2) which completes the proof of Proposition 9.3.

9.4. If Z is a topological space and iff:Z C, then we will denote by spt(f)
the support of f. We will denote by Coo(Z) the class of all continuous func-
tions g:Z -- C such that spt(g) is compact.

9.5. PROPOSITION. Let r O, let N be the null space of r, let e M( S, C ),
and define f: S N C by f(x) (ex). If is pluriharmonic, then

d(T*(, X ) (1/a(S))f da.

Proof. If w e D, then by Proposition 9.3 and Proposition 2.10,

f i(wex)[d(x) <_ X ) (S);

hence by the Fatou-Lebesgue lemma

and hence f
If (g, w) e C(S) D, then by Proposition 9.3 and Proposition 2.9,

if fa(S)
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Furthermore if g e C00(S N), then

limit f ()(e"’)&r() f gfde.

Thus if g e C00(S N), then by Proposition 2.8,

1

hus if B N and is. mesumble, hen

T*(X X ,)(E)
a(S) fda.

Furthermore by Proposition 9.3, (T*(X )) is pluriharmonic, hence by
Theorem 1.15, T*(A ) (N [’l S) 0 which completes the proof of Prop-
osition 9.5.

9.6. The first assertion of Theorem 1.17 follows from Proposition 9.5.
The second assertion of Theorem 1.17 follows from Proposition 4.8 and Prop-
osition 9.5. The third assertion of Theorem 1.17 follows from the fact that
>0.

10. The proof of Corollary 1.20
10.1. Let Y Z- and let (z0 o Z)Y*(). If y B, then by Prop-

osition 8.3,

(10.1) ka(y) (Z(y)).

We define g:S N --. C by g(x) h(e’*x). If x e S N, then

Z(x) ,s Z( (N)

hence (f o Z)(x) tta((Z o d)(x)). Therefore by (10.1),

(10.2) (f o Z)(x) h(e**x) g(x).

Hence by Proposition 2.4,

hence by Theorem 1.17, f L().
If R, then e’*Y(v) Y(v) henee if z B, hen

(et’x, Y(v) (x, e-t’Y(v)) /(,, Y(v) ).

Furthermore et’Y(E) Y(E); hence by Theorem 1.17

1 fr()/r()g d,.
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If h is the characteristic function of E, then h o Z is the characteristic function
of Y(E); hence by (10.2) and Proposition 2.4,

(10.3) fr Br()g da f hfr() o yz(0)

If (x, y) / B, then by Proposition 8.2, #(x, y) #(Y(x), Y(y) ) (x,
Z(0)); hence

(10.4)

Hence by (10.3),

Furthermore

hence by (10.4),

f Y(’) d, f h o Z#r()#z() o Z dY*()
()

fr() #r() dX f du,

and hence (1.1) holds.
The last assertion of Corollary 1.20 follows from the fact that > 0.

10.2. Corollary 1.21 follows from Corollary 1.20 and Proposition 4.7.
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