
A THEOREM ON INTEGRAL-VALUED ADDITIVE FUNCTIONS

BY
HUBERT DELANGE

1. Introduction
Let $ be an integral-valued additive function.
It is known that, if f(p) 0 for almost all primes, in the sense that

s(,)o 1/p < +
then for every integer q the set of those positive integers n for which f(n) q
possesses a density.

If f(p) 1 for all primes, and if f(n) ) 0 for all n, then for every positive
integer q the number of the n’s not greater than x for whichf(n) = q is asymp-
totic to

x(log log x)q-1

(q 1)! log x

as x tends to infinity.
Here we consider a case when f(p) 0 for many primes and also f(p) 1

for many primes. Moreover we assume that f(n) >_ 0 for all n.
As usual the letter p always denotes a prime, while the letters m, n, k, q, r,
denote integers, m, n, k are always positive integers.
We denote by N the set of all positive integers. , is Euler’s constant.
An empty sum is assumed to be zero and a product which has no factor is

assumed to be 1.
The following theorem will be proved:

THEOREM. Let f be an integral-valued additive function satisfying f(n)

_
0

for every n N.
Given a non-negative integer q and an infinite subset S of N, denote by ,q(x)

the number of those n S which do not exceed x and satisfy f(n) q.
Suppose that:

The characteristic function of S is nultiplicative;
(ii) As x tends to infinity <,,s)_-o (log p)/p log x, where is

a positive constant;
(iii) :’,s,() lip + and, for every r > 1,
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Then as x tends to infinity

o(X) F(a)" log x

and, for q >_ 1,
,(x) 0(x)(l/q!) _<,,s,,)- ,l/P) q.

The set S may be, for instance, the set of squarefree integers.
Hypothesis (iii) is obviously satisfied if

<_,,s,()..1 lip log log x,

where is a positive constant.
It is to be noticed that the result for 0(x) follows at once from "Sate, 1.1."

of Wirsing’s paper: "Das asymptotische Verhalten yon Summen fiber multi-
plikative Funktionen II" 8, for the characteristic function of the set of those
n e S for which f(n) 0 is obviously multiplicative.
We shall also use the work of Wirsing for the proof of the general result.

2. Six Lemmas
For the proof of our theorem we need Lemmas 1, 3, 4 and 6 below.
Lemma 2 is used in the proof of Lemma 3, and Lemma 5, which is a deep

tauberian theorem (due to Wirsing), is used in the proof of Lemma 6.
The statements of Lemmas 5 and 6 involve a slowly oscillating function.
Let us recall that a real- or complex-valued function L of one real variable

is said to be slowly oscillating if:

(1) There exists a real x0 such that L(x) exists and is not zero for all
XXo.

(2) We have lim.+ L(hx)/L(x) 1 for every positive h.

It is well known4 that, if L is measurable, then the limit must be uniform
in on every interval [1, ], where 0 < < . < + .

It then follows very easily that in this case we have

L(x) o(x) for every positive e

(which is obviously equivalent to L(x) O(x) for every positive s).
In fact, given a positive e, there exists a positive X such that

L(x) o and L(x)
e

L(x) <- for 1 < _< e if x > X.

Acta Math. Acad. Sci. Hungar., vol. 18 (1967), pp. 411-467.
J. Korevaar, T. Van Aardenne-Ehrenfest and N. G. de Bruin, A note on slowly

oscillating functions, Nieuw Arch. Wisk, vol. 23 (1949), pp. 77-86, and H. Delange, Sur
un thdortme de Karamata, Bull. Sci. Math. (2), vol. 79 (1955), pp. 9-12.

Since 1/5 is also slowly oscillating, we also have 1/L(x) o(x).
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Then we immediately see that

L(y)/L(x)I <_ e(y/x) for X _< x < y.

In particular, taking x X, we have

[L(y) l_ e(L(Z)/X)y for y > X.

Let us mention that the following well known result, that we shall use later
on, can be derived very simply from these remarks"

Let L be a real-valued function defined on the interval [0, -t- ].
If L is non-negative, non-decreasing and slowly oscillating, then the Laplace-

integral fo+ e-’tL(t) dt converges for Re s > 0 and, as s tends to zero through
positive values,

s e-tL(t) dt L

The integral converges for Re s > 0 because L(t) o(t) for every positive

When s is real and small enough for L(1/s) to be >0, we may write

(1) L(1/s)- s e-’tL(t) dt = e {L(u/s)/L(1/s)} du.

For every positive u, L(u/s)/L(1/s) tends to 1 as s tends to zero. More-
over, if X is chosen as above, then we have for 0 < s

_
1/X

o

_
L(U/s)/L(1/s)

_
1 if u

_
1,

< eu if u > 1.

It follows that the right-hand side of (1) tends to 1 as s tends to zero.

2.1. LEMMX 1. Let u, u, u, and v, v, v, be cplex-
valued functions whose domain is a fixed set D.

Let E be any non-empty subset of D.
Suppose that for every n N and every x E

]u(x) U and u(x) v(x) V,

where the U’s and the V,’s are positive constants satisfying

-U, + and ,-V +.
Then the infinite product - {1 + u(x)} is uniformly convergent

for xeE.

Proof. There exists a positive U such that U g U and V g U for every
neN.

The result actually holds if L is not supposed to be real-valued, non-negative and
non-decreasing, but only to be measurable and bounded on every interval [0, T], where
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Since ((1 W u)e 1)/u and (e 1)/u are entire functions of u (if
taken equal to -1/2 and 1 respectively for u 0), there exists a positive M
such that

I(l +u)e-"-- ll <_Mlul and le’- ll <_.Mlul for

Now set (1 -t- u,(x) )e-() 1 - w,(x).
We have for every n e N and every x e E

w(x) 1 + u,(x) e-’() 1} e’()-’() - e()-’() 1

and, since u,(x) _< U, _< U and u,(x) -v.(x)I < V. < U,

_< W, where W, MeVUT MV,.

We see that ,-W < - :, and it follows that the infinite product

II,- {1 - w,(x)}, i.e. II,- {1 w u(x)}

is uniformly convergent for x e E.

2.1.1. Remark. We may consider a product of the form

I 1 + u,(x)} e-’(),
where p runs through the sequence of prime numbers.

This product could be written as

where p, p, p,, is the sequence of prime numbers.
The lemma shows that, if we have for every prime p and every x e E,

]u(x) g U and ]u(x) -v(x) g V,

where U < + and V < + , then the product is uniformly
convergent for x e E.

2.2. LEMM 2. Let g(n) ,., p (so that 1 g g(n) S n).
Then as x tends to infinity log(n/g(n) ) O(x).

Prog. For each n, log(n/g(n) ,log p + ,.,,.> log p. It
follows that
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Then we have for each integer q,

’<,s(-)=q x(n) log n ,,<,s()+()=q x(m) x(P) log p + 0(x).

Proof. We suppose that x(n)

_
M for every n e N.

We have

,,_<,]()+()=q x(m)x(p) log p

,_<,’,s()-q x(mp) log p + _<,l,S)+s)-q x(m)x(p) log p.

Grouping together the pairs Ira, p] for which the product mp has the same
value, we obtain

v<.,v.,]()-q x(mp) log p .<. ,](.)_q x(n) v.,v,.. log p.<.,(.)--, x(n) log g(n).<.,(.)-, x(n) log n.<.,(.)-q x(n) log(n/g(n)

.<.,(=)-q x(n) log n

-t- 0(x) by Lemma 2
for

._<,(.)-.x(n) log(n/g(n))i

_
M,,<log(n/g(n)).

Also, since p ira is equivalent to kp, we have

,l,()+s()- X(m)x(p) log p ,s()+s()- x(kp)x(p) log p

and therefore

,,,s()+s()-, x(m)x(p) log P ilog p

M[x/p] log p g Mx (log p)/p.

Thus we see that

,,,s()+()- x(m)x(p) log p .g,s()-q x(n) log n + O(x),
which is the desired rult.

2.4. LEMM 4. Let p be a (real- or complex-valued) function whose dain
is the set of prime numbers.

Suppose that as x tes to infinity

p(p)(log p)/p a log x + o(log x),

where a is a constant.
Set R(t) , (p(p)/p) a log (t > 0). Then:
1. There exist positive constants K and K such that we have for every positive

X and every positive

(2) R(Xt) R(t) g K, o X I+ K;
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2. We have for every positive

(3) limt+ (R(Xt) R(t)) O.

Proof. It is obviously suiticient to prove (2) and (3) for ), > 1, for, if
they hold for h0, then they also hold for h l/h0.

Set _<x p(p)(log p)/p (x) a log x -t- (x).
We have

(4) (x) o(log x) as x tends to infinity.

Moreover, given any X > 1, /(x)/log x is obviously bounded for I < x _< X.
It follows that there exists a positive K1 such that

(5) lr/(x) -< Kllogx for every x > 1.

Now we have for every > 1 and every positive t,

P(P) ’1 de( x
e<<x p Jt logx

dx dy x
xlogx Je logx

,(e’) ,(e) ,(x) dx
log + ht 3, x(log x)

and therefore

(6) R(Xt) R(t) .n(eXt)

(6) with (5) yields

n(e’)
_

f, n(x) dx
x(log x)

IR(}’t) R(t) -< 2Kq- Klog,

so that we have (2) with Ks 2K.
(6) with (4) shows that for > 1,

lim,_,+ (R(Xt) R(t)) O.

2.5. LEMMX 5. Let f and g be two real- or complex-valued functions of the
non-negative variable x.

Suppose that f L(O, X) for every X > 0 and that g is bounded on [0, + [
and measurable.

Suppose moreover that as x tends to infinity

fo g(t) dt g(t) dt x, f(t) dt x"L(x)

and

xf(x) a. f(x u)g(u) du + o(x"L(x) ),
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where is a positive constant and L a measurable slowly oscillating function.
Then as x tends to infinity f(x) ax"-lL(x).
This is "sat 3.3." of the above quoted paper of Wirsing.

2.6. LEMMA 6. Let a be a real-valued arithmetical function satisfying
a( n) >_ 0 for every n N, and let b be a real-valued function of the prime p satis-
fying 0

_
b(p)

_
M for every p.

Suppose that we have as x tends to infinity,

(7)

(s)

and

_< b(p) (log p)/p a log x,

",<a(n)/n, (log x)"L(log x),

,< a(n) log n ’,,,,,,< a(m)b(p) log p
(9)

-t- o(x(log x)"L(log x)),

where is a positive constant and L a measurable slowly oscillating function.
Then as x tends to infinity,< a(n) ax(log x)"-lL(log x).

Proof. We use the same method as Wirsing in 4.3. to 4.5. of the above
quoted paper for the proof of his "satz 1.1.".
We set A(x) ’,<a(n).
2.6.1. We first prove that

(10) A(x) o(x(log x)"L(log x)) (x

Let e be any positive number < 1.
We obviously have

A(ex)

_
ex ,<_a(n)/n and A(x) A(ex)

_
x’<,<_a(n)/n.

Therefore

x (log x)-"L(log x)-A(x)

_
(logx)-"L(logx)-,<_,a(n)/n

-t- (log x)-"L(log x)-( ",<a(n)/n _n<_a(n)/n)
and, by (8), it follows that

lira sup..+ x-i(log x)-"L(log x)-A(x)
2.6.2. Now we prove that (10) implies

(11) (A(t)/t) dt o(x(log x)"L(log x)).

For this purpose, choose a real number satisfying o <: 1.
First, since L(ku)/L(u) tends uniformly to 1 for

_
h

_
1 as u tends to
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infinity, (10) implies that, given any e > 0, we have

A(t) _< r(log)L(logx) for x <_ t_< x

when x is large enough. Then

(A()/) d _< eL(log x) (log ) d _< eL(log,x) (log t) dr.

Since ] (log t) dt x(log x) as x tends to infinity, it follows that

lim sup+ x-(log x)-"L(log x)- (A(O/) d <_ e.

This proves that f (A()/) d o(x(log x)L(log x)).
Now, since L(u) O(u) as u tends to infinity, (10) implies

A(x) o(x(log x)+) (x -, -b ),

which in turn implies

fx (A(t)/t) dt o(X(log X) "+’) (X --, +
Taking X x we have

f" (a(t)/t) dt o(x(log x) "+) o(x(log x)"L(log x))

for (x- log x)/L(log x) o(1).

2.6.3. Now, since ,,,<_a(n) log n A(x) log x f (A(t)/t) dt, it
follows from (11) that

,,,<_a(n) log n A(x) log x "b o(x (log x)L(log x)).

2.6.4. Thus (9) yields

A(x) log z .,,,,,,,,< a()b(p) log p -b o(x(log x)L(log x)).

Replacing x by e, we see that as tends to infinity

(12) A(e) ,,,,,o+o,<_a(m)b(p) logp -t- o(e,’L()).
2.6.5. Setting K() Y’o _< b(p)(log p)/p, we see that

--log

(13) .,,.,,,o +og,<_a(m)b(p)log p .,o,,.<_a(m) e" dK(u).
"0

Now eonstruet an increasing sequenee of real numbers o, x, ,,
such that

o 0, lim,.,+ +, lim,+(R)(,+x-- ,) 0
and

lim+(R) +(,+x ,) + .
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This can be achieved for instance by taking 0 0 and, for each _> 0,

+ / 1/v/( / ).

Define a function h on the interval [0, + o[ by
h() (g(+) K())/(+- ) for _< < +, 0, 1,2,...,
so that h is a step function on every bounded interval.

Let H() fo h(u) du (ti >_ 0).
Obviously H() K() for _> 0.
For _< < ,+ we have

H() K()[ <_ H() g(,) + g() g(,)[,

_< 2M<o<+ (log p)/p <_ 2Me- <<+ log p.

But it is well known that

<<log p _< 2(y- x) -l-O(y/log y)

as x nd y tend to infinity with x < y.
Therefore s v tends to infinity we hve for <_ < +,

H() g()l < M(e/- 1) + 0(e/-/+),

and it follows that

H() K() o(1) as tends to infinity.

Set () fo e’* d(K(u) H(u)) fo e dK(u) fo e’h(u) du.
We have

,() e(K() H() (K(u) H(u) )e du o(e) (---, + o ).

Moreover e-() is obviously bounded on every bounded interval.

2.6.6. Now (13) yields

m,p,log mTlog ,_ a(m)b(p) log p
-log

_,o< a(m) e’h(u) du q.- _,o< a(m)( log m).
"0

The last sum is o(e"L(li)).
In fact, given e > 0, there exists X > 0 such that

I()1 <- ee for >_X.

For 0 <_ <_ X, () <_ Mx.
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Then, for > ,
om< a(m)i( log m) --< e om<-x a(m)e-+ Mx -x<o a(m)e

+ Mxe_x<o, a(m)/m.
By (8) this implies

lim sup+ (1/e"L())]oa(m)( log m) g
Now

--log

o a(m eh(u du
0

(m) eh() Y(( log m

where
Y(t) 1

=0
and therefore

--log

_,o ,,< a(m) e"h(u) du
,0

Thus (12) yields

if t>0
if t<0,

e’h(u)(.,ogm<_a(m)Y( log m u))du

A(e-’)e’h(u) du.

A(e) A(e-’)e’h(u) du + o(e"L()),

or, setting () e-A(e) and hl() (1/a)h(),

(14) () a (- u)h(u)du + o("L()).

2.6.7. Now we shall apply Lemma 5.
is obviously bounded and measurable on every bounded interval, and

therefore L2(0, X) for every X > 0.
hx is obviously measurable and we shall see presently that it is bounded.
In fact, if < < +1, then

h(2) < K(5’+) g(,,) < M , log p

i+- +1- 2 ,< oi v_<+ P

< Me-
log p.+ i,, ,<o
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But, as tends to infinity, we have

’,<log _<,+I log p

_
2(e+1- e’) + O(e+l/v+l)

and therefore

Me-
log p <: 2M e+l- 1

and the last expression tends to 2M.
We have

+ 0
,+(,+_ ,)

hi(y) dy (1/o)H(x) (1/o)K(x) + o(1) x

as x tends to infinity.
Since h(y)

_
O, f h(y) dy f h(y) dy.

Now 0ti(y)dy fe-A(e) d fl A(t)/t2dt.
But, for y

_
1, _,,<a(n)/n A(y)/y + f[ A(t)/t dt.

Thus

foti(y) dy ,,<a(n)/n A(e)/e, x"L(x) (x+).

Finally Lemma 5 gives
ti(X) axa-ii(x),

i.e. e-A(e) ax"-lL(x) (x -- + ).

Replacing x by log x, we obtain

A (x) ax(log x)"-L(log x),

which is the desired result.

3. Proof of the theorem

Let x be the characteristic function of the set S. By hypothesis (i), x
is multiplicative.

3.1. If z is a complex number satisfying z < 1 and if Re s > 1, then the
+00 n)/nseries .--i x(n)z is obviously absolutely convergent, and we have

where the infinite product is absolutely convergent.

3.1.1. Now we observe that for each prime p the series ,+= x(p)z]()/pTM

is absolutely convergent for z < 1 and Re s > 0.
Moreover, given 0 > 1/2, the infinite product

+ p z()/p )z(’/pII,(1 q- ,=X( )exp(--x(p

is uniformly convergent for{z[ < 1 and Re s >_ ao.
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This follows from Lemma 1, where x (s, z), by writing this product as

+ z)

where u,(s, z) +- x(p)z/p and v(s, z) x(p)z/p*.
In fact we have for every p and every pair (s, z) satisfying [z < 1 d

Re s
[u(s,z) , 1/p 1/(p"- 1)

and

lug(s, z) v(s, z) X(P:)Z]()/P
lip 1/p’O(p 1).

Therefore we may define H(s, z) for Re s > 1/2 and z < 1 by

g(s, z) H (1 + x(p)z]()/p’) exp (-x(p)zr()/p’),
and the function H is anMytic in s and z for Re s > 1/2 and z < 1.

It is to be noticed that H(s, z) > 0 when s is real and z is real 0, for then
all factors of the product are > 0.
When Re s > 1 and z < 1, both the infinite product

H (1 + x(p)z()/p’)
and the series x(p)zr()/p" are absolutely convergent, and we have

g(s, z) {H (1 W x(p)z]()/p’)} exp (- x(p)z]()/p’).
Since the series x(p)z]()/p is absolutely convergent, we may write

x(p)z()/p" ()- x(p)z()/p’).
Thus, if we define F(s) for Re s > 1 by

f(s) ()_ x(p)/p’,

then we have for Re s > 1 and z < 1,

H(s, z) {H (1 + x(p)z/()/p’)} exp (- F(s)z).

3.1.2. Thus we can restate the result of 3.1. as follows’
+ z]()/n,The series - x(n) is absolutely convergent for Re s > 1 and

z < 1 and we have for these values of s and z

-, x(n)z()/n" g(s, z) exp F(s)z},
or equivalently

+ n)z()/n, z)e(’)(15) ,=, x( H(s, exp =, f(s)z}.

Now the left-hand side of (15) may be written as

It is to be noticed that hypothesis (iii) implies F(s) > 0 for s real > 1.
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We shall obtain the value of :()= x(n)/n for Re s > 1 by expanding
the right-hand side in powers of z and taking the coefficient of zq.
We have for Re s > 1/2 and zl < 1,

H(s, z) _.+-o C(s)z,
where the C’s are analytic for Re s > 1/2, and C0(s) H(s, 0).
We see that for Re s > 1,

e"(’ X coefficient of zq in ,+=0 C(s)z) exp (,+= F,(s)z’),
e(’) coefficient of zq in Y’.,q-0 C(s)z) exp (,q= F(s)z).

Changing s to 1 -k s we see that, for Re s > 0,

:(’)-x(n)-e(’+’)Xn+" cefficient f zq in (.0 C(1 + s)z)
sup (= F(I-t-

=F(l+s)qe’(+’)XcefficientfZqin(kC’(l+),=oF(1 q-- s)
Z

exp(k F(1 q-

3.1.3. Now we observe that, for Re s > 0,

where L() o ,<_,,(,-

l is a slowly oscillating function, for l() tends go infinigy as
infinigy (by hypoghesis (iii)) and, given any X > 1, we have, for every posi-
tive t,

I,(Xt) l,(t) <_ ,,<_<,x, 1/p,

which tends to log as tends to infinity.
It follows that, as s tends to aero through positive values, F,(1

l(1/s) and therefore F, 1 q- s) tends to infinity).
Besides, for r > 1, since L(t) o(l,(t)’) as tends to infinity, we have

F,(1 q-- s) o s e-’l(t)" dt o(1,(1/s)’).

It follows that, for r > 1, F,(1 + s)/F,(1 s)" tends to zero as s tends
to zero through positive values.

See Note (7), page 368.
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Thus we see that, as s tends to zero through positive values,

(we have to remember that C0(1) H(1, 0) > 0).
3.2. Now set

R(t) 10(t) a log _<,,,:,,)=0 x(p)/p a log t.

We have for s real > 0,

F0(1 + s) s e-lo(t) dt e-lo(u/s) du

e-UR(u/s) du + a e log (u/s) du

R(1/s) -- e-’(R(u/s) R(1/s) du 4- a log (l/s)

e- (R(u/s) R(1/s)) du tends to zero as s tends to zeroWe see that fo+
through positive values for, by Lemma 4 (where p(p) x(p) if f(p) 0
and p(p) 0 otherwise), we have R(u/s) R(1/s) - K log u -F K
for every positive s and every positive u, and, for every positive u, R(u/s)
R(l/s) tends to zero as s tends to zero.

Thus, as s tends to zero through positive values,

ev(+) e-"(1/s)" exp R(1/s).

It follows that

_:(,)=q x(n)/n+’, P(a + 1)(1/s)’Lq(1/s),

where

L(t) C0(1) e-"

qt P(a q- 1) (exp R(t)) lx(t).
Since lz is a slowly oscillating function and lim+ (R()t) R(t)) 0

for every positive , Lq is a slowly oscillating function.
Since, for s real > O,

x(n) x(n)
y( =q .f(n)=q n T

a well known tauberian theorem for Dirichlet series with non-negative coeffi-
cients shows that, as tends to infinity,

o_<,,]()-q x(n) t,Lq( t).
n
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It follows that, as tends to infinity,

..,],.)_q x(n)/n (log x)"Lq(log x).

3.3. Now we shall see that, as x tends to infinity,

,()=q x(n) log n

,,,]()=q,]()=0 x(m)x(p) log p + o(x(log x)"Lq(log x)).

3.3.1. For q 0 ts follows immediately from Lemma 3. In fact, since
f(n) 0 for all n e N, Lemma 3 gives for q 0,

,(.)=0 x(n) log n ,,,()=0,()=0 x(m)x(p) log p + O(x).

But x o(x(log x)%0(log x)) for, as tends to infinity, 1/Lo(t) o(t").
3.3.2. For q 1 Lemma 3 gives

,,,()=q,]()=0 x(m)x(P) log p

+ ,,,]()=.,]()=,-. x(m)x(p) log p) + O(x).

Again x o(x(log x)"Lq(log x) ).
Moreover, for each r 0 and gq 1,

and therefore

,,.,]()=,,]()=,-. x(m)x(p) log p O(x ,()_. x(m)/m)

O(x(log x) %,(log x))

o(x(log x) %q(log x)).

3.4. If we set
a(n) x(n) if f(n) q,

0 otherwise,

b(p) x(p) if f(p) O,

0 otherwise,

and L(t) Lq(t), then all hypotheses of Lemma 6 are satisfied.

Lemma 6 yields _,,, <_x a(n) ax(log x)"-lLq(log x),
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that is

(16) (x) C0(1)
q1 r(a) x(log x)"-l/l(log x)q exp R(log x).

But Co( 1 H 1, 0), which is the limit as x tends to infinity of

I_< (1 -[- r>_l,r(r).o X(P")/P")} exp (- <,()-o x(P)/P).

Therefore we may replace Co(1) by this expression in (16).
Since, by the definition of R(t),9

exp .,,
<_,j (,)--.o x(P)/P) (log x)-" exp R(log x) },

we obtain

e-a X

r(a) log x

which is the desired result.
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