A THEOREM ON INTEGRAL-VALUED ADDITIVE FUNCTIONS

BY
HuserT DELANGE

1. Introduction

Let f be an integral-valued additive function.
It is known that, if f(p) = 0 for almost all primes, in the sense that

Drmml/p < + o,

then for every integer q the set of those positive integers n for which f(n) = ¢
possesses a density.!

If f(p) = 1 for all primes, and if f(n) > 0 for all n, then for every positive
integer ¢ the number of the n’s not greater than z for which f(n) = ¢ is asymp-
totic to

z(log log )%
(g— Dllogx

as & tends to infinity.”

Here we consider a case when f(p) = 0 for many primes and also f(p) = 1
for many primes. Moreover we assume that f(n) > 0 for all n.

As usual the letter p always denotes a prime, while the letters m, n, k, g, r,
v denote integers. m, n, k are always positive integers.

We denote by N the set of all positive integers. v is Euler’s constant.

An empty sum is assumed to be zero and a product which has no factor is
assumed to be 1.

The following theorem will be proved:

THEOREM. Let f be an integral-valued additive function satisfying f(n) > 0
for every neN.

Given a non-negative integer q and an infinite subset S of N, denote by vo(x)
the number of those n ¢ S which do not exceed x and satisfy f(n) = q.

Suppose that:

(1) The characteristic function of S vs multiplicative;

(ii) As z tends to infinity D_p<epes.sm=o (l0g )/p ~ a log &, where « is
a positive constant;

(ill) D pes.sm=11/p = + = and, for everyr > 1,

Epszrmsyf(p)w 1/p = o({ Zpﬁw»ms,f(p)-l l/p}r) (x— +o).
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1 J. Kubilius, Probabilistic methods in the theory of numbers (Translations of Mathe-
matical Monographs), p. 93.

2 A. Wintner, The distribution of primes, Duke Math. J., vol. 9 (1942), pp. 423-430.
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Then as x tends to infinity

e 1
vo(x) ~ I—"(_aj m Ex <1 + Ep'es,rgu(p')-o 1—;;)
and, forqg > 1,

Vq(x) ~ Vo(x)(l/q!)(ZPSz:peSJ(p)= ll/p)q'

The set S may be, for instance, the set of squarefree integers.
Hypothesis (iii) is obviously satisfied if

D <smesiim=-11/p ~ Blog log =,

where 3 is a positive constant.

It is to be noticed that the result for vo(x) follows at once from ““Satz 1.1.”
of Wirsing’s paper: “Das asymptotische Verhalten von Summen {iber multi-
plikative Funktionen IT” ®, for the characteristic function of the set of those
n € S for which f(n) = 0 is obviously multiplicative.

We shall also use the work of Wirsing for the proof of the general result.

2. Six Lemmas

For the proof of our theorem we need Lemmas 1, 3, 4 and 6 below.

Lemma 2 is used in the proof of Lemma 3, and Lemma 5, which is a deep
tauberian theorem (due to Wirsing), is used in the proof of Lemma 6.

The statements of Lemmas 5 and 6 involve a slowly oscillating function.

Let us recall that a real- or complex-valued function L of one real variable
is said to be slowly oscillating if:

(1) There exists a real xo such that L(z) exists and is not zero for all
T > o
(2) We have limg,, L(Ax)/L(z) = 1 for every positive A.

It is well known® that, if L is measurable, then the limit must be uniform
in X on every interval [A, Ag], where 0 < M < Xp < 40,
It then follows very easily that in this case we have’

L(x) = o(x¢) for every positive ¢

(which is obviously equivalent to L(z) = O(x¢) for every positive ¢).
In fact, given a positive ¢, there exists a positive X such that

L(\z)

L(x)

3 Acta Math. Acad. Sci. Hungar., vol. 18 (1967), pp. 411-467.

4J. Korevaar, T. Van Aardenne-Ehrenfest and N. G. de Brujn, 4 note on slowly
oscillating functions, Nieuw Arch. Wisk, vol. 23 (1949), pp. 77-86, and H. Delange, Sur
un théoréme de Karamata, Bull. Sci. Math. (2), vol. 79 (1955), pp. 9-12.

5 Since 1/L is also slowly oscillating, we also have 1/L(x) = o(z®).

L(z) % o and

<é for 1< A<e if z2>X.
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Then we immediately see that
| L(y)/L(z) | < e(y/x)s for X <2 <y.
In particular, taking x = X, we have
|L(y) | < e(L(X)/Xe)ye for y > X.

Let us mention that the following well known result, that we shall use later
on, can be derived very simply from these remarks:

Let L be a real-valued function defined on the interval [0, 4 c].

If L is non-negative, non-decreasing and slowly oscillating, then the Laplace-
integral f}.“" ¢ *'L(t) dt converges for Re s > 0 and, as s tends to zero through

positive values,
+0 1 [
s f e"L(t)dt ~ L (—) .
0 s

The integral converges for Re s > 0 because L(t) = o(t¢) for every positive
e

When s is real and small enough for L(1/s) to be >0, we may write
+0

(1) L(1/s)"s f:w L) dt = fo ¢ (L(w/s)/L(1/s)} du.
For every positive w, L(u/s)/L(1/s) tends to 1 as s tends to zero. More-
over, if X is chosen as above, then we have for 0 < s < 1/X
o < L(u/s)/L(1/s) <1 if uw <1,
< ews if w > 1.
It follows that the right-hand side of (1) tends to 1 as s tends to zero.

2.1. LEMMA 1. Let uy, g, *+* , Un, *+* GNd V1, V2, *++ , Uy, + - - be complex-
valued functions whose domain s a fixed set D.

Let E be any non-empty subset of D.

Suppose that for every n e N and every « ¢ E

|un(2) | < Un and |uu(z) — va(z) | < Vo
where the U,’s and the V,’s are positive constants satisfying
W2 UL < 4o and 305V < 4o,

Then the infinite product []321 {1 + ua(2)} €™ is uniformly convergent
forx e E.

Proof. There exists a positive U such that U, < U and V,, < U for every
neN.

¢ The result actually holds if L is not supposed to be real-valued, non-negative and
non-decreasing, but only to be measurable and bounded on every interval [0, 7], where
0<T <+ .
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Since ((1 4+ u)eé™ — 1)/’ and (¢“ — 1)/u are entire functions of w (if
taken equal to —1/2 and 1 respectively for v = 0), there exists a positive M
such that

|(14+w)e™ —1|<M|ul® and |e*—1|< M|u| for |u| < U.

Now set (1 + ua(2))e™™® = 1 + wa(x).
We have for every n ¢ N and every z ¢ E

wn(@) = (1 + un())6® — 1} @@ 4 gun@=u@ _
and, since | un(2) | < U, < U and | un(z) — va(z) | < V. < U,
| wa(@) | < M | un(x) ™D + M | un(z) — va(a) |
< W, where W, = Me’U: + MV,.
We see that > wei W < -+ o, and it follows that the infinite product
{1+ (@)}, de. TIRE{L + un(2)} €7,

is uniformly convergent for z ¢ E.

2.1.1. Remark. We may consider a product of the form

111 + up(2)} €72,

where p runs through the sequence of prime numbers.
This product could be written as

ot {1+ up, (@)} exp {—vp,(2)],

where p1, P2, *** , Pa, - - is the sequence of prime numbers.
The lemma shows that, if we have for every prime p and every z ¢ E,

|up(z) | < Up and |up(x) — vp(x) | < Vo,

where Y, Up < 4+ and Y, V, < 4+, then the product is uniformly
convergent for x ¢ E.

2.2. Lemma 2. Letg(n) = [Ipinmtynp (sothatl < g(n) < n).
Then as x tends to infinity Y.<z log(n/g(n)) = O(z).

Proof. For each n, log(n/g(n)) = D p2inlogp + Xpwprinesilogp. It
follows that

2 log —

2, g(n)_ Zz Zlgp+ X X Zlogp

p<yve pT<z,r>1 P
log p log p )
< e
‘x<; p? + Zp(p-— 1))

2.3. LemMmA 3. Let f be an integral-valued additive function and let x be a
bounded multiplicative function.
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Then we have for each integer q,

Don<zgm=g X(1) 108 0 = D pump <ausmy+1 =g X(M)x(p) log p + O(x).

Proof. We suppose that | x(n) | < M for every n e N.
We have

D mpimp <erf(m+5=q X(M)x(P) log p
= Z"w <z:pf mof (mp)=gq x(mp) log p + Zmpswmlmvf(m)wm)-q x(m)x(p) log p.

Grouping together the pairs [m, p] for which the product mp has the same
value, we obtain

o e st X(1D) 08 B = T et (1) Dotmgtre g p
= D n<zsm=g X() log g(n)
= Dn<esm=g X(1) log n
— 2on <orm=q X(1) log(n/g(n))
= Znsx,f(m-q x(n) log n

+ O(z) by Lemma 2
for

| Do <orm=e X(n) log(n/g(n)) | £ M2 n<slog(n/g(n)).

Also, since p | m is equivalent to m = kp, we have

> o <zpimat (my+ =g X(M)X(D) 108 D = D it <ovtiim +4mme X(KD)X(P) log

and therefore
| 2o <ompimsom+rm=e X(M)X(P) log p | £ M*Yipr<alog p

= MY ,<ys(2/p’) logp < M’x2, (log p)/p’.
Thus we see that

vap’mpsmf(m)w(p)-q x(m)x(p) log p = Znszd(n)-«z x(n) log n + O(x),
which is the desired result.

2.4. LemMmA 4. Let p be a (real- or complex-valued) function whose domain
18 the set of prime numbers.
Suppose that as x tends to infinity

2 < p(p)(log p)/p = alog x + o(log z),

where a is a constant.

Set R(t) = Y p<et (p(p)/P) — alogt (t > 0). Then:
1. There exist positive constants K, and K, such that we have for every positive
X and every positive t

(2) | R(M) — R(t) | < Ki|log M| + Ka;
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2. We have for every positive N
(3) lims, 4 (R(N) — R(t)) = 0.

Proof. 1Tt is obviously sufficient to prove (2) and (3) for N > 1, for, if
they hold for A = Ao, then they also hold for N = 1/X,.

Set D p<: p(p)(log p)/p = ®(z) = alogz + n(z).
We have

(4) n(z) = o(log ) as x tends to infinity.

Moreover, given any X > 1, n(z)/log « is obviously bounded for 1 < z < X.
It follows that there exists a positive K; such that

(5) [n(z) | < Kylogz for every z > 1.
Now we have for every A > 1 and every positive ¢,
o(p) _ [ do(z)

etpeat P et ].Og T
ot ert
_ a’- dx +[ dn(z)
Jet xlog x et logz
3 (") _ n(e) fe“ n(z) do
= algh+ =0= ===+ |, Zlog 2’
and therefore
_ ey 2 1) (e f 7(z) do
(6) R(\t) — R(t) = ) i + et x(log x)?’

(6) with (5) yields
IR()\t) - R(t) l < 2K, + K, lOg A,

so that we have (2) with K, = 2K,.
(6) with (4) shows that for A > 1,

lims.ie (R(M) — R(t)) = 0.

2.5. LemMma 5. Let f and g be two real- or complex-valued functions of the
non-negative variable x.

Suppose that f ¢ L’ (0, X) for every X > 0 and that g is bounded on [0, + = [
and measurable.
Suppose moreover that as x tends to infinity

f: g(t) dt~]:|g<t) | dt ~ =, j:f(t) dt ~ z°L(x)

and

H@) = o [ o = W) du + o(@"L@)),



A THEOREM ON INTEGRAL-VALUED ADDITIVE FUNCTIONS 363

where a s a positive constant and L a measurable slowly oscillating function.
Then as x tends to infinity f(x) ~ ax®'L(z).

This is ‘“‘satz 3.3.” of the above quoted paper of Wirsing.

2.6. LemMA 6. Let a be a real-valued arithmetical function satisfying
a(n) > 0 for every n ¢ N, and let b be a real-valued function of the prime p satis-
Tying 0 < b(p) < M for every p.

Suppose that we have as x tends to infinity,

) 2 r<sb(p)(log p)/p ~ alog ,
(8) 2n<wa(n)/n~ (log z)*L(log ),
and

ans a(n) log n = Emvprmpsm a(m)b(p) log p
+ o(z(log x)“L(log z)),

where a 18 a positive constant and L a measurable slowly oscillating function.
Then as x tends to infinity

> <o a(n) ~ ax(log z)*L(log ).

Proof. We use the same method as Wirsing in §§4.3. to 4.5. of the above
quoted paper for the proof of his “satz 1.1.”.
We set A(z) = ZnSm a(n).

2.6.1. We first prove that
(10) A(x) = o(x(log z)*L(log z)) (z— + ).

Let € be any positive number <1.
We obviously have

A(ex) < ex D n<eza(n)/n and A(x) — A(ex) < T cecn <o () /0.
Therefore
z " (log 2) "L (log z) "4 () < e(logx) *L(log )™ D n<es a(n)/n
+ (log z)""L(log @) ( Xn <z 6(n) /1 — 2n<esa(n)/n)
and, by (8), it follows that
lim SUp. 4o & (log ) °L(log 2) A (z) < e.

(9)

2.6.2. Now we prove that (10) implies
(11) j; (A(t)/t) dt = o(x(log x)“L(log x)).

For this purpose, choose a real number w satisfying o < o < 1.
First, since L(M)/L(u) tends uniformly to 1 for w < A < 1 as u tends to
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infinity, (10) implies that, given any ¢ > 0, we have
A(t) < et(logt)°L(log z) for 2° <t < x

when z is large enough. Then
[ cawm at < eLqiog 2) [ (og )% dt < eL(log 2) fl (log £) dt.
Since [§ (log t)* dt ~ x(log 2)* as x tends to infinity, it follows that
lim Supz.4e 2 (log z)"*L(log )™ f (A(t)/t) dt < e.
This proves that [%. (4(t)/t) dt = o(x(log «)°L(log z)).
Now, since L{(u) = O(u) as u tends to infinity, (10) implies
A(z) = o(z(log 2)*™) (z— + =),

which in turn implies

[ awma = oxog X)) (X +)

Taking X = 2“ we have

j;zw (A(t)/t) dt = o(z*(log 2)*™) = o(z(log z)“L(log z))
for (¢°" log x)/L(log &) = o(1).
2.6.3. Now, since Y .<.a(n) log n = A(zx) log = — [ (A(t)/t) dt, it
follows from (11) that
Y n<wa(n) logn = A(z) log z + o(x (log z)*L(log z)).
2.6.4. Thus (9) yields
A(z) log z = o mp.mp<z a(m)b(p) log p + o(z(log ) “L(log x)).
Replacing z by ¢', we see that as £ tends to infinity
(12)  $4(e) = Zmpos mrios p<t a(m)b(p) log p + o(e%°L(E)).
2.6.5. Setting K(£) = D 10¢ p<t b(p)(log p)/p, we see that

t—logm

(13) Eﬂhp»loa m+logp<t @(m)b(p)log p = Eloz m<ga(m) j; e“ dK(u).

Now construct an increasing sequence of real numbers &, &, -, &, -
such that

EO = 0, limr-»+oo Ev = + ©, 1imv~o+m (£r+l - £y) = 0
and

1imv->+eo Ev+1(£v+l - EV) = + «©.
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This can be achieved for instance by taking & = 0 and, for each » > 0,

£v+l =§ + 1/\/(1 + Ev)-

Define a function & on the interval [0, + «[ by

h(E) = (K(&41) — K(&) )/ (v — &) for & <E<bn, v= 0,1,2 -,
so that h is a step function on every bounded interval.

Let H(¢) = [§h(u) du (¢ > 0).
Obviously H(%,) = K(&) for v > 0.
For ¢, < £ < §,41 we have

\H(s) — K& | < |H(E) — K@&) |+ | K@) — K@&) |,

< | K(&4) — K(&) | + | K(8) — K(&) |,

< 2M 2 ty<ton p<toqr (10g P)/p < 2Me™ Fbvcp<otvss log p.
But it is well known that

2ecr<ulogp < 2(y — x) + O(y/log y)

as = and y tend to infinity with z < y.
Therefore as v tends to infinity we have for ¢, < & < &4,

|H(£) — K(§) | < 4M (™7™ — 1) + 0(e" 7" /61a),
and it follows that
H(t) — K(¢) = o(1) as £ tends to infinity.
Set 8(8) = [$e" d(K(u) — H(u)) = [Ee" dK(u) — [§e*h(u) du.
We have
5() = K — HE©) = [ (K = Bw)e du = o) (£ +70).

Moreover ¢ ‘5(£) is obviously bounded on every bounded interval.
2.6.6. Now (13) yields

Zm»p-loz mtlog p<t a(m)b(p) log p
t—logm

= Twemcia(m) [ ¢h(u) du + Tius mera(m)i(s — log m).
The last sum is o(e*s*L(£)).
In fact, given ¢ > 0, there exists X > 0 such that
|8(¢) | < ee* for £2> X.
For0 < ¢ < X, |8(8) | < Mx.
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Then, for £ > X,
| 2t mst a(m)(E — logm) | < & D rogme—x a(m)e =™
+ Mx e x<iogmst a(m)et ="
< eeezlog m<t a(m)/m

-+ Mx€$2$—x<loz m <§ a(m)/m
By (8) this implies

lim SUPgate (1/€%°L(E)) | Dtop m<t a(m)d(E — logm) | < e.
Now

t—logm

2 tog m<t a(m) fo e“h(u) du

£
= Tiemsea(m) [ eh() V(& = logm — ) du,
where
Y()=1 i t>0
=0 if ¢<0,
and therefore

t—logm

Zlog m<ga(m) j; e"h(u) du
4
= [ 0 (Zroe meta(m) ¥ (¢ — Togm — w))

- fo © A e h(u) du,
Thus (12) yields
(e = [ AW du+ o),
or, setting ®(¢) = ¢ ‘A(e’) and () = (1/a)h(§),

H
(14) 2(2) = o [ @ — Wh(u) du + o(E"L()).

2.6.7. Now we shall apply Lemma 5.
& is obviously bounded and measurable on every bounded interval, and
therefore ® ¢ L*(0, X) for every X > 0.

hi1 is obviously measurable and we shall see presently that it is bounded.
In fact, if & < & < &,44, then

lh(é) | S lK(Ew+l) - K(é») [ S M logp
bn— & S — & t<logp<tiyr P
Me—fv

< log p.
i1 — & E<log p<Evg1
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But, as » tends to infinity, we have

Z£y< log p <{y41 logp < 2(e€v+1 - eEy) + O(esvH/EHl)

and therefore

Me‘—fu e£v+l“‘£v — 1 < eEv+l"£v >
e log p < 2M +0 ,
b1 — & b< logsey.u &P g1 — & Ep1(Eorr — &)

and the last expression tends to 2M/.
We have

[ ) @y = )HE) = VK + o) ~=

as ¢ tends to infinity.

Since h(y) > 0, [3|m(y) |dy = [ h(y) dy.

Now [t@(y) dy = [5e *A(e’) d& = [T A(t)/¢ dt.

But, for y > 1, Dapa(n)/n = A(y)/y + [LA(t)/f dt.
Thus

[[2) &y = Tuseatn)/n — 416 ~2"La) (@ +).
Finally Lemma 5 gives
®(x) ~ ax*'L(z),
ie. €CA(F) ~ ax®'L(z) (xz— + ).
Replacing x by log z, we obtain
A(x) ~ ax(logz)* *L(log z),
which is the desired result.

3. Proof of the theorem

Let x be the characteristic function of the set S. By hypothesis (i), x
is multiplicative.

- 3.1. If zis a complex number satisfying | 2| < 1 and if Re s > 1, then the
series Z:f:l x(n)2’™ /n’ is obviously absolutely convergent, and we have

o) P/t = T (1 + 5 x ()7 /p"),
where the infinite product is absolutely convergent.

3.1.1. Now we observe that for each prime p the series > o1 x(p")2’ " /p"
is absolutely convergent for | 2| < 1 and Re s > 0.
Moreover, given o > 1/2, the infinite product

I (1 4+ S x () /™) exp (—x(p)d ™ /p")

is uniformly convergent for | z| < 1 and Re s > aq.
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This follows from Lemma 1, where = (s, 2), by writing this product as
IL> (1 4 up(s, 2))e 2,

where u,(s, 2) = 2= x(p")Z " /p" and v,(s, 2) = x(p)e’ P /p".
In fact we have for every p and every pair (s, z) satisfying |2| < 1 and

Res 2 0o,

lup(s, 2) | < 2 1/p = 1/(p” — 1)
and
| up(s, 2) — vp(8,2) | = | Dormz x(0])2""" /p" |

< 2SR p = 1/p"(p™ — 1).
Therefore we may define H(s, z) for Res > 1/2and | 2| < 1 by
H(s,2) = L (1 4+ X35 x(@")2 " /™) exp (—x(p)" " /"),

and the function H is analytic in sand z for Res > 1/2and | 2| < 1.

It is to be noticed that H(s, z) > 0 when s is real and z is real > 0, for then
all factors of the product are > 0.

When Res > 1 and | 2| < 1, both the infinite product

IL (1 + X5 ()™ /p™)

and the series Y_, x(p)2’‘"/p’ are absolutely convergent, and we have

H(s,2) = {IL (1 + 235 x(p)7 " /p™)} exp (— X, x(p)2 P /p").

Since the series Y, x(p)2’ ™ /p’ is absolutely convergent, we may write

2o x(P)E P/ = 2% (X x() /D).
Thus, if we define F,(s) for Res > 1 by
Fi(s) = 2sm=rx(p)/D")
then we have for Res > land |2| < 1,
H(s,z) = {II, (1 + 255 ()% /p™)) exp (= 05 Fiu(8)).

3.1.2. Thus we can restate the result of §3.1. as follows:
The series I pe x(n)2’™ /0’ is absolutely convergent for Res > 1 and
| 2| < 1 and we have for these values of s and 2

a1 x(n)d/nt = H(s, 2) exp { 2s=0 F.(s)'},
or equivalently
(15) SorE x(n)2' ™ /nt = H(s, 2)e™™ exp { Y121 Fo(s)7}.
Now the left-hand side of (15) may be written as
oo ( Xsimmg x(n)/n°)2%

7 It is to be noticed that hypothesis (iii) implies F;(s) > 0 for sreal > 1.
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We shall obtain the value of ;=g x(1)/n" for Re s > 1 by expanding
the right-hand side in powers of 2z and taking the coefficient of 2%
We have for Res > 1/2and | 2| < 1,

H(s,2) = 20z Cu(s8)7,

where the C,’s are analytic for Re s > 1/2, and Cy(s) = H(s, 0).
We see that for Res > 1,

Zl(n)=q x(n)/n’
= €™ X coefficient of 2% in ( X_1Z Cr(5)2") exp ( Drmt Fu(8)2),
e™® X coefficient of 2% in ( D%y C,(8)2") exp ( Y21 F\(s)2").
Changing s to 1 + s we see that, for Res > 0,

x(n) . Fo(+s) : q: & r
D rty=a =e X coefficient of z? in Zo C.(1 4+ s)?

,n1+s

exp (i F.(1 4+ s)z')

. q Fo(l+s) . q s Cr(l + 8) r>
= Fi(1 + s)% X coefficient of Z? in (; A CEL Z

o (Srrrs?)-

3.1.3. Now we observe that, for Re s > 0,
4+
FAL+8) = Trom o))/ = [ 000) at

where (1) = Elospshf(p)-r X(p)/p~

I, is a slowly oscillating function, for /;(¢) tends to infinity as ¢ tends to
infinity (by hypothesis (iii)) and, given any A > 1, we have, for every posi-
tive t,

[h(M) — L(t) | < Zc‘<psc"‘ 1/p,

which tends to log A as ¢ tends to infinity.

It follows that, as s tends to zero through positive values, F1i(1 + s) ~
1i(1/s) (and therefore F1(1 + s) tends to infinity).

Besides, for r > 1, since I,(1) = o(li(¢)") as ¢ tends to infinity, we have

Ful+s) = o (s fo ™ dt) = o(l(1/s)").

It follows that, for » > 1, F,(1 4+ s)/Fi(1 + s)” tends to zero as s tends
to zero through positive values.

8 See Note (7), page 368.
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Thus we see that, as s tends to zero through positive values,
x(n)  Co(1) Fol+o <1>q

~
F{my=g mite q!

(we have to remember that Co(1) = H(1,0) > 0).
3.2. Now set

R(t) = k(t) — alogt = 2 p<etym—o x(p)/p — alogt.
We have for s real > 0,

-+ +00
Fo(l + ) = sj; e *ly(t) dt = fo e “lo(u/s) du

+o

o0
f e "R(u/s) du + « f e “log (u/s) du
0 0

+o0
= R(1/s) + j; ¢ “(R(u/s) — R(1/s)) du + alog (1/s) — yau.

We see that j,+°° ¢ “(R(u/s) — R(1/s)) du tends to zero as s tends to zero
through positive values for, by Lemma 4 (where o(p) = x(p) if f(p) = 0
and p(p) = 0 otherwise), we have | R(u/s) — R(1/s) | < Ki|logu| + K,
for every positive s and every positive u, and, for every positive u, B(u/s) —
R(1/s) tends to zero as s tends to zero.

Thus, as s tends to zero through positive values,

e" T o T7(1/5)% exp R(1/s).
It follows that
2 rmme X(n) /0T~ T(a + 1)(1/5)“Le(1/s),

where

L) = @) e S (exp B(0) h(2)"

gl Tla+1)

Since I, is a slowly oscillating function and lim. . (R(M) — R(t)) = 0
for every positive A, L, is a slowly oscillating function.

Since, for s real > 0,

x(n) _ x(n) 1
fy=g W s n 0

a well known tauberian theorem for Dirichlet series with non-negative coeffi-
cients shows that, as ¢ tends to infinity,

(n) *Ly(t).

2 X
logn<t,f(n)=q
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It follows that, as = tends to infinity,
20 <am=g X(1) /1 ~ (log @) “Ly(log ).
3.3. Now we shall see that, as « tends to infinity,
Don<esmymg X(1) log
= 2 mwimp om0 =0 X(M)x(p) log p + o(x(log ) *Ly(log @)).

3.3.1. For ¢ = 0 this follows immediately from Lemma 3. In fact, since
f(n) 2 0forall n ¢ N, Lemma 3 gives for ¢ = 0,

Don<asm=0 X(1) 1081 = D m.pmp <o.p(m=0.0m9=0 Xx(m)x(P) log p + O(x).

But z = o(x(log ) “Lo(log x) ) for, as ¢t tends to infinity, 1/Lo(t) = o(t%).
3.3.2. For ¢ > 1 Lemma 3 gives

D <arsm—g X(n) log n

= Emsp:mp <z (my=g.5 (=0 X(M) X (D) log p

g-1
+ 'Z_:,’ (D mopsmp <ot (my=rof@r=g— X(m)x(p) log p) + O(x).

Again x = o(z(log z)“Ly(log z)).
Moreover, for each r > 0 and <¢q — 1,

| Zm»znmpSm,f(m)nr’!(p)-q-r x(m)x(p) logp | < mevmrsxd(m)-r x(m) log p

= D m<zsimmr X(m)8(z/m)
and therefore

D mpsmp <ot (my=r fr=g—r X(M)X(P) 108 P = O(& D m<ey(mymr x(m) /M)

= O(z(log z)“L,(log x))
= o(z(log z) “Le(log z)).
3.4. If we set
a(n) = x(n) if f(n) =g,
=0 otherwise,
b(p) = x(p) if f(p) =0,
=0 otherwise,

and L(t) = L4(t), then all hypotheses of Lemma 6 are satisfied.
Lemma 6 yields

Dn<ea(n) ~ az(log ) “'Ly(log z),
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that is

.
CO;'I) ’ ;‘@ z(log £)*l;(log z)? exp R(log ).

But Cy(1) = H(1,0), which is the limit as x tends to infinity of

I < (1 + 2s1r0n=0x(0")/P")} exp (— 2o <orm=0 X(D)/P)-

Therefore we may replace Co(1) by this expression in (16).
Since, by the definition of R(t),’

(18) vo(z) ~

exp (— X p<enm=0 x(p)/p) = (log 2)™® exp { —R(log z)},

we obtain

vo(x) ~ % o {II <1 + 2>31 x('p')/p'>} % h(log x)°,

log z |7 N
7(p7)=0

which is the desired result.
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9 See §3.2.



