A CHARACTERIZATION OF THE FINITE SIMPLE GROUPS $P S p_{4}\left(3^{m}\right), m$ ODD

BY
John L. Hayden
Introduction
The aim of this paper is to characterize the finite simple groups $P S p_{4^{-}}\left(3^{m}\right)$, m odd, in terms of the structure of the centralizer of an element of order 3. The groups $P S p_{4}\left(3^{m}\right)$ belong to the family of all projective symplectic groups of dimension 4 over a finite field of $q=p^{n}$ elements where p is an arbitrary prime. For odd characteristic these groups have order $\frac{1}{2} q^{4}\left(q^{2}+1\right)$. $\left(q^{2}-1\right)^{2}$ and a Sylow p-subgroup has order q^{4}. The center of a Sylow p-subgroup is elementary abelian of order q and the centralizer in $P S p_{4}(q)$ of each of the nonunit central p-elements of a p-Sylow subgroup is a group \mathfrak{C} of order $q^{4}\left(q^{2}-1\right)$.

Although this paper deals extensively with $q=3^{m}, m$ odd, $m>1$, Sections 1 and 2 obtain results for arbitrary odd characteristic. This study is a continuation of a work by the author in [7] and is very similar in nature to results obtained for even characteristic by Suzuki [10]. The main result of this paper is the following proposition:

Theorem 3. Let \mathfrak{e} be the centralizer in $P S p_{4}\left(3^{m}\right), m$ odd, $m>1$, of an element of order 3 lying in the center of some Sylow 3-subgroup. Let G be a finite group satisfying:
(a) G contains an element α of order 3 such that $C_{G}(\alpha)$ is isomorphic to \mathbb{C}.
(b) For all z in the center of $C_{G}(\alpha), C_{G}(z)=C_{G}(\alpha)$.
(c) Not all central 3-elements belong to the same conjugacy class of G. Then one of the following cases holds:
(i) $C_{G}(\alpha)$ is a normal subgroup of G.
(ii) G is a simple group isomorphic to $P S p_{4}\left(3^{m}\right)$.

A similar but not identical result has been obtained for $P S p_{4}(3)$ in [7].
Let G be a finite group. A nontrivial proper subgroup D of G is called a $C C$-subgroup if D contains the centralizer of each of its nonunit elements. The methods of this paper use extensively the results on $C C$-subgroups which were studied by Herzog in [8]. It is shown that in the simple case of Theorem 3 a group satisfying conditions (a), (b) and (c) has a local 3-structure identical to that of $P S p_{4}\left(3^{m}\right), m$ odd. This knowledge is then used to determine the structure of the centralizer of a central involution and the results of Wong [11] are applied to conclude that G is isomorphic to $P S p_{4}\left(3^{m}\right)$. In the nonsimple case it is found that the center of a Sylow 3 -group P of G is weakly closed in P. This is enough information to determine that a Sylow 2-group of G is quater-
nion or semi-dihedral. The results of Gorenstein and Walter [6], Alperin, Brauer, Gorenstein [1], and Glauberman [3] are then used to determine the structure of G.

A more general study of the groups $P S p_{4}(q), q$ odd, is found in Section 2. This section characterizes the local p-structure of groups satisfying the following hypothesis:

Hypothesis A. Let \mathfrak{e} be the centralizer in $P S P p_{4}\left(p^{n}\right)$ of an element of order $p>2$ in the center of some Sylow p-subgroup. Let G be a finite group satisfying:
(a) G contains an element α of order p such that $C_{G}(\alpha)$ is isomorphic to \mathfrak{C}.
(b) For all z in the center of $C_{G}(\alpha), C_{G}(z)=C_{G}(\alpha)$.
(c) Not all central p-elements belong to the same conjugacy class of G.

It will be shown that groups satisfying Hypothesis A have a Sylow p-group P of order q^{4} and P has a unique elementary abelian subgroup M of order q^{3}. We prove the following proposition.

Theorem 1. Let G satisfy hypothesis A. If $N_{G}(M)$ in not p-closed, $N_{G}(M)$ $=M J, M \cap J=1$ where $J=F \times D, F \cong P G L(2, q)$ and D is a cyclic group of order $(q-1) / 2$.

The author feels that Theorem 3 can be extended to include the entire family $P S p_{4}\left(p^{n}\right)$ and that Theorem 1 is the basic foundation for such an extension. At the moment the proof seems to be limited by the character theory results on $C C$-subgroups. A slight modification of the methods in this paper together with theorems similar to those found in [8] is thought to be sufficient for such an extension. Moreover, the methods of this paper could possibly be used to investigate the larger dimensional classical groups.

1. Structure of \mathfrak{C}

Let q be a power of an odd prime number p.
Setting

$$
J=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

we may take $P S p_{4}(q)$ as the group of all matrices A of degree 4 with coefficients in F_{q} such that $A^{\prime} J A=J$, where A^{\prime} denotes the transpose of A and we identify two such matrices if they are negatives of each other. Let \mathcal{C} be the centralizer in $P S p_{4}(q)$ of the element α of order p given by,

$$
\alpha=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

It is calculated that \mathcal{C} consists of all matrices

$$
\left[\begin{array}{lllll}
1 & 0 & & & 0 \tag{1}\\
a & & & & 0 \\
b & & S & & 0 \\
c & e & & f & 1
\end{array}\right]
$$

where $S=\left(s_{i j}\right)$ is a 2 -dimensional matrix of determinant $1, e=b s_{11}-a s_{21}$, $f=b s_{12}-a s_{22}$.

Let us define L to be the subgroup of \mathfrak{C} consisting of all matrices (1) for which $a=b=c=0$. In particular,

$$
L=\left\langle\left.\left[\begin{array}{lll}
1 & & \\
& S & \\
& & 1
\end{array}\right] \right\rvert\, S \in S L(2, q)\right\rangle
$$

and is a subgroup of \mathfrak{C} isomorphic to $S L(2, q)$.
The mapping of \mathfrak{C} which sends every element of \mathfrak{C} to the corresponding element of L is a homomorphism of \mathfrak{C} whose kernel is a p-group of order q^{3} and exponent p. Denote by U the kernel of this homomorphism so that

$$
U=\left\langle\left[\begin{array}{rrrr}
1 & & & \\
a & 1 & & \\
b & 0 & 1 & \\
c & b & -a & 1
\end{array}\right]\right\rangle
$$

It follows that $\mathfrak{C}=U L, U \cap L=1$ and that $|\mathfrak{C}|=q^{4}\left(q^{2}-1\right)$. The index of \mathbb{C} in $P S p_{4}(q)$ is $\frac{1}{2}\left(q^{2}+1\right)\left(q^{2}-1\right)$ and is a number relatively prime to p so that \mathbb{C} contains a Sylow p-group of $P S p_{4}(q)$. In fact, a Sylow p-group of \mathcal{C} has order q^{4} and consists of all matrices,

$$
P=\left\langle\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
a & 1 & 0 & 0 \\
b & d & 1 & 0 \\
c & e & f & 1
\end{array}\right], e=b-a d, f=-a\right\rangle
$$

Several subgroups of \mathfrak{C} will be used in the following sections so they are listed here for convenience. Define M to be the subgroup of P consisting of all matrices with $a=0$. It is easily verified that M is the unique elementary abelian subgroup of P of order q^{3} and is thus characteristic in P. The center of P is elementary abelian of order q and is the subgroup of M with $b=d=0$. Denote the center of P by Z. Since $\mathbb{C}=U L$ and L is isomorphic to $S L(2, q)$, Z coincides with the center of \mathbb{C}.

Define K_{1} to be the subgroup of \mathfrak{C} given by,

$$
K_{1}=\left\langle\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \epsilon & 0 & 0 \\
0 & 0 & \epsilon^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right\rangle
$$

where ϵ is generator of the multiplicative group of F_{q}. Clearly K_{1} is a cyclic
group of order $q-1$ and contains a unique involution t given by

$$
t=\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & 1
\end{array}\right]
$$

It is calculated that $P K_{1}$ is the normalizer of P in \mathfrak{C} and that $C_{P}(t)$ is a subgroup T of M of order q^{2} consisting of all matrices of M with $b=0$.

2. Structure of $N_{G}(M)$

Throughout this section let G be a finite group satisfying the following hypothesis.

Hypothesis A. Let \mathfrak{C} be the centralizer in $P S p_{4}\left(p^{n}\right)$ of an element of order $p>2$ in the center of some Sylow p-subgroup. Let G be a finite group satisfying:
(a) G contains an element α of order p such that $C_{G}(\alpha)$ is isomorphic to \mathbb{C}.
(b) For all z in the center of $\mathbb{C}_{G}(\alpha), C_{G}(z)=C_{G}(\alpha)$.
(c) Not all central p-elements belong to the same conjugacy class of G.

We will use the properties of \mathfrak{e} discussed in Section 1 and identify the subgroups of \mathfrak{C} with subgroups of G retaining the same notation given earlier.
(2.1) P is a Sylow p-subgroup of G.

Proof. Let S be a Sylow p-subgroup of G containing P and let x be an element in the center of S. The element x centralizes P and thus $x \in S \cap C_{G}(\alpha)$ $=P$. This implies that x is in the center of P and that $S \subseteq C_{G}(x)=C_{G}(\alpha)$. Therefore $S=P$ and P is a Sylow p-subgroup of G.
(2.2) $\quad N_{G}(M)=M J, M \cap J=1$.

Proof. From (2.1), P is a Sylow p-group of $N_{G}(M)$. Furthermore, $P=A M, A \cap M=1$, where A is a complement for M of order q. It follows by a theorem of Gaschütz that $N_{G}(M)$ splits over M.

Let $N_{G}(P)=P K, P \cap K=1$ and choose K so that $C_{G}(Z) \cap K=K_{1}$. Then K_{1} is a normal subgroup of K and the involution t is in the center of K. Throughout the remainder of this section we will keep this same notation so that t is a central involution of K.
(2.3) The group K contains no four-group $\langle t, \tau\rangle$ such that t and τ are conjugate in $N_{G}(M)$.

Proof. Suppose that $\langle t, \tau\rangle$ is a four-group contained in K and that $\tau=t^{y}$ for some $y \in N_{G}(M)$. Then τ is an involution of $K-K_{1}$ and thus acts fixed-point-free on the nontrivial elements of Z. Furthermore, $C_{M}(\tau)=T^{y}$ is an elementary abelian subgroup of M of order q^{2}.

Let I be the subgroup of U containing all elements inverted by t. It is calculated that $|I|=q^{2}$ and that $I \cap M$ is a subgroup of P^{\prime} of order q. In
fact, $P^{\prime}=(I \cap M) Z$ and since $I \cap M$ is left invariant by $\langle t, \tau\rangle, \tau$ centralizes no element of P^{\prime} not contained in $I \cap M$. However, P^{\prime} and T^{y} are subgroups of M of order q^{2} so that $\left|P^{\prime} \cap T^{y}\right| \geq q$. It follows that $P^{\prime} \cap T^{y}=I \cap M$.

On the other hand, $I=C_{I}(\tau) \times C_{I}(t \tau)$. If τ centralized an element x of $I-(I \cap M), \tau$ would centralize $[x, I \cap M]=Z$ which is not the case. Hence $C_{I}(t \tau)$ is a subgroup of I of order q and $P=C_{I}(t \tau) M$. It follows that $t \tau$ centralizes P / M. We have seen that $P^{\prime} \cap T^{y}=I \cap M$ is a subgroup of order q so that $M=T^{y} P^{\prime}$. Thus τ centralizes M / P^{\prime} and, since t centralizes M / P^{\prime}, $t \tau$ centralizes M / P^{\prime}.

This implies that $t \tau$ stabilizes the normal series $P / P^{\prime} \supset M / P^{\prime} \supset \overline{1}$ of P / P^{\prime} so that $t \tau$ centralizes P / P^{\prime}. From the structure of $P, P^{\prime}=\Phi(P)$ and we conclude that $t \tau$ centralizes P. This is impossible and the proposition (2.3) follows.
(2.4) No element of $P^{\prime}-Z$ is conjugate to an element of Z.

Proof. Let z be an element of Z and suppose that z is conjugate to an element of $P^{\prime}-Z$. From the structure of $P K_{1}, C_{P K_{1}}(x)=M$ for all $x \in P^{\prime}-Z$ so that x has $q(q-1)$ conjugates in $P^{\prime}-Z$. This implies that all elements of $P^{\prime}-Z$ are conjugate and that z is conjugate to an element v of $P^{\prime}-Z$ which is inverted by t. The group M is the unique elementary abelian subgroup of P of order q^{3} so that x and v are conjugate in $N_{G}(M)$. Let $z^{y}=v$, $y \in N_{G}(M)$. Then t normalizes $C_{G}\left(Z^{y}\right)$ and the involution yty ${ }^{-1}$ normalizes $C_{G}(Z)$ and M. It follows that $y t y^{-1}$ normalizes $O_{P}\left(C_{G}(Z)\right)=U$ and hence leaves $P=U M$ invariant.

Thus the involutions $y t y^{-1}$ and t belong to $P K$ and for some $x \in P K$, $(x y) t(x y)^{-1}$ and t are involutions of K conjugate in $N_{G}(M)$. Using (2.3), $(x y) t(x y)^{-1}=t$ and $x y \in C_{G}(t)$. Then $(Z)^{x y}=Z^{y}$ is a subgroup of M centralized by t. This is impossible as Z^{y} contains an element v inverted by t. The proposition now follows.

From (2.2), $N_{G}(M)=M J, M \cap J=1$ and J may be chosen to contain K. The next proposition begins the investigation of the structure of J.
(2.5) If $N_{G}(M)$ is not p-closed, $C_{J}(t) \neq K$.

Proof. Using (2.1), P is a Sylow p-group of $N_{G}(M)$ and thus $P \cap J$ is a Sylow p-group of J with Sylow p-normalizer $(P \cap J) K$. The group $N_{J}(Z)$ leaves $O_{P}\left(C_{G}(Z)\right)$ invariant and hence normalizes $U M=P$. Therefore, $N_{J}(Z)=(P \cap J) K$.

If $N_{J}(Z)$ coincides with $J, J=(P \cap J) K$ and P is a normal subgroup of $N_{G}(M)$ contrary to hypothesis. It follows that J contains an element y such that Z^{ν} is a subgroup of M different from Z. From (2.4) we conclude that for some $z \in Z, z^{y} \in M-P^{\prime}$ and, as every element in $M-P^{\prime}$ is conjugate in $P K_{1}$ to an element of $T-Z$, we may assume $z^{y} \in T-Z, y \in J$.

Then t centralizes z^{y} and (b) of Hypothesis A implies that t centralizes Z^{y}.

Therefore $y t y^{-1}$ is an involution of J which centralizes Z and we have

$$
y t y^{-1} \epsilon(P \cap J) K_{1}
$$

Using (2.3), there exists $x \in P \cap J$ for which ($x y$) $t(x y)^{-1}=t$ so that $x y \in C_{J}(t)$. Then $Z^{x y}=Z^{y}$ and we conclude that $x y$ does not normalize Z and, consequently, $C_{J}(t) \neq K$.

The next proposition is most critical in our discussion of the structure of J. The group $T K_{1}$ is a subgroup of $C_{G}(Z)$ so that we will describe the action of K_{1} on T in such a way that T is identified with a group of matrices as given in section 1.

$$
\begin{align*}
& \text { If } N_{G}(M) \text { is not p-closed, }\left[C_{J}(t): K\right]=2 . \quad \text { Moroever, for } \tag{2.6}\\
& \tau \in C_{J}(t)-K, \quad Z^{\tau}=\{x \in T \mid x \text { has (4.1) entry zero }\} \text {. }
\end{align*}
$$

Proof. Let Z_{1} and Z_{2} be any two conjugates of Z in G and suppose $Z_{1} \cap Z_{2} \neq 1$. For $x \in Z_{1} \cap Z_{2}$, condition (b) of Hypothesis A implies that Z_{1} is the center of $C_{G}(x)$. Similarly, Z_{2} must be the center of $C_{G}(x)$ and thus $Z_{1}=Z_{2}$. We conclude that distinct conjugates of Z intersect trivially.

By (2.5), $C_{J}(t)$ contains an element τ which does not normalize Z. Thus $Z^{\tau} \subseteq T-Z$ and $T=Z Z^{\top}$. Let k_{1} be a generator of K_{1} and assume that k_{1} does not normalize Z^{τ}. From the above remarks, $Z^{\boldsymbol{r k}_{1}} \cap Z^{\tau}=1$ and $T=Z^{\tau} Z^{\tau k_{1}}$. Let $c \in F_{q}$ and let z be an element of Z with (4.1) entry c. Then $z=x y$ for some $x \in Z^{\tau}, y \in Z^{k_{1}}$. Since $y=w^{k_{1}}$ for some $w \in Z^{\tau}$ and k_{1} leaves the $(4,1)$ entry of w fixed, $x w$ is an element of Z^{τ} ith $(4,1)$ entry c. We conclude that every element of F_{q} appears as a $(4,1)$ entry of an element of Z^{τ} and, by a comparison of the number of elements, every element of Z^{τ} has a different $(4,1)$ entry. Furthermore, for $x \in Z^{\tau}, x^{k}, 1 \leq i \leq(q-1) / 2$ is an element of $Z^{r k i}$ with the same $(4,1)$ entry as x but $(3,2)$ entry multiplied by $\varepsilon^{2 i}$. Thus $x^{k^{i}}$ can not be an element of Z^{τ}. We conclude that $Z^{r k_{1}^{i}}, 1 \leq i \leq(q-1) / 2$ are distinct conjugates of Z in $T-Z$.

For purposes of contradiction let us now assume that the conjugates $Z^{r k i}, 1 \leq i \leq(q-1) / 2$ are all of the conjugates of Z in $T-Z$. Fot any conjugate Z_{1} of Z in M, (2.4) implies that $Z_{1}=Z$ or $Z_{1} \subseteq M-P^{\prime}$. Furthermore, every element of $M-P^{\prime}$ is conjugate in P to an element of $T-Z$ so, for a conjugate Z_{1} of Z in $M-P^{\prime}$, there exists an element $a \in P \cap J$ such that $Z_{1}^{a} \cap T \neq 1$. Let $x \in Z_{1}^{a} \cap T$. Then t centralizes x and must centralize Z_{1}^{a} which is the center of $C_{G}(x)$. This implies that $Z_{1}^{a} \subseteq T-Z$ and must be one of the $(q-1) / 2$ conjugates $Z^{r k_{1}^{i}}$. It follows that Z_{1} is a conjugate of $Z^{\boldsymbol{r}}$ via the action of $P K_{1}$. It is calculated that no element of ($P \cap J$) K_{1} whose order is divisible by p can normalize Z^{τ} so that $N_{P K_{1}}\left(Z^{\tau}\right)=M\langle t\rangle$. Hence Z^{τ} has exactly $q(q-1) / 2$ conjugates in $M-Z$ via the action of $P K_{1}$. We conclude that M contains exactly $q(q-1) / 2+1$ conjugates of Z and calculate $|J|=q\left(q^{2}-q+2\right)|K| / 2$. The number of conjugates of Z in $T-Z$ is $(q-1) / 2$ and all occur via the action of $C_{J}(t)$. Thus,

$$
\left|C_{J}(t)\right|=|K|(q+1) / 2
$$

and we conclude that $(q+1) / 2$ divides $q\left(q^{2}-q+2\right) / 2$. The integers $(q+1) / 2$ and q are relatively prime so $(q+1) / 2$ divides $\left(q^{2}-q+2\right) / 2$. However,

$$
q(q+1) / 2-\left(q^{2}-q+2\right) / 2=q-1
$$

so that $(q+1) / 2$ divides $q-1$. This occurs if and only if $q=3$. The case $q=3$ is exceptional and has been investigated in (2.4) of [7].

As a consequence of the preceding paragraph, we may now assume that $T-Z$ contains, in addition to the $(q-1) / 2$ conjugates $Z^{\tau k_{1}^{i}}$, another conjugate Z_{1} of Z.

First of all, consider the subgroup V of M containing all elements of M inverted by t. It is calculated that V is a subgroup of P^{\prime} of order q and, as τ leaves V invariant, every element of the coset $V z, z \in Z$ is conjugate to an element of the set $V z^{\tau}$. Let x, y be two elements of Z^{τ} with the same (3,2) entry. Then $x y^{-1} \in Z \cap Z^{\tau}=1$ so that $x=y$. Thus the elements of Z^{τ} have distinct $(3,2)$ entries and every element of F_{q} appears as a $(3,2)$ entry of some element in Z^{τ}. Let z^{τ} be an element of Z^{τ} with $(3,2)$ entry 1 and $(4,1)$ entry c so that a typical element of the coset $V z^{\tau}$ is given by,

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2}\\
0 & 1 & 0 & 0 \\
b & 1 & 1 & 0 \\
c & b & 0 & 1
\end{array}\right), \quad b \in F q
$$

It is calculated that an element of the form (2) is conjugate in $P K_{1}$ to the ($q-1$)/2 elements,

$$
\left(\begin{array}{clll}
1 & 0 & 0 & 0 \tag{3}\\
0 & 1 & 0 & 0 \\
0 & \varepsilon^{2 i} & 1 & 0 \\
c-b^{2} & 0 & 0 & 1
\end{array}\right), \quad 1 \leq i \leq(q-1) / 2
$$

In fact, as b is an arbitrary element of F_{q}, there are $(q-1)^{2} / 4$ elements of the form (3) each of which is conjugate to an element of the coset Vz. Replacing the $(3,2)$ entry of (2) by ε, the same argument shows that $T-Z$ contains $(q-1)^{2} / 4$ elements with $(3,2)$ entries $\varepsilon^{2+1}, 1 \leq i \leq(q-1) / 2$ and each of these elements are conjugate to elements of $P^{\prime}-\bar{Z}$. Counting the elements of $T-Z$ which belong to the $(q-1) / 2$ conjugate $Z^{\tau k}{ }^{i}$, there are exactly $q-1$ elements of $T-Z$ which do not belong to one of the conjugates $Z^{1 k_{1}^{i}}$ or are not conjugate to an element of $P^{\prime}-Z$. It follows that Z_{1} must be the only conjugate of Z in $T-Z$ distinct from $Z^{7 k_{1}^{i}}, 1 \leq i \leq(q-1) / 2$.

We have shown that $T-Z$ contains $(q+1) / 2$ conjugates of Z and that the conjugate Z_{1} does not belong to the orbit of Z^{\top} under the action of K_{1}. Hence K_{1} leaves Z_{1} fixed. Furthermore, an earlier argument shows that any conjugate of Z in $M-P^{\prime}$ is conjugate in $P K_{1}$ to Z^{\prime} or Z_{1}. Using the structure of $P, N_{P K_{1}}\left(Z_{1}\right)=M K_{1}$ so that Z_{1} has q conjugates in $M-P^{\prime}$ via the action of $P K_{1}$ while Z^{\top} has $q(q-1) / 2$ such conjugates. Thus Z_{1} and Z^{\top} are not
conjugate in $P K_{1}$ and $M-P^{\prime}$ contains exactly $q(q+1) / 2$ conjugates of Z. This implies that M contains exactly $\left(q^{2}+q+2\right) / 2$ conjugates of Z and we calculate $|J|=q\left(q^{2}+q+2\right)|K| / 2$.

If $C_{J}(t)$ acts intransitively on the $\operatorname{set}\left\{Z, Z^{7 k_{1}^{i}}, Z_{1}\right\},\left|C_{J}(t)\right|=(q+1)|K| / 2$ and $(q+1) / 2$ divides $\left(q^{2}+q+2\right) / 2$ which is impossible. It follows that $C_{J}(t)$ acts transitively and that $\left|C_{J}(t)\right|=(q+3)|K| / 2$. This implies that $(q+3) / 2$ divides $q\left(q^{2}+q+2\right) / 2$ which occurs only in the cases $q=3,5,9$. We shall now investigate each of these cases and show that we have an impossible situation in each case.

Let $q=3$. The structure of J given in (2.4) of [7] shows that $T-Z$ contains exactly one conjugate of Z, a contradiction to the existence of the $(q+1) / 2$ conjugates $Z_{1}, Z^{r k_{1}^{i}}$. If $q=9,\left|C_{J}(t)\right|=6|K|$ and t centralizes an element of order three. Thus there exists $y \in J$ such that t^{y} centralizes an element of $P \cap J$. However, $P \cap J$ is a T.I. subset of J. Indeed, let S be a Sylow 3-subgroup of $N_{G}(M)$ such that $S \cap P$ contains an element x not contained in M. From the structure of $P, C_{M}(x)=Z$ so that Z must coincide with the center of S. Using the structure of $C_{G}(Z), S$ contains both U and M so that $S=P$. It now follows that $t^{y} \in(P \cap J) K$ and, for some $a \in P \cap J$, $t^{y a} \in K$. Using (2.3), $t^{y a}=t$. This is impossible as $t^{y a}$ centralizes an element of $P \cap J$ while t inverts the nontrivial elements of $P \cap J$.

For $q=5,\left|C_{J}(t)\right|=4|K|$ and $|J|=2^{4} 5|K|$. Furthermore, K / K_{1} induces a group of automorphisms of the cyclic group Z so that K / K_{1} is a 2group with $\left|K / K_{1}\right| \leq 4$. The conjugate Z_{1} of Z is a subgroup of T of order 5 and is left invariant by K_{1} so, letting k_{1} be a generator of K_{1} and noticing that k_{1} centralizes no element of $T-Z, k_{1}$ induces an automorphism of Z_{1} of order 2. It follows that a generator z of Z is conjugate in K to z^{-1} and that $\left|K / K_{1}\right| \neq 1$. Hence $|K|=2^{3}$ or 2^{4}. In the latter case J has a Sylow 2group of order 2^{8} which is impossible as J is isomorphic to a subgroup of $G L(3,5)$. Thus $|K|=2^{3}$ and $|J|=5 \cdot 2^{7}$. This implies that J has a Sylow 2 -group S which is isomorphic to a Sylow 2 -group of $G L(3,5)$ and we may assume that S contains the 2 -group $C_{J}(t)$. Using [2] and computing the centralizers in S of non-central involutions, we must have that $\left|C_{J}(t)\right|=2^{4}$ or 2^{6}. However, $C_{S}(t)=C_{J}(t)$ and is a 2 -group of order 2^{5}. We conclude that the case $q=5$ is impossible.

We have finally shown that for no value of q is it possible for the $(q+1) / 2$ conjugates $Z^{r k_{1}^{i}}, Z_{1}$ to exist. It follows that Z^{τ} is a conjugate of Z normalized by K_{1} and, from the structure of $T K_{1}, Z^{\tau}=\{x \in T \mid x$ has (4, 1) entry zero\}. More important, τ was an arbitrary element of $C_{J}(t)-K$ so we conclude that $\left[C_{J}(t): K\right]=2$.
(2.7) Assume $N_{G}(M)$ is not p-closed. Then $K=K_{1} K_{1}^{\tau},\left[K_{1}, K_{1}^{\tau}\right]=1$, $K_{1} \cap K_{1}^{\tau}=\langle t\rangle$ where τ is some element of $C_{J}(t)-K$.

Proof. As a consequence of (2.6), K is a normal subgroup of $C_{J}(t)$ of index 2 so that $C_{J}(t)=K\langle\tau\rangle$ for some $\tau \epsilon C_{J}(t)-K$. This implies that K_{1}^{τ}
is a normal subgroup of K which centralizes Z^{τ}. Letting k_{1} be a generator of K_{1}, k_{1}^{τ} leaves $C(Z, t)=Z \times L$ invariant and induces an automorphism of L which centralizes the Sylow p-subgroup Z^{τ} of L and leaves K_{1} invariant. Hence k_{1}^{τ} induces the trivial autmorphism of L (see [9]) and, consequently, centralizes K_{1}. No element of K_{1} distinct from t centralizes an element of $T-Z$ so we conclude that K contains the normal abelian group $K_{1} K_{1}^{\tau}$ with $K_{1} \cap K_{1}^{\tau}=t$.

Furthermore, K / K_{1} acts as a regular group of automorphisms on the nontrivial elements of Z which implies that $\left|K / K_{1}\right| \leq q-1$. Hence $|K| \leq(q-1)^{2}$ and $K_{1} K_{1}^{\tau}$ is a subgroup of K of index at most 2. If $|K|=(q-1)^{2}, K / K_{1}$ acts transitively on the nontrivial elements of Z. This violates (c) of Hypothesis A and we conclude $K=K_{1} K_{1}^{\tau}$.

Notice that the structure of K given by (2.7) coincides with the structure of K in $P S p_{4}(q)$. Without condition (c) of Hypothesis A, it is possible for $\left[K: K_{1} K_{1}\right]=2$. Indeed, consider the semi-inner automorphism θ of $P S p_{4}(q)$ which interchanges the two central classes of p-elements in $P S p_{4}(q)$ (see [9]). The extension of $P S p_{4}(q)$ by θ is a group which satisfies (a) and (b) of Hypothesis A with $|K|=(q-1)^{2}$.

By (2.7), K is an abelian group which acts irreducibly on $P \cap J$. Hence K contains a subgroup K_{0} which centralizes $P \cap J$ with K / K_{0} cyclic. Since $K_{1} \cap K_{0}=1$, the structure of K forces

$$
\left|K / K_{0}\right|=q-1 \quad \text { and } \quad K=C_{K}(P \cap J) \times K_{1}
$$

We are now able to prove the main proposition of this section.
Theorem 1. Let G be a finite group satisfying Hypothesis A. If $N_{G}(M)$ is not p-closed, $N_{G}(M)=M J, M \cap J=1$ and $J=F \times D$ where $F \cong P G L(2, q)$ and D is cyclic of order $(q-1) / 2$.

Proof. Let $x \in J$ such that Z^{x} is a conjugate of Z which belongs to $T-Z$. Then $x t x^{-1}$ centralizes Z and is an involution of $J \cap C_{G}(Z)=(P \cap J) K_{1}$. For some $a \in P \cap J,(a x) t(a x)^{-1}=t$ so that $a x \in C_{J}(t)$. However, $C_{J}(t)$ has K as a subgroup of index 2 which implies that $Z^{a x}=Z^{\tau}$. Since $Z^{a x}=Z^{x}$, $Z^{x}=Z^{\tau}$ and we conclude that $T-Z$ contains the unique conjugate Z^{τ}. Furthermore, for any conjugate Z_{1} of Z which belongs to $M-T$, there exists $a \in P \cap J$ for which $Z_{1}^{a} \cap T \neq 1$. Let $x \in Z_{1}^{a} \cap T$ and notice that t centralizes x and must consequently centralize Z_{1}^{a} which is the center of $C_{G}(x)$. Hence $Z_{1}^{a} \subseteq T-Z$ and we have $Z_{1}^{a}=Z^{\tau}$. This proves that $Z, Z^{\text {ra }}$, where a ranges over the q elements of $P \cap J$, are the distinct conjugates of Z in M. Thus, $[J:(P \cap J) K]=q+1$ and it follows that $P \cap J,(P \cap J)^{r a}, a \in P \cap J$ are the $q+1$ Sylow p-groups of J.

Let us consider the representation of J as a permutation group of its $q+1$ Sylow p-subgroups. Clearly $(P \cap J) K$ is the subgroup of J fixing a letter and K fixes both $P \cap J$ and $(P \cap J)^{\tau}$. For $1 \leq i \leq q-1, a \in P \cap J, k_{1}^{-i} a k_{1}^{i}=b$, $(P \cap J)^{\tau a k_{1}^{i}}=Z^{\tau b}$. Hence, as k_{1} acts transitively on the nontrivial elements of
$P \cap J, K$ acts transitively on the remaining $q-1$ letters $(P \cap J)^{\tau a}, a \in P \cap J$, $a \neq 1$.

Let D be the subgroup of J fixing three Sylow p-groups. Assuming D fixes $P \cap J$ and $(P \cap J)^{\tau}, D$ is a subgroup of K. Let $d \in D$ and let $(P \cap J)^{\tau a}$, $a \neq 1$ be a third conjugate of $P \cap J$ fixed by D. Then

$$
(\tau a) d(\tau a)^{-1} \in(P \cap J) K
$$

so that $a d a^{-1} \epsilon(P \cap J)^{\tau} K$. Letting $d^{-1} a d=b, b \in P \cap J, a d a^{-1}=d b a^{-1}$ and we conclude that $b a^{-1} \epsilon(P \cap J) \cap(P \cap J)^{\tau}$. Since $P \cap J$ is a T.I. subset of J (see case $q=9$ of (2.6)), $a=b$ and we have that d centralizes a. We have seen that $K=K_{1} \times C_{K}(P \cap J)$ so that $C_{K}(a)=C_{K}(P \cap J)$. This implies $D \subseteq C_{K}(P \cap J)$. Clearly $C_{K}(P \cap J) \subseteq D$ so that $D=C_{K}(P \cap J)$. This proves that D fixes all Sylow p-subgroups of J and must therefore coincide with the kernel of the representation of J on its Sylow p-groups. Consequently J / D may be viewed as a triply transitive permutation group on $q+1$ letters for which the subgroup fixing 3 letters is trivial. A theorem of Zassenhaus [12] now applies and we have that $J / D \cong P G L(2, q)$.

We have seen that $K=K_{1} \times D$ so that $|D|=(q-1) / 2$. Furthermore, $K=K_{1}^{\tau} \times D$ as τ normalizes K and D. Hence $k_{1}^{\tau} k_{1}^{i} \in D$ for some integer i satisfying $(i, q-1)=1$. From the structure of $K, k_{1}^{\tau} k_{1}^{i}$ has order $(q-1) / 2$ and we conclude that D is a cyclic group of order $(q-1) / 2$.

We now claim that J splits over D. It is computed that

$$
|J|=q(q+1)(q-1)^{2} / 2
$$

so that if r is an odd prime divisor of $|D|$, a Sylow r-subgroup of K is a Sylow r-subgroup of J. Since K is abelian, a Sylow r-subgroup R of J splits over $R \cap D$ for all odd prime divisors r of $|D|$. It remains to consider a Sylow 2group S of J. If $q \equiv-1 \bmod 4,(q-1) / 2$ is odd so that $S \cap D=1$. If $q \equiv 1 \bmod 4$, let $q-1=2^{w} e,(2, e)=1$. The element τ normalizes K and $\tau^{2} \epsilon K$ so that we may assume τ has 2 -power order. Consider the 2 -group $\left\langle k_{1}^{e}, k_{1}^{e \tau}\right\rangle$ which is a Sylow 2 -group of K of order $2^{2 w-1}$. Since τ interchanges $k_{1}^{e}, k_{1}^{e \tau}, S=\left\langle k_{1}^{e}, \tau\right\rangle$ is a 2 -group of order $2^{2 w}$ and a comparison of orders shows that S is a Sylow 2 -group of J. Now J is generated by $(P \cap J) K$ and $(P \cap J)^{\tau}$ and we have seen that D centralizes $(P \cap J) K$. Furthermore, as D is normal in J, D centralizes $(P \cap J)^{\tau}$ and we conclude that D is a subgroup of the center of J. In particular, $S \cap D \subseteq C_{S}(\tau)=\left\langle\left(k_{1} k_{1}^{\tau}\right)^{e}, t\right\rangle$. A comparison of orders shows that $S \cap D$ is generated by $\left(k_{1} k_{1}^{\tau}\right)^{e}$ or $t\left(k_{1} k_{1}^{\tau}\right)^{e}$. Let

$$
E=\left\langle\left(k_{1}^{-1} k_{1}^{\tau}\right)^{e}, t\right\rangle .
$$

It is seen that $|E|=2^{w}$ and that E is normalized by τ. Thus $E\langle\tau\rangle$ is a 2group of order 2^{w+1} and satisfies $E\langle\tau\rangle \cap(S \cap D)=1$. Thus $S=E\langle\tau\rangle \times$ ($S \cap D$) and S splits over $S \cap D$. A theorem of Gaschütz now applies and we conclude that $J=F D, F \cap D=1$. As D is in the center of J and

$$
J / D \cong P G L(2, q), \quad J=F \times D
$$

and the statement of Theorem 1 follows.

3. The nonsimple case

Throughout this section let G be a finite group satisfying Hypothesis B.
Hypothesis B. G satisfies (a), (b) of Hypothesis A for $p=3, q=3^{m}$, m odd, $m>1$. The subgroup $N_{G}(M)$ has P as a normal Sylow 3-subgroup.

It will be shown that a group satisfying Hypothesis B is an extension of $C_{G}(Z)$ by a group of automorphisms of order less than or equal to $q-1$. After a series of lemmas, it is shown that a group satisfying Hypothesis B has a quaternion or semidihedral Sylow 2-group. This gives enough information to establish the structure of G.

It is an immediate consequence of Hypothesis B that $N_{G}(M) \subseteq N_{G}(P)$. This fact, together with the fact that M is a characteristic subgroup of P, implies that $N_{G}(M)=N_{G}(P)$. Hence $N_{G}(M)=P K, P \cap K=1$ and K can be chosen to be a complement for P containing t in its center. Because $C_{M}(t)=T$ and T is an elementary abelian 3 -group of order q^{2} containing Z, $C_{G}(T)$ is a subgroup of $C_{G}(Z)$. It is calculated that $C_{G}(T)=M\langle t\rangle$ and we have that M is a characteristic subgroup of $C_{G}(T)$. Therefore M is normal in $N_{G}(T)$ and $N_{G}(T)=M K$. This implies that T is a Sylow 3-subgroup of $C_{G}(t)$.

For all nontrivial elements $z \in Z, C(z, t)=Z \times L$ where L is isomorphic to $S L(2, q)$. Let us identify L with its 2 -dimensional matrix representation over F_{q} in such a way that $T \cap L$ corresponds to the collection of all matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right), \quad \lambda \in F_{q}
$$

and $K_{1}=C_{K}(Z)$ corresponds to

$$
\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & \varepsilon^{-1}
\end{array}\right)
$$

where ε is a primitive element of F_{q}. Then any automorphism of L is given by $B \rightarrow A^{-1} \beta^{\phi} A$ where A is a nonsingular 2 -dimensional matrix over F_{q} and ϕ is an automorphism of F_{q} (see [9]). It is easily calculated that any automorphism of L which centralizes the quaternion group generated by

$$
x=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

is a field automorphism. In the following series of lemmas let Q be the quaternion group generated by x and y. As q is an odd power of 3,4 is the highest power of 2 dividing $q+1$ so that Q is a Sylow 2 -group of L.

$$
\begin{equation*}
\text { If } C_{G}(Q) \neq Z C_{K}(Q), C_{G}(Q) /\langle t\rangle \text { is isomorphic to } \operatorname{PSL}(2, q) \tag{3.1}
\end{equation*}
$$

Proof. The involution t is contained in the center of Q so that $C_{G}(Q)$ is a subgroup of $C_{G}(t)$. Also, $C_{G}(t)$ has an abelian Sylow 3 -group so a Sylow 3-group of $C_{G}(Q)$ containing Z must centralize Z. Since

$$
C_{G}(Q) \cap C_{G}(Z)=Z\langle t\rangle
$$

Z is a Sylow 3-group of $C_{G}(Q)$.
Suppose that $y \in N_{G}(Z) \cap C_{G}(Q)$. Then y induces an automorphism of L which centralizes Q. From the remark preceding (3.2), y normalizes $T \cap L$ and K_{1}. As $T=(T \cap L) Z, y$ normalizes T so $y \in T K$. Since

$$
T K \cap N_{G}\left(K_{1}\right)=Z K, \quad y \in Z K
$$

Therefore, $N_{G}(Z) \cap C_{G}(Q)=Z C_{K}(Q)$.
Let $X=C_{G}(Q) /\langle t\rangle$ and let \bar{Z} be the image of Z in X. For all nontrivial $z \in Z$,

$$
C_{G}(Q) \cap C_{G}(z)=Z\langle t\rangle
$$

so that $C_{\bar{X}}(\bar{z})=\bar{Z}$. Hence \bar{Z} is a $C C$-subgroup of X of order q. If

$$
C_{K}(Q)^{-}=\overline{1}, \quad N_{G}(Z) \cap C_{G}(Q)=Z\langle t\rangle
$$

and $C_{G}(Q)$ has a normal 3-complement E. Then

$$
E=\prod_{z \epsilon Z *} C_{E}(z)
$$

which implies that $E \subseteq Z\langle t\rangle$. Hence $C_{G}(Q)=Z\langle t\rangle$ contrary to the hypothesis of (3.1). On the other hand, suppose $\left|C_{K}(Q)^{-}\right|=q-1$ so that $\left|C_{K}(Q)\right|=2(q-1)$. Because $q-1$ is not divisible by 4, a Sylow 2-group of $C_{K}(Q)$ has order 4 and contains the central involution t. Let us suppose that $C_{K}(Q)$ contains an element β of order 4. As $\beta^{2}=t, \beta$ acts in a fixed-point-free manner on the $q-1$ elements of M inverted by t. This implies that 4 divides $q-1$ which is not the case. We may therefore assume that $C_{K}(Q)$ contains a four-group $\langle t, \tau\rangle$ and the involution τ induces an automorphism of L sending

$$
\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right) \text { to }\left(\begin{array}{cc}
1 & 0 \\
\lambda^{\phi} & 1
\end{array}\right)
$$

where ϕ is an automorphism of F_{q}. Because $q=3^{m}, m$ odd, L admits no field automorphism of order 2 . We conclude $\left|C_{K}(Q)^{-}\right| \neq q-1$.

We have now shown that X contains \bar{Z} as a $C C$-subgroup of order q and $\left[N_{X}(\bar{Z}): \bar{Z}\right] \neq 1$ or $q-1$. In addition, \bar{Z} is not a normal subgroup of X as otherwise $C_{G}(Q)=Z C_{K}(Q)$ contrary to hypothesis. By (5.1) of [8], $X \cong P S L(2, q)$.

As a result of (3.1) we will now investigate the structure of groups satisfying Hypothesis C.

Hypothesis 3. G satisfies Hypothesis B and $C_{G}(Q) \neq Z C_{K}(Q)$.
Groups satisfying Hypothesis C require a rather detailed discussion of their 2-structure. After a series of propositions, it will be shown that no such groups
can exist. This, of course, implies that a group satisfying Hypothesis B must have $C_{G}(Q)=Z C_{R}(Q)$.
(3.2) Let G satisfy Hypothesis C. Then

$$
N_{G}(Q)=\langle x\rangle Q C_{G}(Q) \quad \text { or } \quad\langle x, \sigma\rangle C_{G}(Q)
$$

where x is an element of $T \cap L$ which normalizes Q and σ is an involution of $N_{G}(Z)$ with $Q\langle\sigma\rangle$ a semi-dihedral group of order 16.

Proof. It is seen that $N_{L}(Q)$ is the subgroup of L generated by

$$
x=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

and Q. The group $N_{G}(Z) \cap N_{G}(Q)$ induces a group of automorphisms of Z with kernel $Z\langle x\rangle Q$ and, since $N_{G}(Z) \cap N_{G}(Q) / Z\langle x\rangle Q$ acts regularly on Z,

$$
\left[N_{G}(Z) \cap N_{G}(Q): Z\langle x\rangle Q\right] \leq q-1
$$

By (3.1), $\left|C_{K}(Q)\right|=q-1$ so $\left|(Z\langle x\rangle Q) C_{K}(Q)\right|=|Z\langle x\rangle Q|(q-1) / 2$ and we conclude $(Z\langle x\rangle Q) C_{K}(Q)$ has index at most 2 in $N_{G}(Z) \cap N_{G}(Q)$.

Let us suppose $\left[N_{G}(Z) \cap N_{G}(Q):(Z\langle x\rangle Q) C_{K}(Q)\right]=2$. Then K / K_{1} acts transitively on Z so that $|K|=(q-1)^{2}$ and K has a Sylow 2 -group of order 4. This implies that K contains an involution τ such that $\langle t, \tau\rangle$ is a four group. Because τ does not centralize Q, τ induces an automorphism of L which comes from the natural action of $G L(2, q)$ on $S L(2, q)$ so that $L\langle\tau\rangle$ is isomorphic to a subgroup of $G L(2, q)$. Let σ be an appropriate involution of $L\langle\tau\rangle$ such that $Q\langle\sigma\rangle$ is a Sylow 2 -group of $L\langle\tau\rangle$. Then $Q\langle\sigma\rangle$ has order 16 and, by a comparison of orders, is isomorphic to a Sylow 2-group of $G L(2, q)$. By [2], $Q\langle\sigma\rangle$ is semi-dihedral and

$$
N_{G}(Z) \cap N_{G}(Q)=\langle x, \sigma\rangle Q C_{K}(Q)
$$

For $y \in N_{G}(Q), Z^{y}$ is a Sylow 3 -group of $C_{G}(Q)$ so for some $w \in C_{G}(Q)$, $Z^{y w}=Z$. Hence $y w \in N_{G}(Z) \cap N_{G}(Q)$ and $y \in\left(N_{G}(Z) \cap N_{G}(Q)\right) C_{G}(Q)$. We conclude that $N_{G}(Q)=\langle x\rangle Q C_{G}(Q)$ or $\langle x, \sigma\rangle Q C_{G}(Q)$.
(3.3) Let G satisfy Hypothesis C and W be a Sylow 2-group of $C_{G}(Q)$. Then W is quaternion or elementary abelian of order 8.

Proof. Let W be a Sylow 2-group of $C_{G}(Q)$. Since a Sylow 2-group of $\operatorname{PSL}(2, q)$ is a four-group, $W /\langle t\rangle$ is a four-group and $|W|=8$. If W contains no element of order $4, W$ is elementary abelian as desired. We may therefore assume that W contains an element a of order 4. Furthermore, the involutions of $W /\langle t\rangle$ are conjugate in $C_{G}(Q)$ so W must contain another element b of order 4 with $\langle a\rangle \cap\langle b\rangle=\langle t\rangle$. Now a and b do not commute as otherwise $a b$ is an involution conjugate to a or at in $C_{G}(Q)$. Thus W is nonabelian and must be quaternion.

We have seen that $C_{G}(Q) /\langle t\rangle \cong P S L(2, q)$ so that $C_{K}(Q) /\langle t\rangle$ is cyclic of order $(q-1) / 2$. By hypothesis $(q-1) / 2$ is odd and it follows that $C_{K}(Q)$
contains an element of order $q-1$. Let k_{2} be a generator of $C_{K}(Q)$ and consider the action of k_{2} as an automorphism of L. Since k_{2} centralizes Q, k_{2} sends $B \rightarrow B^{\phi}$ where B is any 2 -dimensional matrix of L and ϕ is an automorphism of F_{q}. In particular, we have identified $T \cap L$ with the collection

$$
\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right), \quad \lambda \in F q
$$

so k_{2} centralizes

$$
x=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

On the other hand, x normalizes Q and induces an automorphism of $C_{G}(Q) /\langle t\rangle$ which centralizes the Sylow 3-normalizer $Z C_{K}(Q) /\langle t\rangle$ and must consequently induce the trivial automorphism. Let W be any Sylow 2-group of $C_{G}(Q)$. Then x centralizes $W /\langle t\rangle$ and therefore W.

If the involution σ exists, $Q\langle\sigma\rangle$ is a semi-dihedral group by (3.2). In addition, σ induces an automorphism of $C_{G}(Q)$ inverting the nontrivial elements of the Sylow 3 -group Z. If W is elementary abelian, $W=\langle t, \tau, \mu\rangle$ for some involutions τ and μ. Applying a theorem of Gaschütz, $C_{G}(Q)$ splits over $\langle t\rangle$ so that $C_{G}(Q)=\langle t\rangle \times Y, Y \cong P S L(2, q)$ and we may assume $W \cap Y=\langle\tau, \mu\rangle$. Then σ normalizes Y and inverts Z so that $Y\langle\sigma\rangle$ is isomorphic to a subgroup of $P \Gamma L(2, q)$ containing $P S L(2, q)$ as a subgroup of index 2 . Choosing W appropriately, $\langle\tau, \mu, \sigma\rangle$ is a dihedral group of order 8. If W is quaternion, $W\langle\sigma\rangle /\langle t\rangle$ is isomorphic to a Sylow 2-group of $P \Gamma L(2, q)$ and is dihedral of order 8 . Let s be an element of $W\langle\sigma\rangle$ such that s has order 4 in the factor group $W\langle\sigma\rangle /\langle t\rangle$. If $s^{4}=1, s^{2}$ is an involution of W and we must have $s^{2}=t$. This contradicts our choice of s and we have $s^{4}=t$. Hence $W\langle\sigma\rangle$ has a maximal cyclic subgroup of order 8 and since W is quaternion, $W\langle\sigma\rangle$ is not dihedral or generalized quaternion. A characterization of such groups [5, p. 193] implies that $W\langle\sigma\rangle$ is semi-dihedral.

We are now in a position to determine a Sylow 2-group of G.
(3.4) Let G satisfy Hypothesis C. If a Sylow 2-group W of $C_{G}(Q)$ is elementary abelian, $Q W$ or $Q W\langle\sigma\rangle$ is a Sylow 2-group of G.

Proof. In the preceding paragraph we noticed that

$$
C_{G}(Q)=\langle t\rangle \times Y, \quad Y \cong P S L(2, q)
$$

where $W=\langle t, \tau, \mu\rangle$ and $W \cap Y=\langle\tau, \mu\rangle$. All involutions of Y are conjugate and there exists an element of order 3 which cyclically permutes them. In fact, Z is a Sylow 3 -group of Y so that for suitable choice of W, we may assume $\langle\tau, \mu\rangle$ is normalized by an element z of Z. Furthermore,

$$
N_{G}(Q) \cap N_{G}(Q W)=\langle x, z\rangle Q W \quad \text { or } \quad\langle x, z, \sigma\rangle Q W
$$

where $x \in T \cap L$, permutes the subgroups of Q of order 4, and centralizes W.
Let $Q=\left\langle a, b \mid a^{2}=b^{2}=t, a b=b a^{-1}\right\rangle$. Consider $y \in N_{G}(Q W)$ and sup-
pose $a^{y}=f \beta, b^{y}=h \gamma$ for $f, h \in Q$ and $\beta, \gamma \in\langle\tau, \mu\rangle$. Because a^{y} inverts b^{y}, f and h do not commute. Hence x or x^{2} interchanges $\langle f\rangle$ and $\langle h\rangle$ so that $a^{y x^{i}}=h \beta$ or $t h \beta, i \epsilon\{1,2\}$. In the case $\beta \neq \gamma, \beta^{z^{i}}=\gamma$ for $j \epsilon\{1,2\}$ and $a^{y x^{i} z^{i}}=h \gamma$ or $t h \gamma$. That is, $a^{y x^{i} z^{j}}=b^{y}$ or $t b^{y}$ and $y x^{i} z^{j} y^{-1} \in N_{G}(Q)$. In particular, $x^{i} z^{j}$ normalizes Q^{y}. In the case $\beta=\gamma, a^{y x^{i}}=h \gamma$ or th γ with $i \epsilon\{1,2\}$ and $a^{y x^{i}}=b^{y}$ or $t b^{y}$. Hence x^{i} leaves Q^{y} invariant. In any case, Q^{y} is normalized by an element of the form $x^{i} z^{j}, i \neq 0$.

It is computed that $Q W$ contains 7 quaternion groups normalized by an element $x^{i} z^{j}, i \neq 0$. Indeed, let the action of z on $\langle\tau, \mu\rangle$ and x on Q be given as follows:

$$
z: \tau \rightarrow \mu \rightarrow \tau \mu ; \quad x: a \rightarrow b \rightarrow a b .
$$

Then $x z$ normalizes each of the quaternion groups $Q_{1}=Q, Q_{2}=\langle a \tau, b \mu\rangle$, $Q_{3}=\langle a \mu, b \tau \mu\rangle$ and $Q_{4}=\langle a \tau \mu, b \tau\rangle$ while $x^{2} z$ leaves $Q_{5}=\langle a \tau, a b \mu\rangle$, $Q_{6}=\langle a \tau \mu, a b \tau\rangle$ and $Q_{7}=\langle a \mu, a b \mu \tau\rangle$ invariant. Notice that a quaternion group containing an element of Q or order 4 and normalized by $x^{i} z^{j}, i \neq 0$ must coincide with Q and Q is the only quaternion group normalized by $\langle x\rangle$. This proves that the 7 quaternion groups Q_{i} are exactly the quaternion subgroups left invariant by an element $x^{i} z^{j}, i \neq 0$.

Now $N_{G}(Q W)$ induces a permutation group on the Q_{i} with $\langle x, z\rangle Q W$ or $\langle x, z, \sigma\rangle Q W$ the subgroup fixing the letter Q. Hence, if $N_{G}(Q W)$ acts transitively on the $Q_{i}, N_{G}(Q W)$ has a subgroup of index 7. However $(Q W)^{\prime}=\langle t\rangle$ and W coincides with the center of $Q W$. Therefore any automorphism of $Q W$ of order 7 centralizes $W, Q W / W$ and consequently $Q W$. As $C_{G}(Q W)=W$, $N_{G}(Q W)$ can contain no element of order 7 and we conclude that $N_{G}(Q W)$ acts intransitively on the Q_{i}.

Let us suppose $N_{G}(Q W) \neq Q W$ or $\langle x, z, \sigma\rangle Q W$. Without loss of generality assume Q and Q_{2} are conjugate. Since z transitively permutes Q_{2}, Q_{3} and Q_{4} and x permutes Q_{5}, Q_{6} and Q_{7} transitively, Q and Q_{5} can not be conjugate. Otherwise $N_{G}(Q W)$ acts transitively on the Q_{i} in contradiction to the previous paragraph. We see that $N_{G}(Q W)$ induces a transitive permutation group on the orbit $\left\{Q, Q_{2}, Q_{3}, Q_{4}\right\}$ with kernel $Q W\langle x z\rangle$. However, let us consider $C_{G}(x z, t)$. We have seen that $N_{G}(T)=M K$ and that $T K$ is a Sylow 3-normalizer of $C_{G}(t)$. In addition $\left|K / K_{1}\right| \leq q-1$ so that $K=K_{1} K_{2}$ or $\left[K: K_{1} K_{2}\right]=2$. In both cases K leaves Z and $T \cap L$ invariant. Now K_{1} acts $\frac{1}{2}$-transitively on the nontrivial elements of $T \cap L$ and $C_{K}(z)=K_{1}$ so it follows that $C_{K}(x z)=\langle t\rangle$ and $T\langle t\rangle$ is a Sylow 3 -normalizer of $C_{G}(x z, t)$. Hence $C_{G}(x z, t)$ has a normal 3 -complement E which is left invariant by Z. We conclude that

$$
E \subseteq(T \cap L)\langle t\rangle \quad \text { and } \quad C_{G}(x z, t)=T\langle t\rangle
$$

Finally, for $y \in N_{G}(Q W),(x z)^{y} \in Q W\langle x z\rangle$ so that $(x z)^{y s}=x z$ or ($\left.x z\right)^{2}$ for some $s \in Q W$. In the first case $y s \in T\langle t\rangle \cap N_{G}(Q W)=\langle x, z, t\rangle$ and $y \in\langle x, z\rangle Q W$. In the second case $(x z)$ and $(x z)^{2}$ are conjugate so that σ must exist. Then $(x z)^{y s \sigma}=x z$ as σ inverts the nontrivial elements of Z and $T \cap L$. We have
that $y s \sigma \epsilon\langle x, z, t\rangle$ and $y \in\langle x, z, \sigma\rangle Q W$. In both cases y normalizes Q a contradiction to hypothesis. We conclude $N_{G}(Q W)=\langle x, z\rangle Q W$ or $\langle x, z\rangle Q W\langle\sigma\rangle$.

If σ does not exist, $N_{G}(Q W)=\langle x, z\rangle Q W$ and $Q W$ is a Sylow 2-group of G as desired. We may therefore assume that σ exists and consider $S=Q\langle\tau, \mu, \sigma\rangle$ where $Q\langle\sigma\rangle$ is semi-dihedral and $\langle\tau, \mu, \sigma\rangle$ is dihedral. Let τ be the central involution of $W\langle\sigma\rangle$. Then $S^{\prime}=\langle a, \tau\rangle$ where a is an element of Q or order 4. Furthermore, $C_{s}\left(S^{\prime}\right)=\langle s\rangle W$ where s is an element of $Q\langle\sigma\rangle$ of order 8 . Since every involution of $\langle s\rangle W$ belongs to W, W is a characteristic subgroup of $\langle s\rangle W$ and consequently is characteristic in S. We conclude that $C_{S}(W)=Q W$ is left invariant by $N_{G}(S)$ and the conclusion of the preceding paragraph yields that $N_{G}(S)=Q W\langle\sigma\rangle$. Therefore $Q W\langle\sigma\rangle$ is a Sylow 2-group of G.
(3.5) Let G satisfy Hypothesis C. If a Sylow 2-group of $C_{G}(Q)$ is quaternion, $Q W$ or $Q W\langle\sigma\rangle$ is a Sylow 2-group of G.

Proof. Let us first assume that $Q W$ is a Sylow 2-group of $N_{G}(Q)$. We show that no element of Q of order 4 is conjugate in G to an element of W. Indeed, suppose y is an element of Q of order 4 and there exists $g \epsilon G$ with $y^{g} \in W$. Then $C_{G}\left(y^{g}\right)$ contains Z^{g} and the remarks preceding (3.4) imply that y^{σ} is centralized by an element $x \in T \cap L$. A Sylow 3 -group of $C_{G}(y)$ which contains Z is abelian and is thus a subgroup of $C_{G}(y, Z)=Z\langle d\rangle$ where d is an element of L of order $q+1$. Hence Z is a Sylow 3 -group of $C_{G}(y)$. It follows that x is conjugate to an element $z \in Z$. However, x and z are elements of M where M is the unique abelian subgroup of P of order q^{3}. This implies that y and z are conjugate in $N_{G}(M)=P K$. Since Z is a characteristic subgroup of P, this is impossible. The elements of $Q W$ of order 4 belong to Q or W so that $N_{G}(Q W)$ permutes the elements of Q of order 4 and leaves Q invariant. Therefore $Q W$ is a Sylow 2 -group of $N_{G}(Q W)$ and is a Sylow 2-group of G.

On the other hand suppose that $Q W\langle\sigma\rangle$ is a Sylow 2 -group of $N_{G}(Q)$. Let $S=Q W\langle\sigma\rangle$ and notice that $Q\langle\sigma\rangle$ and $W\langle\sigma\rangle$ are semi-dihedral groups. Let $x \in Q, y \in W$ and suppose $x y \sigma$ is an element of order 4. Then $(x \sigma)^{4}(y \sigma)^{4}=1$ so that $(x \sigma)^{4} \in Q \cap \dot{W}=\langle t\rangle$. If $(x \sigma)^{4}=t,(y \sigma)^{4}=t$ and $(x \sigma)^{2},(y \sigma)^{2}$ are elements of order 4 belonging to Q and W respectively. Hence $(x y \sigma)^{2}=(x \sigma)^{2}(y \sigma)^{2}$ is an involution of $Q W$ different from t. When $(x \sigma)^{4}=1,(y \sigma)^{4}=1$, one of the elements $x \sigma$ and $y \sigma$ has order 4 which, without loss of generality, we may assume to be $y \sigma$. Because $W\langle\sigma\rangle$ is semi-dihedral, W contains all elements of $W\langle\sigma\rangle$ of order 4. In particular, $y \sigma \epsilon W$ which is not the case. We have therefore shown that an element of order 4 which belongs to $S-Q W$ has as its square an involution of $Q W$ different from t. The center of S is generated by t so that no element of Q of order 4 is conjugate in $N_{G}(S)$ to an element of $S-Q W$. Thus $N_{G}(S)$ permutes the elements of $Q W$ of order 4 and, as no element of order 4 in Q is conjugate to an element of $W, N_{G}(S)$ leaves Q invariant. This implies $N_{G}(S)=S$ and we conclude that $S=Q W\langle\sigma\rangle$ is a Sylow 2-group of G.
(3.6) If G satisfies Hypothesis $\mathrm{B}, C_{G}(Q)=Z C_{K}(Q)$. In particular, no group satisfying Hypothesis C can exist.

Proof. If G satisfies Hypothesis C, the structure of a Sylow 2-group of G is given by (3.4) and (3.5). We will show that in any of these cases t is conjugate to no involution of a Sylow 2 -group of G other than itself. This implies that $G=C_{G}(t) O(G)$. Because $C_{G}(t)$ has a Sylow 3-group of order q^{2} and a Sylow 3 -group P of G containing Z has order $q^{4}, P \cap O(G)$ is a nontrivial normal subgroup of P and $Z \cap O(G) \neq 1$. Consequently, $C_{G}(Q)$ has a nontrivial normal subgroup of odd order which is impossible unless

$$
C_{G}(Q)=Z C_{E}(Q)
$$

In order to complete the proof of (3.6) it is therefore sufficient to show that in a group G satisfying Hypothesis C, t is conjugate to no involution of $Q W$ or $Q W\langle\sigma\rangle$ other than itself.

Let us assume that W is elementary abelian and that $Q W$ is a Sylow 2-group of G. As W coincides with the center of $Q W$ and contains all involutions, fusion of involutions is controlled by $N_{G}(Q W)$. However, $N_{G}(Q W)=\langle x, z\rangle Q W$ as seen in (3.4) so that t is conjugate to no involution of $Q W-\langle t\rangle$.

We may now let $Q W\langle\sigma\rangle$ be a Sylow 2-group of G with W elementary abelian. Let $W=\langle t, \tau, \mu\rangle$ so that $\langle\tau, \mu, \sigma\rangle$ is dihedral of order 8 . Every involution $x y \sigma$, $x \epsilon Q, y \epsilon\langle\tau, \mu\rangle$ satisfies $(x \sigma)^{2}(y \sigma)^{2}=1$ so that $x \sigma$ and $y \sigma$ are involutions of $Q\langle\sigma\rangle$ and $\langle\tau, \mu, \sigma\rangle$ respectively. Since $\langle\tau, \mu, \sigma\rangle$ is dihedral and $y \sigma \oint\langle\tau, \mu\rangle$, $y \sigma$ is conjugate in $\langle\tau, \mu, \sigma\rangle$ to σ. Hence $x y \sigma$ is conjugate to $a \sigma, a \in Q$. Now $Q\langle\sigma\rangle$ is semi-dihedral so has two classes of involutions with representatives t and σ. We conclude that $x y \sigma$ is conjugate to σ and every involution of $Q W\langle\sigma\rangle-Q W$ is conjugate to σ. Let τ be the central involution of $\langle\tau, \mu, \sigma\rangle$ so that $\langle t, \tau\rangle$ is the center of $Q W\langle\sigma\rangle$. Every involution of $Q W-\langle t\rangle$ is conjugate in $C_{G}(Q)$ to τ or $t \tau$, and by (3.4), $N_{G}(Q W\langle\sigma\rangle)=Q W\langle\sigma\rangle$. Hence t, $\tau, t \tau$ belong to distinct conjugacy classes of G.

Let us assume that t is conjugate to an involution of $Q W\langle\sigma\rangle-\langle t\rangle$ so that t is conjugate to σ and let R be a Sylow 2 -group of $C_{\sigma}(\sigma)$ containing $\langle t, \tau, \sigma\rangle$. As σ and t are conjugate, G has exactly three classes of involutions K_{i}, $i=1,2,3$ with representatives t, τ and $t \tau$. The involutions of $\langle t, \tau, \sigma\rangle$ are partitioned among these classes such that $K_{1}=\{t, \sigma, t \sigma, t \tau \sigma, \tau \sigma\}, K_{2}=\{\tau\}$, $K_{3}=\{t \tau\}$. Letting $E=N_{R}\langle t, \tau, \sigma\rangle, E$ centralizes $\langle\tau, t\rangle$ and, since $Q W\langle\sigma\rangle$ is a Sylow 2-group of $C_{G}\langle t, \tau\rangle$, there exists $g \epsilon C_{G}(t, \tau)$ for which $E^{g} \subseteq Q W\langle\sigma\rangle$. By our choice of E, E^{g} centralizes $\left\langle t, \tau, \sigma^{g}\right\rangle$ and σ^{g} is an involution of $Q W\langle\sigma\rangle$ different from t. Now σ^{σ} is not conjugate to τ or $t \tau$ so $\sigma^{\theta} \notin Q W$. Hence σ^{θ} is conjugate in $Q W\langle\sigma\rangle$ to σ. However, $C_{G}(\sigma) \cap Q W\langle\sigma\rangle=\langle t, \tau, \sigma\rangle$ so that $\left|E^{g}\right|=8$. Hence $E=\langle t, \tau, \sigma\rangle$ is a Sylow 2 -group of $C_{G}(\sigma)$, a contradiction to our assumption that t and σ are conjugate. We conclude that t is conjugate to no involution of $Q W\langle\sigma\rangle-\langle t\rangle$.

We now consider W to be quaternion. Let Q be generated by elements a_{1} and b_{1} of order 4 and assume W is generated by corresponding elements a_{2}, b_{2}.

Every involution of $Q W$ different from t is given by $x y, x \in Q, y \in W$ where x and y have order 4. Furthermore $\langle x, z\rangle$ normalizes $Q W$ such that z transitively permutes the subgroups of W of order 4 and x centralizes W. Hence every involution of $Q W-\langle t\rangle$ is conjugate to $v=a_{1} a_{2}$.

In the case that $Q W$ is a Sylow 2-group of G and t is conjugate to an involution of $Q W-\langle t\rangle, t$ and v are conjugate. Let V be a Sylow 2 -group of $C_{G}(v)$ containing $R=\left\langle a_{1}, a_{2}, b_{1} b_{2}\right\rangle$. Since R has index 2 in $Q W, R$ and R^{\prime} are normal subgroups of V. It is computed that $R^{\prime}=\langle t\rangle$ so that $\langle t\rangle$ is left invariant by V. This implies $\langle t, v\rangle$ is contained in the center of V which is impossible as $Q W$ and V are isomorphic. We conclude that t is conjugate to no involution of $Q W-\langle t\rangle$.

Finally, let us consider the case when W is quaternion and $Q W\langle\sigma\rangle$ is a Sylow 2 -group of G. An involution $y w \sigma, x \in Q, w \in W$ satisfies $(y \sigma)^{2}(w \sigma)^{2}=1$ so that $y \sigma$ and $w \sigma$ are both elements of order 4 or both involutions. If $w \sigma$ has order 4, $w \sigma \epsilon W$ because W contains the elements of order 4 in $W\langle\sigma\rangle$. Thus $w \sigma$ is an involution of $W\langle\sigma\rangle$ different from t and is conjugate in $W\langle\sigma\rangle$ to σ. This implies $y w \sigma$ is conjugate to an involution of $Q\langle\sigma\rangle$ different from t. But $Q\langle\sigma\rangle$ is also semi-dihedral so that $y w \sigma$ is conjugate to σ. This proves that every involution of $Q W\langle\sigma\rangle-\langle t\rangle$ is conjugate to σ or v. The centralizer of v in $Q W\langle\sigma\rangle$ is $R=\left\langle a_{1}, a_{2}, b_{1} b_{2}, \sigma\right\rangle$ which has index 2 in $Q W\langle\sigma\rangle$. Furthermore, $R^{\prime}=\langle t\rangle$ so that the argument of the preceding paragraph implies t and v are not conjugate.

We may assume, therefore, that t and σ are conjugate. Then G has two classes of involutions with representatives t and v. The involutions of $\langle t, v, \sigma\rangle$ are partitioned in such a way that $t, \sigma, v \sigma, t \sigma$ and $v t \sigma$ belong to one class while $v, v t$ belong to the second class. Let S be a Sylow 2 -group of $C_{G}(\sigma)$ containing $\langle t, v, \sigma\rangle$ and consider $E=N_{s}\langle t, v, \sigma\rangle$. Clearly E permutes v and $v t$ so leaves $\langle v, t\rangle$ invariant and, since $Q W\langle\sigma\rangle$ is a Sylow 2-group of $N_{G}\langle v, t\rangle$, $E^{g} \subseteq Q W\langle\sigma\rangle$ for some $g \epsilon G$. Now $\left\langle t, \tau, \sigma^{g}\right\rangle \subseteq Q W\langle\sigma\rangle$ so that σ^{g} is an involution different from t. Furthermore, v and σ are not conjugate and we conclude that σ^{σ} is conjugate to σ in $Q W\langle\sigma\rangle$. Also, $C_{\sigma}(\sigma) \cap Q W\langle\sigma\rangle=\langle t, v, \sigma\rangle$ which implies E^{g} is conjugate to a subgroup of $\langle t, v, \sigma\rangle$. Therefore $E=\langle t, v, \sigma\rangle$ is a Sylow 2 -group of $C_{G}(\sigma)$. We conclude that t and σ are not conjugate.
(3.8) If G satisfies Hypothesis B, a Sylow 2-group of G is quaternion of order 8 or semi-dihedral of order 16.

Proof. From the beginning remarks of this section, $C_{G}(z, t)=Z L$ for $z \epsilon Z$ and $N_{G}(P)=P K$ where K is a complement of P containing t in its center. Consider $y \in N_{G}(Z) \cap C_{G}(t)$. For $z \in Z, z^{y}$ and z are conjugate in K so there exists $k \in K$ such that $z^{y k}=z$. Hence $y k \in Z L$ and $y \in Z L K$. We conclude that $N_{G}(Z) \cap C_{G}(t)=Z L K$.

Let us suppose [$Z L K: Z L$] is odd. It follows that Q is a Sylow 2 -group of $Z L K$ and by $(3.6), C_{G}(Q)=Z C_{K}(Q)$. Hence $N_{G}(Q) \subseteq Z L K$ and Q must be a^{*} Sylow 2-group of G.

If [$Z L K: Z L$] is even, K / K_{1} induces a regular group of permutations of the nontrivial elements of Z with $\left|K / K_{1}\right|$ even. Since $q-1$ is not divisible by 4 , K has a Sylow 2 -group of order 4. Thus K contains an involution τ different from t and τ induces a nontrivial outer automorphism of L of order 2. Hence $L\langle\tau\rangle$ is isomorphic to a subgroup of $G L(2, q)$ containing $S L(2, q)$ as a subgroup of index 2. Letting σ be an appropriate involution of $G L(2, q)$ which normalizes $Q, Q\langle\sigma\rangle$ is isomorphic to a Sylow 2 -group of $G L(2, q)$. In particular, $Q\langle\sigma\rangle$ is semi-dihedral of order 16 and is a Sylow 2 -group of $Z L K$. Now Q is a characteristic subgroup of $Q\langle\sigma\rangle$ so that $N_{G}(Q\langle\sigma\rangle) \subseteq N_{G}(Q)$. However, $N_{G}(Q) \subseteq Z L K$ and we conclude $Q\langle\sigma\rangle$ is a Sylow 2 -group of G.
(3.9) If G satisfies Hypothesis $\mathrm{B}, C_{G}(t)=Z L K$.

Proof. By (3.8), Q or $Q\langle\sigma\rangle$ is a Sylow 2-group of $C_{G}(t)$. Hence $X=C_{G}(t) /\langle t\rangle$ has a dihedral Sylow 2-group. As X involves $\operatorname{PSL}(2, q),[6]$ implies $X / O(X)$ is isomorphic to a subgroup of $P \Gamma L(2, q)$ containing $P S L(2, q)$. Let D be the largest normal subgroup of $C_{G}(t)$ of odd order. Then $C_{G}(t) / D$ has a Sylow 3-group of order q so $|T \cap D|=q$. Now L has no normal subgroup of odd order which implies $T \cap D$ contains no element of $T \cap L$. Furthermore, K_{1} acts $\frac{1}{2}$-transitively on the nontrivial elements of $T \cap L$ so that D can contain no element of $T-Z$. Otherwise D would contain an element of $T \cap L$ which is not the case. We conclude that $D \cap T=Z$ and that Z is a Sylow 3 -group of D. Moreover, $C_{D}(Z)=Z$ so that Z is a $C C$-subgroup of D. If Z is not a normal subgroup of D, (4.4) of [8] implies $|D|$ is even. We conclude that Z is characteristic in D and consequently normal in $C_{G}(t)$. Hence $C_{G}(t)=Z L K$.

Theorem 2. If G satisfies Hypothesis $\mathrm{B}, G=C_{G}(Z) K$.
Proof. If Q is a Sylow 2-group of G, t is the unique involution of Q and [3] implies $G=C_{G}(t) O(G)$. Hence $P \cap O(G) \neq 1$ and $|O(G)|$ is divisible by 3 . Let A be a minimal characteristic subgroup of $O(G)$ and assume A is a 3^{\prime} group. As A is left-invariant by Z, A is a subgroup of $C_{G}(Z)$ which is impossible. This implies that A is a normal subgroup of P and $A \cap Z \neq 1$. Let $z \in A \cap Z$ and consider $g \in G$. Then $z^{g} \in A \cap Z$ as z is conjugate to no element of $P-Z$ and there exists $k \in K$ such that $z^{g k}=z$. This implies $g \epsilon C_{G}(Z) K$ and $G=C_{G}(Z) K$ as desired.

We may now assume that $Q\langle\sigma\rangle$ is a Sylow 2 -group of G. If σ and t are not conjugate, $G=C_{G}(t) O(G)$ and the argument of the preceding paragraph applies. Thus, let σ and t be conjugate. We may further assume $O(G)=1$ for otherwise G contains a normal 3 -subgroup A such that $A \cap Z \neq 1$. Proposition 2, p. 15 of [1] may now be used to conclude that G contains a normal subgroup X of odd index with X a simple group with Sylow 2-group $Q\langle\sigma\rangle$. Clearly $C_{X}(t)$ contains $L\langle\sigma\rangle$ so that $P \cap X$ is a nontrivial normal subgroup of P. Consequently, $Z \cap X \neq 1$ and since $C_{x}(t) \subseteq Z L K, Z \cap X$ is a normal subgroup of $C_{X}(t)$. An application of the first main theorem of [1] implies
$Z \cap X$ is a subgroup of the center of $C_{X}(t)$ contrary to the fact that σ inverts the nontrivial elements of $Z \cap X$. We conclude that σ and t can not be conjugate and $G=C_{G}(Z) K$ as desired.

4. The structure of $C_{\theta}(t)$

Throughout this section let G be a group satisfying Hypothesis A for the prime $p=3$ and $q=3^{m}, m$ odd, $m>1$. We will prove the following main proposition.

Theorem 3. Let \mathfrak{C} be the centralizer in $P S_{4}\left(3^{m}\right), m$ odd, $m>1$ of an element of order 3 lying in the center of some Sylow 3-subgroup. Let G be a finite group satisfying:
(a) G contains an element α of order 3 such that $C_{G}(\alpha)$ is isomorphic to \mathbb{C}.
(b) For all z in the center of $C_{G}(\alpha), C_{G}(z)=C_{G}(\alpha)$.
(c) Not all central 3-elements belong to the same conjugacy class of G. Then one of the following cases occurs:
(i) $C_{G}(\alpha)$ is a normal subgroup of G.
(ii) G is a simple group isomorphic to $P S p_{4}\left(3^{m}\right)$.

Let G be a group satisfying (a), (b) of Theorem 3. The results of Section 3 , particularly Theorem 2 , imply that we may assume $N_{G}(M)$ is not 3 -closed. Otherwise $C_{G}(\alpha)$ is normal in G and we are in case (i) of the above theorem. Hence the results of Section 2 are valid and the structure of $N_{G}(M)$ is given by Theorem 1. Since q is an odd power of $3, q+1$ is divisible by 4 with $q+1=4 e,(2, e)=1$. We retain this notation throughout the section.
(4.1) $N_{G}(T) \cap C_{G}(t)=T K\langle\tau\rangle$ where τ is an involution of $N_{G}(M)$.

Proof. We have seen that T is an elementary abelian group of order q^{2} centralized by t which contains Z. Hence $C_{G}(T)=M\langle t\rangle$. Clearly M is characteristic in $C_{G}(T)$ so that $N_{G}(T) \subseteq N_{G}(M)$. From (2.6),

$$
\left[N_{G}(T) \cap N_{G}(M): M K\right]=2
$$

so that $N_{G}(T) \cap N_{G}(M)=M K\langle\tau\rangle$ where τ is an involution which centralizes t but does not normalize Z. Thus

$$
N_{G}(T)=M K\langle\tau\rangle \quad \text { and } \quad N_{G}(T) \cap C_{G}(t)=T K\langle\tau\rangle .
$$

As a result of (2.7), the structure of K is given by $K=K_{1} K_{1}^{\tau},\left[K_{1}, K_{1}^{\tau}\right]=1$, $K_{1} \cap K_{1}^{\tau}=\langle t\rangle$ and τ is the same involution which appears in the statement of (4.1). Now Z^{τ} is the unique conjugate of Z in $T-Z$ and is normalized by K_{1}. Since a generator k_{1} of K_{1} has order $q-1, k_{1}^{(q-1) / 2}=t$. Furthermore, no element of K_{1} different from t centralizes an element of $T-Z$ so that K_{1} induces a group of automorphisms of Z^{τ} which partitions the nontrivial elements into two orbits of length $(q-1) / 2$ with representatives $z^{\tau}, z^{-\tau}$ for some $z \in Z$. Similarly, K_{1}^{τ} partitions the nontrivial elements of Z into two orbits of length $(q-1) / 2$ such that z and z^{-1} lie in different orbits. Thus the action
of K is determined on T and we compute for any $z \in Z, z \neq 1$,

$$
C_{G}\left(z^{-1} z^{\tau}\right) \cap T K\langle\tau\rangle=T\langle t\rangle, \quad C_{G}\left(z z^{\tau}\right) \cap T K\langle\tau\rangle=T\langle t, \tau\rangle
$$

(4.2) For any $z \in Z, C_{G}\left(z^{-1} z^{\tau}, t\right)=T\langle t\rangle$.

Proof. The above remarks imply that $T\langle t\rangle$ is a Sylow 3-normalizer of $C_{G}\left(z^{-1} z^{\tau}, t\right)$ so that $C_{G}\left(z^{-1} z^{\tau}, t\right)$ has a normal 3 -complement B such that $C_{G}\left(z^{-1} z^{\tau}, t\right)=T B, T \cap B=1$. By hypothesis, Z is a noncyclic elementary abelian 3-group so that $B=\prod_{z e} Z^{*} C_{B}(z)$. However, $C_{B}(z) \subseteq Z \times L$ and it is seen that $C_{B}(z)=\langle t\rangle$ for all $z \in Z^{*}$. Hence $B=\langle t\rangle$ and we have

$$
C_{G}\left(z^{-1} z^{\tau}, t\right)=T\langle t\rangle .
$$

(4.3) For $z \in Z, C_{G}\left(z z^{\tau}, t\right)=T\langle t, \tau\rangle$.

Proof. We have seen that $T\langle t, \tau\rangle$ is a Sylow 3-normalizer of $C_{G}\left(z z^{\tau}, t\right)$ and it is calculated that $\left\langle z z^{\tau} \mid z \in Z\right\rangle$ is in the center of $T\langle t, \tau\rangle$. Applying a theorem of Grün, $C_{G}\left(z z^{\tau}, t\right)$ has a normal subgroup R of index q such that

$$
R \cap T=\left\langle z^{-1} z^{\tau} \mid z \in Z\right\rangle
$$

Let $X=R /\langle t\rangle$ and consider the image $(R \cap T)^{-}$of $R \cap T$ in X. Since $C_{R}(y)=(R \cap T)\langle t\rangle$ for all $y \in R \cap T,(R \cap T)^{-}$is a $C C$-subgroup of X. Furthermore, $C_{G}\left(z z^{\tau}, t, R \cap T\right)=C_{G}\left(z, z z^{T}, t\right)=T\langle t\rangle$ so that

$$
N_{G}(R \cap T) \cap C_{G}\left(z z^{\tau}, t\right)=T\langle t, \tau\rangle .
$$

We conclude that $N_{R}(R \cap T)=(R \cap T)\langle t, \tau\rangle$ and consequently,

$$
N_{\mathbf{X}}(R \cap T)^{-}=((R \cap T)\langle\tau\rangle)^{-} .
$$

Thus $(R \cap T)^{-}$has index 2 in $N_{\mathbf{x}}(R \cap T)^{-}$and Theorem 4.4 of [8] now applies. We conclude that ($R \cap T)^{-}$is a normal subgroup of X so that

$$
R=(R \cap T)\langle t, \tau\rangle \quad \text { and } \quad C_{G}\left(z z^{\tau}, t\right)=T\langle t, \tau\rangle .
$$

Section 1 of [11] shows that the structure of the centralizer of a central involution in $P S p_{4}(q)$ to have (as a normal subgroup of index 2) a subgroup which is the central product of two copies of $S L(2, q)$. In fact, if C is the centralizer of a central involution t_{0} of $P S p_{4}(q), C=L_{1} L_{2}\left\langle\tau_{0}\right\rangle$ where [$\left.L_{1}, L_{2}\right]=1, L_{i} \cong S L(2, q), L_{1} \cap L_{2}=\left\langle t_{0}\right\rangle$ and τ_{0} is an involution which interchanges L_{1} and L_{2}. In the following proposition we will show that $C_{G}(t)$ has a subgroup isomorphic to $L_{1} L_{2}\left\langle\tau_{0}\right\rangle$. The remaining part of the section will be devoted to showing that this subgroup coincides with $C_{\theta}(t)$.
(4.4) $C_{G}(t)$ contains a subgroup L and an involution τ for which

$$
L \cong S L(2, q), \quad L \cap L^{\tau}=\langle t\rangle, \quad\left[L, L^{\tau}\right]=1 .
$$

Proof. We have seen that $C_{G}(z, t)=Z \times L$ with $L \cong S L(2, q)$ and that τ is an involution of $C_{\sigma}(t)$ with Z^{\top} a Sylow 3 -subgroup of L. Let c be an ele-
ment of order 4 in L which inverts a generator of K_{1}. Then L is the union of the two double cosets $Z^{\tau} K_{1}$ and $Z^{\tau} c K_{1}$.

Since K_{1}^{τ} leaves $Z \times L$ invariant, K_{1}^{τ} induces a group of automorphisms of L which centralizes the Sylow 3-normalizer $Z^{\tau} K$. Consequently, K_{1}^{τ} induces a trivial group of automorphisms and $\left[K_{1}^{\tau}, L\right]=1$. This implies $\left[K_{1}, L^{\tau}\right]=1$. Furthermore, $[Z, L]=1$ so that $\left[Z^{\tau}, L^{\tau}\right]=1$ and we conclude that $Z^{\tau} K_{1}$ centralizes L^{τ}. Because L^{τ} is the union of the cosets $Z K_{1}^{\tau}$ and $Z c^{\tau} K_{1}^{\tau}$, it now follows that $\left[L, L^{\tau}\right]=\left[Z^{\tau} c K_{1}, Z c^{\tau} K_{1}^{\tau}\right]$. We now apply elementary commutator relations (see [5, p. 18]) to conclude $\left[L, L^{\tau}\right]=\left[c, c^{\tau}\right]$. In addition, c inverts K_{1} with $c^{2}=t$ so that K centralizes $\left[c, c^{\tau}\right]$.

Let $A=\left[c, c^{\tau}\right]$ and notice that A is a normal subgroup of $\left\langle L, L^{\tau}\right\rangle$. Thus, if $|A|$ is divisible by $3, T \cap A \neq 1$. But K centralizes no element of T other than the identity. Hence A is a 3^{\prime}-group. Now A is left invariant by Z and we conclude that $A \subseteq L$. This implies $A \subseteq\langle t\rangle$ and $c^{-\tau} c c^{\tau}=c$ or $c t$. In either case c^{τ} induces an automorphism of L which centralizes $Z^{\tau} K_{1}$. Therefore c^{τ} is the trivial automorphism and $A=\left[L, L^{\tau}\right]=1$. Finally, $L \cap L^{\tau}$ is a subgroup of the center of L so that $L \cap L^{\tau}=\langle t\rangle$.

As a result of (4.4), $\left[L, L^{\tau}\right]=1$ and $H=\left\langle l l^{\tau} \mid l \epsilon H\right\rangle$ is a subgroup of $L L^{\tau}$ isomorphic to $P S L(2, q)$. Retaining this notation, we are now able to compute $C_{G}(t, \tau)$.
(4.5) $C_{G}(t, \tau)=\langle t, \tau\rangle \times H$, where $H=\left\langle l l^{\tau} \mid l \epsilon L\right\rangle$.

Proof. Let $D=\left\langle z z^{\tau} \mid z \in Z\right\rangle$. From (4.3), $C_{G}(D, t)=T\langle t, \tau\rangle$ and

$$
N_{G}(D) \cap C_{G}(t, \tau) \subseteq N_{G}(T)=T K\langle\tau\rangle
$$

Hence $D\left\langle k_{1}^{\tau} k_{1}, t, \tau\right\rangle$ is a Sylow 3-normalizer of $C_{G}(t, \tau)$. Let

$$
X=C_{G}(t, \tau) /\langle t, \tau\rangle
$$

and consider the image \bar{D} of D in X. For $y \in D, x \in C_{G}(t, \tau)$ such that $(x y)^{-}=(y x)^{-}$we see that x normalizes $\langle y\rangle$. In addition, x leaves

$$
C_{G}(t, \tau, y)=D\langle t, \tau\rangle
$$

invariant and must leave D fixed. However, no element of $\left(k_{1} k_{1}^{\tau}\right)^{-}$centralizes \bar{y} so that $\bar{x} \in \bar{D}$. This proves that \bar{D} is a $C C$-subgroup of X of order q with $\left|N_{\bar{X}}(\bar{D})\right|=q(q-1) / 2$. Theorem 5.1 of [8] applies and we conclude that $X \cong P S L(2, q)$.

Now $H=\left\langle l l^{\tau} \mid l \epsilon H\right\rangle$ is a subgroup of $C_{G}(t, \tau)$ isomorphic to $\operatorname{PSL}(2, q)$ with $H \cap\langle t, \tau\rangle=1$. A comparison of orders implies $C_{G}(t, \tau)=\langle t, \tau\rangle \times H$ as desired.

A Sylow 2 -group of L is a quaternion group Q of order 8 . Let Q be generated by elements a and b of order 4 which satisfy $a^{2}=b^{2}=t, a b=b a^{-1}$. Then every involution of $L L^{r}$ different from t has the form $x y$ where x and y are elements of order 4 in L and L^{τ} respectively and, as all elements of order 4 in $S L(2, q)$ are conjugate, every involution of $L L^{\tau}-\langle t\rangle$ is conjugate to $v=a a^{\tau}$.

On the other hand, for $x \in L, y \in L^{\tau}$ and $(x y \tau)^{2}=1,\left(x y^{\tau}\right)\left(y x^{\tau}\right)=1$ so that $x y^{\tau} \in L \cap L^{\tau}=\langle t\rangle$. Hence $x y \tau=(x \tau) y^{\tau}=x \tau x^{-1}$ or $x t \tau x^{-1}$. We conclude that every involution of $L L^{\tau}\langle\tau\rangle-L L^{\tau}$ is conjugate to τ or $t \tau$.
(4.6) $Q Q^{\tau}\langle\tau\rangle$ is a Sylow 2-group of G.

Proof. Let S be a Sylow 2-group of G which contains the 2-group $Q Q\langle\tau\rangle$ and consider $y \in N_{S}\left(Q Q^{\tau}\langle\tau\rangle\right)$. The center of $Q Q^{\tau}\langle\tau\rangle$ is generated by t so that $y^{-1} \tau y$ is an involution of $Q Q^{\tau}\langle\tau\rangle$ different from t. Furthermore, if $y^{-1} \tau y \in Q Q^{\tau}$, the remarks preceding (4.6) imply that τ and v are conjugate. However, $\left\langle a, b b^{\tau}, \tau\right\rangle$ centralizes v while $\left\langle a a^{\tau}, b b^{\tau}\right\rangle \times\langle t, \tau\rangle$ is a Sylow 2 -group of $C_{G}(t, \tau)$. A comparison shows that τ and v are not conjugate in $C_{G}(t)$. Hence $y^{-1} \tau y$ is an involution of $Q Q^{\tau}\langle\tau\rangle-Q Q^{\tau}$. For $x \epsilon L L^{\tau},(y x)^{-1} \tau(y x) \epsilon\langle\tau, t\rangle$ and we conclude that $y x$ leaves $\langle t, \tau\rangle$ and $C_{G}(t, \tau)$ invariant. Now

$$
C_{G}(t, \tau)=\langle t, \tau\rangle \times H
$$

where $H \cong P S L(2, q)$ with $H=\left\langle l l^{\tau} \mid l \epsilon L\right\rangle$. Therefore, if β is an element of order 3 in $\left\langle z z^{\tau} \mid z \in Z\right\rangle, \beta^{y x} \epsilon H$ and for some $h \in H, \beta^{y x h} \epsilon\langle\beta\rangle$. By (4.3), $C_{G}(\beta, t)=T\langle t, \tau\rangle$ and we conclude that $y x h$ leaves T fixed. Hence

$$
y x h \in T K\langle\tau\rangle \quad \text { and } \quad y \in L L^{\tau}\langle\tau\rangle
$$

This implies $N_{S}\left(Q Q^{\tau}\langle\tau\rangle\right)=Q Q^{\tau}\langle\tau\rangle$ and $S=Q Q^{\tau}\langle\tau\rangle$.
We will retain the notation introduced in (4.6) for the Sylow 2-group $S=Q Q^{\tau}\langle\tau\rangle$. In particular, the involutions $v=a a^{\tau}$ and $w=b b^{\tau}$ are of importance in the following discussion.
(4.7) The involutions v and t are not conjugate in G.

Proof. Let $E=\langle t, \tau, v, w\rangle$ and notice $C_{G}(E) \subseteq C_{G}(t, \tau)=\langle t, \tau\rangle \times H$ so that $C_{G}(E)=E$. The proof of (4.7) is now identical to (2.2) of [11].
(4.8) The involution t is conjugate to τ or $t \tau$.

Proof. If t is conjugate to no involution of $S-Q Q^{\tau}, G=C_{G}(t) O(G)$ by [3]. In this case $P \cap O(G)$ is a nontrivial normal subgroup of P and we conclude $Z \cap O(G) \neq 1$. Consequently, $O\left(C_{G}(t)\right)$ contains a nontrivial element $z \in Z$ and we conclude that $z z^{\tau} \in O\left(C_{G}(t)\right)$. This implies that $\left\langle l l^{\tau} \mid l \epsilon L\right\rangle$ has a normal subgroup of odd order which is impossible. Hence t is conjugate to an involution of $S-\langle t\rangle$. The remarks preceding (4.6) and the fact that v and t are not conjugate imply that t is conjugate to τ or $t \tau$.

For the remainder of this section let us assume that t is conjugate in G to the involution $t \tau$ rather than τ. This assumption can be made without loss of generality because the arguments which follow are symmetric in τ and $t \tau$. Particularly important is the fact that τ and $t \tau$ are in different conjugacy classes of G. Indeed, we have the following proposition.
(4.9) G has exactly two classes of involutions K_{1} and K_{2} such that $K_{1} \cap C_{G}(t)$
consists of classes in $C_{G}(t)$ represented by t and $t \tau$ and $K_{2} \cap C_{G}(t)$ consists of classes represented by τ and v.

Proof. This is identical to (2.4) of [11] with the notational change $\tau=u$. The structure of $S L(2, q)$ together with the fact that $q+1$ is divisible by 4 implies $C_{L}(a)=\langle d\rangle$ where d is an element of L of order $q+1$. Using this notation we compute $C_{G}(a)$.

$$
\begin{equation*}
C_{G}(a)=\langle d\rangle L^{\tau},\langle d\rangle \cap L^{\tau}=\langle t\rangle,\left[\langle d\rangle, L^{\tau}\right]=1 \tag{4.10}
\end{equation*}
$$

Proof. The 2-group $F=\left\langle a, a^{\tau}, b^{\tau}\right\rangle$ is a subgroup of S of order 16 which centralizes a. Let W be a Sylow 2 -group of $C_{G}(a)$ containing F and assume $W \neq F$. Since the center of S is generated by $t,[W: F]=2$ and $W \subseteq N_{G}(F)$. Now $\left\langle a, a^{\tau}, b, b^{\tau}\right\rangle$ is a 2 -group of $N_{G}(F)$ and S contains no normal cyclic subgroup of order 4. This implies that $\left\langle a, a^{\tau}, b, b^{\tau}\right\rangle$ is a Sylow 2 -group of $N_{G}(F)$. Comparing orders, W and $\left\langle a, a^{\tau}, b, b^{\tau}\right\rangle$ are isomorphic. This is impossible as the centers of these groups have orders 4 and 2 respectively. We conclude that F is a Sylow 2 -group of $C_{G}(a)$.

Let A be the largest normal subgroup of $C_{G}(a)$ of order relatively prime to 3. Clearly A contains a. In addition, $C_{G}(a)$ is a subgroup of $C_{G}(t)$ so has an abelian Sylow 3 -subgroup containing Z. This fact, together with $C_{G}(a, Z)=\langle d\rangle \times Z$, implies Z is a Sylow 3-group of $C_{G}(a)$. Furthermore. A is Z-invariant so that $A \subseteq\langle d\rangle$.

Let $X=C_{G}(a) / A$ and notice that $\bar{F}=\left\langle a, a^{\tau}, b^{\tau}\right\rangle^{-}=\left\langle a^{\tau}, b^{\tau}\right\rangle^{-}$is a Sylow 2-group of X. Because $L^{\tau} \cap A=\langle t\rangle, \bar{F}$ is a four-group and

$$
\left(L^{\tau}\right)^{-} \cong P S L(2, q)
$$

Let D be a subgroup of $C_{G}(a)$ for which $O(X)=D / A$. Then $Z \cap D=1$ as otherwise $O(X) \cap\left(L^{\tau}\right)^{-} \neq 1$. We conclude that D is a 3^{\prime}-group and $D \subseteq A$. Therefore, $O(X)=1$ and, using [6], X is isomorphic to a subgroup of $\operatorname{Pr} L(2, q)$ containing $P S L(2, q)$. It follows that $L^{\tau} A$ is a normal subgroup of $C_{G}(a)$. Finally, $N_{G}(Z)=C_{G}(Z) K_{1}^{\tau}$ with $C_{G}(a) \cap N_{G}(Z)=Z\langle d\rangle K_{1}^{\tau}$. Applying the Frattini argument, $C_{G}(a)=\langle d\rangle L^{\tau}$ as desired.

The involution $v=a a^{\tau}$ is centralized by d, τ and $w=b b^{\tau}$. In particular, $C_{G}(v, t) \cap L L^{\tau}\langle\tau\rangle=\langle d, \tau, w\rangle$. Let $R=\left\langle a, a^{\tau}, t \tau, w\right\rangle$. It is computed that $\langle d, \tau, w\rangle=R\left\langle d^{4},\left(d^{\tau}\right)^{4}\right\rangle$ where $\left\langle d^{4},\left(d^{\tau}\right)^{4}\right\rangle$ is a normal 2-complement for $\langle d, \tau, w\rangle$. Keeping this same notation we are able to determine $C_{G}(v, t)$.

$$
\begin{equation*}
C_{G}(t, v)=\langle d, \tau, w\rangle \tag{4.11}
\end{equation*}
$$

Proof. Let $R=\left\langle a, a^{\tau}, t \tau, w\right\rangle$. As $|R|=32$ and a Sylow 2-group of G has order 64 with center of order $2, R$ is a Sylow 2 -group of $C_{G}(t, v)$. We first determine $N=N_{G}(R) \cap C_{G}(t, v)$. For $y \in N, y^{-1}(t \tau) y \in R-\left\langle a, a^{\tau}, w\right\rangle$. Furthermore, τ and $t \tau$ are not conjugate so there exists $x \in L L^{\tau}\langle\tau\rangle$ for which $(y x)^{-1} t \tau(y x)=t \tau$. Hence $y x \in C_{G}(t \tau, t) \subseteq L L^{\tau}\langle\tau\rangle$ and $y \in L L^{\tau}\langle\tau\rangle$. Consequently, $N \subseteq\langle d, \tau, w\rangle$ and we have that N has a normal 2 -complement B with $N=R \times B$. This implies $N^{\prime} \cap R=R^{\prime}$. Using a theorem of Grün,
the focal subgroup R^{*} is the subgroup of R generated by all elements of R which are conjugate in $C_{G}(t, v)$ to elements of R^{\prime}. However, $R^{\prime}=\langle t, v\rangle$ and we conclude $R^{*}=R^{\prime}$. This implies $C_{G}(t, v)$ has a normal subgroup X of index 8 with $X \cap R=\langle t, v\rangle$ and, by a theorem of Burnside, X has a normal 2 -complement E. Clearly E is a normal 2 -complement for $C_{G}(t, v)$ and we have $C_{G}(t, v)=R E, R \cap E=1$.

To complete (4.11) it remains to show $E \subseteq\langle\tau, d, w\rangle$. Indeed, the four$\operatorname{group}\langle\tau, w\rangle$ leaves E invariant so that $E=C_{B}(\tau) C_{E}(\tau w) C_{E}(w)$. Now

$$
C_{G}(t, \tau, v)=\langle t, \tau\rangle \times\left\langle d d^{\tau}, w\right\rangle
$$

so that $C_{B}(\tau)=\left\langle\left(d d^{\tau}\right)^{4}\right\rangle$. On the other hand, $b^{-1}(\tau w) b=t \tau$ so b interchanges $C_{G}(t, v, \tau w)$ and $C_{G}(t, v, \tau)$. It follows that

$$
C_{G}(t, v, \tau w)=\langle t, \tau w\rangle \times\left\langle d^{-1} d^{\tau}, w\right\rangle
$$

and we compute $C_{B}(\tau w)=\left\langle\left(d^{-1} d^{\tau}\right)^{4}\right\rangle$.
We shall now show $C_{E}(w)=1$. Because a interchanges w and $w t, a$ leaves $C_{E}(w)$ fixed. Furthermore, $C_{G}(a)=\langle d\rangle L^{\tau}$ so $C_{G}(t, v, a)=\left\langle d, d^{\tau}\right\rangle$ and we compute $C_{G}(t, v, a, w)=\langle t, v\rangle$. This implies that a induces a fixed-point-free auotmorphism of $C_{E}(w)$ which inverts the nontrivial elements. Similarly, b interchanges v and $v t$ so leaves $\langle t, v\rangle$ and $C_{G}(t, v)$ invariant. In particular, b leaves E invariant. But $[w, b]=1$ so b induces an automorphism of $C_{B}(w)$. Now a and b are conjugate by $x \in T \cap L$ so that $C_{G}(b)=\left\langle d^{x}\right\rangle L^{\tau}$. It follows that $C_{G}(t, v, b)=\left\langle d^{\tau}\right\rangle$ and $C_{G}(t, v, b, w)=\langle t\rangle$. We conclude that b induces a fixed-point-free automorphism of $C_{B}(w)$ which inverts the nontrivial elements. Consequently, $a b$ centralizes $C_{E}(w)$. However, $C_{G}(t, a b, v)=\left\langle d^{\tau}\right\rangle$ and $C_{G}(t, a b, v, w)=\langle t\rangle$. Thus $C_{E}(w)=1, E=C_{E}(\tau) C_{E}(\tau w)=\left\langle d^{4},\left(d^{\tau}\right)^{4}\right\rangle$ and (4.11) now follows.

$$
\begin{equation*}
C_{G}(t)=L L^{\tau}\langle\tau\rangle, L \cap L^{\tau}=\langle t\rangle,\left[L, L^{\tau}\right]=1, L \cong S L(2, q) \tag{4.12}
\end{equation*}
$$

Proof. We have seen (4.4) that $C_{G}(t)$ contains a subgroup $L L^{\tau}\langle\tau\rangle$ with the properties (4.12). We must show that $L L^{\tau}\langle\tau\rangle$ coincides with $C_{G}(t)$. To accomplish this we show that $L L^{\tau}\langle\tau\rangle$ contains all involutions of $C_{G}(t)$ and then apply a Frattini argument.

Let u be an involution of $C_{G}(t)$ different from t and consider the image \bar{u} of u in the factor group $C_{G}(t) /\langle t\rangle$. Because u is conjugate in $C_{G}(t)$ to $\tau, t \tau$ or v, \bar{u} is conjugate to $\bar{\tau}$ or \bar{v} in $C_{G}(t) /\langle t\rangle$. In fact, $C_{G}(t, v)$ and $C_{G}(t, \tau)$ are not isomorphic so $\bar{\tau}$ and \bar{v} belong to different conjugacy classes of $C_{G}(t) /\langle t\rangle$.

Let us assume \bar{u} and \bar{v} are conjugate in $C_{G}(t) /\langle t\rangle$. Then $\langle u, \tau\rangle^{-}$is a dihedral group with a nontrivial central involution $\bar{x}, x \in C_{G}(t)$. Thus

$$
x^{-1} \tau x \in\langle t, \tau\rangle
$$

and since τ and $t \tau$ belong to different conjugacy classes of $G, x^{-1} \tau x=\tau$. We conclude that $x \in C_{G}(t, \tau)$ and is conjugate to an involution of the 2-group $\langle t, \tau, v, w\rangle$. From $(u x)^{-}=(x u)^{-}, x u=u x$ or $u x t$. In the first
case $u \in C_{G}(x, t) \subseteq L L^{\tau}\langle\tau\rangle$ by (4.5) and (4.11). We may therefore assume $u x u=x t$. Should x be conjugate to τ or τt in $C_{G}(t), u x u=x t$ implies τ and $t \tau$ are conjugate. We conclude that x is conjugate in $C_{G}(t, \tau)$ to an involution of $\langle t, v, w\rangle$. In particular, x and $x t$ are conjugate in $L L^{\tau}\langle\tau\rangle$. Hence for some $y \in L L^{\tau}\langle\tau\rangle,(u y)^{-1} x(u y)=x$ so that $u y \in C_{G}(x, t) \subseteq L L^{\tau}\langle\tau\rangle$. This implies $u \in L L^{\tau}\langle\tau\rangle$ in this case as well.

Now let us assume \bar{u} and $\bar{\tau}$ are conjugate so that $\langle u, v\rangle^{-}$contains an involution \bar{x} in its center. Then x leaves the four-group $\langle t, v\rangle$ invariant and (4.11) implies $x \in\langle d, \tau, w, b\rangle$. If x is an element of order 4 with $x^{2} \neq t, u$ centralizes x^{2} and $u \in C_{G}\left(x^{2}, t\right) \subseteq L L^{\tau}\langle\tau\rangle$. If $x^{2}=t, x$ is conjugate in $L L^{\tau}\langle\tau\rangle$ to a. But $C_{G}(a)=\langle d\rangle L^{\tau}$ so $N_{G}\langle a\rangle=\langle d, b\rangle L^{\tau}$ and because u centralizes or inverts x, $u \in N_{G}\langle x\rangle \subseteq L L^{\tau}\langle\tau\rangle$. Consequently we may assume x is an involution of $\langle d, \tau, w, b\rangle$ different from t. In addition we may assume $u x u=x t$ as otherwise $u \in L L^{\tau}\langle\tau\rangle$ as desired. The argument of the preceding paragraph now applies and we have $u \epsilon L L^{\tau}\langle\tau\rangle$ in all cases.

We have shown $L L^{\tau}\langle\tau\rangle$ contains all involutions of $C_{G}(t)$ and since $L L^{\tau}\langle\tau\rangle$ is generated by involutions, $L L^{\tau}\langle\tau\rangle$ is a normal subgroup of $C_{G}(t)$. Finally, T is a Sylow 3-subgroup of $L L^{\tau}\langle\tau\rangle$ and a Frattini argument can be applied to conclude

$$
C_{G}(t)=L L^{\tau}\langle\tau\rangle\left(C_{G}(t) \cap N_{G}(T)\right)
$$

But $C_{G}(t) \cap N_{G}(T)=T K\langle\tau\rangle$ which yields $C_{G}(t)=L L^{\tau}\langle\tau\rangle$.
A consequence of (4.12) is the fact that G is a finite group satisfying the hypothesis of the main theorem of [11]. We conclude $G=C_{G}(t) O(G)$ or $G \cong P S p_{4}(q)$. In the first case $P \cap O(G)$ is a nontrivial normal subgroup of P and thus $Z \cap O(G) \neq 1$. However $C_{G}(t)$ contains no normal subgroup of odd order. Hence $G \cong P S p_{4}(q)$ and the proof of Theorem 3 is completed.

Bibliography

1. J. L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasidihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., vol. 151 (1970), pp. 1-260.
2. R. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Algebra, vol. 1 (1964), pp. 139-151.
3. G. Glauberman, Central elements in core-free groups, J. Algebra, vol. 4 (1966), pp. 403-420.
4. -, A characterization of the Suzuki groups, Illinois J. Math., vol. 12 (1968), pp. 76-98.
5. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
6. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math., vol. 6 (1962), pp. 553-593.
7. J. Hayden, A. characterization of the finite simple group PSp $\boldsymbol{4}_{4}(3)$, Canadian J. Math., vol. 25 (1973), pp. 539-553.
8. M. Herzog, On finite groups which contain a Frobenius subgroup, J. Algebra, vol. 6 (1967), pp. 192-221.
9. L. Hua, On the automorphisms of the symplectic group over any field, Ann. of Math., vol. 49 (1948), pp. 739-759.
10. M. Suzuki, On characterizations of linear groups VI, to appear.
11. W. J. Wong, A characterization of the finite projective symplectic groups $P S p_{4}(q)$, Trans. Amer. Math. Soc., vol. 139 (1969), pp. 1-35.
12. H. Zassenhaus, Kennzeichnung endlicher linearen Gruppen als Permutation-gruppen, Abh. Math. Univ. Hamburg, vol. 11 (1936), pp. 17-40.

Bowling Green State University
Bowling Green, Ohio

