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Introduction
The aim of this paper is to characterize the finite simple groupsPSp4-(3"),

m odd, in terms of the structure of the centralizer of an element of order
3. The groups PSp4 (3m) belong to the family of all projective symplectic
groups of dimension 4 over a finite field of q p elements where p is an arbi-
trary prime. For odd characteristic these groups have order 1/2q (q -t- 1).
(q 1)3 and a Sylow p-subgroup has order q. The center of a Sylow p-sub-
group is elementary abelian of order q and the centralizer in PSp (q) of each
of the nonunit central p-elements of a p-Sylow subgroup is a group of order
q (q i).
Although this pper deIs extensively with q 3, m odd, m > 1, Sections

1 nd 2 obtain results for rbitrry odd ohroteristio. This study is con-
tinution of work by the uthor in [?] nd is very similar in nture to results
obtained for even ohroteristio by Suzuki [10]. The min result of this pper
is the following proposition:

THEOREM 3. Let e be the centralizer in PSp (3m), m odd, m > 1, of an ele-
ment of order 3 lying in the center of some Sylow 3-subgroup. Let G be a finite
group satisfying:

(a) G contains an element a of order 3 such that Ca(a) is isomorphic to .
(b) For all z in the center of Ca (a), Ca (z) Ca (a).
(c) Not all central 3-elements belong to the same conjugacy class of G.

Then one of the following cases holds:
(i) Ca (a) is a normal subgroup of G.
(ii) G is a simple group isomorphic to PSp (3).

A similar but not identical result has been obtained for PSp (3) in [7].
Let G be a finite group. A nontrivial proper subgroup D of G is called a

CC-subgroup if D contains the centralizer of each of its nonunit elements.
The methods of this paper use extensively the results on CC-subgroups which
were studied by Herzog in [8]. It is shown that in the simple case of Theorem
3 a group satisfying conditions (a), (b) and (c) has a local 3-structure identi-
cal to that of PSp4 (3), m odd. This knowledge is then used to determine the
structure of the centralizer of a central involution and the results of Wong [11]
are applied to conclude that G is isomorphic to PSp (3). In the nonsimple
case it is found that the center of a Sylow 3-group P of G is weakly closed in P.
This is enough information to determine that a Sylow 2-group of G is quater-
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nion or semi-dihedral. The results of Gorenstein and Walter [6], Alperin,
Brauer, Gorenstein [1], and Glauberman [3] are then used to determine the
structure of G.
A more general study of the groups PSp4 (q), q odd, is found in Section 2.

This section characterizes the local p-structure of groups satisfying the follow-
ing hypothesis"
HYPOTHESIS A. Let be the centralizer in PSPp4 (p") of an element of order

p > 2 in the center of some Sylow p-subgroup. Let G be afinite group satisfying:
(a) G contains an element a of order p such that Ca (a) is isomorphic to .
(b) For all z in the center of Ca(a), Ca(z) Ca(a).
(c) Not all central p-elements belong to the same conjugacy class of G.

It will be shown that groups satisfying Hypothesis A have a Sylow p-group
P of order q and P has a unique elementary abelian subgroup M of order qa.
We prove the following proposition.

THEOREM 1. Let G satisfy hypothesis A. If Na(M) in not p-closed, Na(M)
MJ, M n J I where J F X D, F PGL (2, q) and D is a cyclic group

of order (q 1 )/2.

The author feels that Theorem 3 can be extended to include the entire
family PSp (pn) and that Theorem 1 is the basic foundation for such an ex-
tension. At the moment the proof seems to be limited by the character theory
results on CC-subgroups. A slight modification of the methods in this paper
together with theorems similar to those found in [8] is thought to be sufficient
for such an extension. Moreover, the methods of this paper could possibly
be used to investigate the larger dimensional classical groups.

1. Structure of
Let q be a power of an odd prime number p.
Setting

0 0 0 1
0 0 1 0,J=
0 -1 0

-1 0 0

we may take PSp (q) as the group of all matrices A of degree 4 with coeffi-
cients in Fq such that A’JA J, where A’ denotes the transpose of A and we
identify two such matrices if they are negatives of each other. Let be the
centralizer in PSp4 (q) of the element a of order p given by,

1 0 0 0

!1oa=
0 1
0 0

It is calculated that consists of all matrices
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1 0 0 0

(1) a 0

where S (s.) is a 2-dimensional matrix of determinant 1, e bsll as,
.f bs,-

Let us define L to be the subgroup of consisting of all matrices (1) for
which a b c 0. In particular,

and is a subgroup of isomorphic to SL (2, q).
The mapping of which sends every element of to the corresponding

element of L is a homomorphism of whose kernel is a p-group of order
q and exponent p. Denote by U the kernel of this homomorphism so that

U=
0 1
b -a 1

It follows that UL, U n L 1 and that e q* (q 1). The index
of in PSp4 (q) is 1/2 (q -b 1 )(q 1 ) and is a number relatively prime to p
so that contains a Sylow p-group of PSp4 (q). In fact, a Sylow p-group of
has order q* and consists of all matrices,

P= d 1 ,e=b--ad, f--
e

Several subgroups of e will be used in the following sections so they are
listed here for convenience. Define M to be the subgroup of P consisting of all
matrices with a 0. It is easily verified that M is the unique elementary
abelian subgroup of P of order q and is thus characteristic in P. The center
of P is elementary abelian of order q and is the subgroup of M with b d 0.
Denote the center of P by Z. Since o UL and L is isomorphic to SL (2, q),
Z coincides with the center of .

Define K1 to be the subgroup of given by,

1 0 0 0
e 0 0K= O C O
0 0 1

where is generator of the multiplicative grouu of Fq. Clearly K is a cyclic
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group of order q 1 and contains a unique involution given by

1

t--
--i

-1
1

It is calculated that PK1 is the normalizer of P in e and that Cp (t) is a sub-
group T of M of order q consisting of all matrices of M with b 0.

2. Structure of N(M)
Throughout this section let G be a finite group satisfying the following

hypothesis.
HYPOTHESS A. Let be the centralizer in PSp4 (p") of an element o] order

p > 2 in the center of some Sylow p-subgroup. Let G be a finite group satisfy-
ing:

(a) G contains an element a of order p such that C (a) is isomorphic to .
(b) For all z in the center of e (a), C (z) C().
(c) Not all central p-elements belong to the same conjugacy class of G.

We will use the properties of discussed in Section 1 and identify the sub-
groups of with subgroups of G retaining the same notation given earlier.

(2.1) P is a Sylow p-subgroup of G.

Proof. Let S be a Sylow p-subgroup of G containing P and let x be an ele-
ment in the center of S. The element x centralizes P and thus x S n C()

P. This implies that z is in the center of P and that S

_
C(z) C().

Therefore S P and P is a Sylow p-subgroup of G.

(2.2) N(M) MJ, M n J 1.

Proof. From (2.1), P is a Sylow p-group of N(M). Furthermore,
P AM, A n M 1, where A is a complement for M of order q. It follows
by a theorem of Gaschiitz thatN(M) splits over M.
LetN(P) PK, P n K 1 and chooseK so that C(Z) n K KI.

Then K is a normal subgroup of K and the involution is in the center of K.
Throughout the remainder of this section we will keep this same notation so
that is a central involution of K.

(2.3) The group K contains no four-group {t, r} such that and r are conju-
gate in N(M ).

Proo]. Suppose that (t, r} is a four-group contained in K and that r
for some y N(M). Then r is an involution of K K1 and thus acts fixed-
point-free on the nontrivial elements of Z. Furthermore, C(r) T is an
elementary abelian subgroup of M of order q.

Let I be the subgroup of U containing all elements inverted by t. It is
calculated that I1 q and that I M is a subgroup of P’ of order q. In
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fact, P’ (I M)Z and since I M is left invariant by (, r), r centralizes
no element of P’ not contained in I M. However, P’ and T are subgroups
of M of order q so that P’ T -> q. It follows that P’ r, T I r, M.
On the other hand, I Cr(r) X C(r). If r centralized an element x of

I (I M), r would centralize [x, I M] Z which is not the case. Hence
C($r) is a subgroup of I of order q and P C($r)M. It follows that r
centralizes P/M. We have seen that P’ r, T I r M is a subgroup of order
q so that M T’P’. Thus r centralizes M/P’ and, since centralizes M/P’,
tr centralizes M/P’.

This implies that tr stabilizes the normal series PIP’ :::) M/P’ :::) i of
PIP’ so that r centralizes PIP’. From the structure of P, P’ (P) and
we conclude that r centralizes P. This is impossible and the proposition
(2.3) follows.

(2.4) No element of P’ Z is conjugate to an element of Z.

Proof. Let z be an element of Z and suppose that z is conjugate to an ele-
ment of P’ Z. From the structure of PK1, CPK1 (x) M for all x e pr Z
so that x has q (q 1 conjugates in P’ Z. This implies that all elements
of P’ Z are conjugate and that z is conjugate to an element v of P’ Z
which is inverted by t. The group M is the unique elementary abelian sub-
group of P of order q3 so that x and v are conjugate in No(M). Let z v,
y No(M). Then normalizes Ca(Z) and the involution yty-1 normalizes
Ca(Z) and M. It follows that yty- normalizes Op(Ca(Z)) U and hence
leaves P UM invariant.
Thus the involutions yty-1 and belong to PK and for some x PK,

(xy)t(xy)-1 and are involutions of K conjugate in No(M). Using (2.3),
(xy)t (xy)-I and xy Ca(t). Then (Z)x Z is a subgroup of M cen-
tralized by t. This is impossible as Z contains an element v inverted by t.
The proposition now follows.
From (2.2), No(M) MJ, M n J I and J may be chosen to contain K.

The next proposition begins the investigation of the structure of J.

(2.5) If No(M) is not p-closed, C,(t) K.

Proof. Using (2.1), P is a Sylow p-group of No (M) and thus P n J is a
Sylow p-group of J with Sylow p-normalizer (P r J)K. The group Nj(Z)
leaves Op(Ca(Z)) invariant and hence normalizes UM P. Therefore,
Nj(Z) (P J)K.

If Nz (Z) coincides with J, J (P J)K and P is a normal subgroup of
Na (M) contrary to hypothesis. It follows that J contains an element y such
that Z is a subgroup of M different from Z. From (2.4) we conclude that for
some z Z, z M P’ and, as every element in M P’ is conjugate in PK1
to an element, of T Z, we may assume z T Z, y J.
Then centralizes z and (b) of Hypothesis A implies that centralizes Z.
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Therefore yty-1 is an involution of J which centralizes Z and we have

yty-1 (P n J)KI.

Using (2.3), there exists x e P n J for which (xy)t (xy)-i so that xy C, (t).
Then Zx Z and we conclude that xy does not normalize Z and, conse-
quently, Cj (t) K.
The next proposition is most critical in our discussion of the structure of J.

The group TK1 is a subgroup of Ca(Z) so that we will describe the action of
K on T in such a way that T is identified with a group of matrices as given in
section 1.

(2.6) If Na(M) is not p-closed, [Cj(t) K] 2. Moroever, for
" C (t) K, Z {x T lx has (4.1) entry zero}.

Proof. Let Z1 and Z. be any two conjugates of Z in G and suppose
Z Z2 1. For x e Z1 n Z2, condition (b) of Hypothesis A implies that Z1
is the center of Ca(x). Similarly, Z must be the center of Ca(x) and thus
Z Z. We conclude that distinct conjugates of Z intersect trivially.
By (2.5), C(t) contains an element r which does not normalize Z. Thus

Z T Z and T ZZ. Let k be a generator of K and assume that k
does not normalize Z. From the above remarks, Z’nZ 1 and
T ZZ. Let c e Fq and let z be an element of Z with (4.1) entry c.

Z".Then z xy for some x e Z, y e Since y w1 for some w e and kl
leaves the (4, 1 entry of w fixed, xw is an element of Z" ith (4, 1) entry c.
We conclude that every element of F appears s (4, 1 entry of an element
of Z and, by a comparison of the number of elements,, every element of Z"
has a different (4, 1). entry. Furthermore, for x e Z’, xl, 1

_
i

_
(q 1)/2

is an element of Zl with the same (4, 1) entry as x but (3, 2) entry multi-
plie.d by Thus x can not be an element of Z. We conclude that
ZI, 1

_
i

_
(q 1)/2 are distinct conjugates of Z in T Z.

For purposes of contradiction let us now assume that the conjugates
Z.k,1 _< i_< (q-- 1)/2 are all of the conjugates of Z in T Z. For any
conjugate Z of Z in M, (2.4) implies that Z Z or Z

_
M P’. Fur-

thermore, every element of M P’ is conjugate in P to an element of T Z
so, for a conjugate Z of Z in M P’, there exists an element a e P J such
that Z n T 1. Let x e Z T. Then centralizes x and must centralize
Z which is the center of Ca (x). This implies that Z T Z and must be
one of the (q 1)/2 conjugates Z. It follows that Z1 is a conjgate of Z
via the action of PKg. It is calculated that no element of (P J)KI whose
order is divisible by p can normalize Z so that Ne (Z) M(t). Hence
Z has exactly q (q 1)/2 conjugates in M Z via the action of PKg. We
conclude that M contains exactly q(q 1 )/2 -t- 1 conjugates of Z and calcu-
late J q (q q - 2) K I/2. The number of conjugates of Z in T Z
is (q 1 )/2 and all occur via the action of C (t). Thus,

)/2,



628 JOHN L. HAYDEN

and we conclude that (q 1)/2 divides q(q q 2)/2. The integers
(q W 1)/2 and q are relatively prime so (q + 1)/2 divides (q q - 2)/2.
However,

q(q- 1)/2-- (q- q-2)/2-- q- 1

so that (q - 1)/2 divides q 1. This occurs if and only if q 3. The
case q 3 is exceptional and has been investigated in (2.4) of [7].
As a consequence of the preceding paragraph, we may now assume that

T Z contains, in addition to the (q 1 )/2 conjugates ZI, another conju-

gate Z1 of Z.
First of all, consider the subgroup V of M containing all elements of M in-

verted by t. It is calculated that V is a subgroup of P’ of order q and, as r
leaves V invariant, every element of the coset Vz, z Z is conjugate to an ele-
ment of the set Vz’. Let x, y be two elements of Z with the same (3, 2)
entry. Then xy-1 e Z n Z i so that x y. Thus the elements of Z have
distinct (3, 2) entries and every element of Fq appears as a (3, 2) entry of
some element in Z". Let z be an element of Z with (3, 2) entry I and (4, 1
entry c so that a typical element of the coset Vz is given by,

1 0 0 0

(2)
1 0 0 b Fq.
1 1
b 0

It is calculated that an element of the form (2) is conjugate in PKI to the
(q 1 )/2 elements,

1 0 0 0
0 1 0 0

1 <i< (q-- 1)/2.(3) O
b

e 1 01c-- 0 0

In fact, as b is an arbitrary element of Fq, there are (q 1 )/4 elements of
the form (3) each of which is conjugate to an element of the coset Vz. Re-
placing the (3, 2) entry of (2) by e, the same argument shows that T Z
contains (q 1)/4 elements with (3, 2) entries e"’+l, 1

_
i

_
(q 1)/2

and each of these elements are conjugate to elements of P’ Z. Counting
the elements of T Z which belong to the (q 1)/2 conjugate Z, there are
exactly q i elements of T Z which do not belong to one of the conjugates
Z’ or are not conjugate to an element of P’ Z. It follows that Z1 must be
the only conjugate of Z in T Z distinct from Z, 1

_
i

_
(q 1)/2.

We have shown that T Z contains (q - 1)/2 conjugates of Z and that
the conjugate Z does not belong to the orbit of Z under the action of K.
Hence K leaves Z fixed. Furthermore, an earlier argument shows that any
conjugate of Z in M P’ is conjugate in PKI to Z or Z. Using the structure
of P,1(Z) MK so that Z has q conjugates in M P via the action
of PK while Z has q(q 1)/2 such conjugates. Thus Z and Z are not
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conjugate in PK1 and M P’ contains exactly q(q + 1 )/2 conjugates of Z.
This implies that M contains exactly (q -t- q -t- 2)/2 conjugates of Z and we
calculate[JI q(q + q + 2) K I/2.

If Cj (t) acts intransitively on the set Z, Z’i, Z1}, Cj (t) (q -[- 1 ) K I/2
and (q -t- 1)/2 divides (q + q -t- 2)/2 which is impossible. It follows that
Cj (t) acts transitively and that C (t) (q -t- 3) K i/2. This implies
that (q -t- 3)/2 divides q(q -t- q + 2)/2 which occurs only in the cases
q 3, 5, 9. We shall now investigate each of these cases and show that we
have an impossible situation in each case.

Let q 3. The structure of J given in (2.4) of [7] shows that T Z
contains exactly one conjuga.te of Z, a contradiction to the existence of the
(q -t- 1)/2 conjugates Z, ZI. If q 9, IC,(t) 6IKi and centralizes
an element of order three. Thus there exists y e J such that centralizes an
element of P n J. However, P n J is a T.I. subset of J. lndeed, let S be a
Sylow 3-subgroup of Na (M) such that S n P contains an element x not con-
tained in M. From the structure of P, CM (x) Z so that Z must coincide
with the center of S. Using the structure of Ca(Z), S contains both U and M
so that S P. It now follows that e (P n J)K and, for some a e P n J,
a e K. Using (2.3), a t. This is impossible as centralizes au element
of P n J while inverts the nontrivial elements of P n J.
For q 5, IC(t) 41Ki and JI 2451K i. Furthermore, K/K

induces a group of automorphisms of the cyclic group Z so that K/K is a 2-
group with ]K/K] _< 4. The conjugate Z1 of Z is a subgroup of T of order
5 and is left invariant by K1 so, letting k be a generator of K and noticing
that kl centralizes no element of T Z, k induces an automorphism of Z
of order 2. It follows that a generator z of Z is conjugate in K to z-1 and that
K/K! 1. HenceiKI 2aor2 In the latter caseJhasaSylow2-

group of order 2 which is impossible as J is isomorphic to a subgroup of
GL (3, 5). Thus K 2 and J 5.2. This implies that J has a Sylow
2-group S which is isomorphic to a Sylow 2-group of GL (3, 5) and we may
assume that S contains the 2-group C (t). Using [2] and computing the cen-
tralizers in S of non-central involutions, we must have that ICe(t) 2 or
2. However, Cs(t) C,(t) and is a 2-group of order 2. We conclude that
the case q 5 is impossible.
We have finally shown that for no value of q is it possible for the (q -t- 1 )/2

conjugates Z’I, Z1 to exist. It follows that Z" is a conjugate of Z normalized
by K and, from the structure of TK, Z {x T x has (4, 1) entry zero}.
More important, r was an arbitrary element of C (t) K so we conclude that
[c(t) K] 2.

(2.7) Assume Na(M) is not p-closed. Then K K K, [K, K] 1,
K (t) where r is some element of Cj (t) K.

Proof. As a consequence of (2.6), K is a normal subgroup of C,r(t) of in-
dex 2 so that C(t) K(r) for some r e C(t) K. This implies that K
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is a normal subgroup of K which centrali.es Z". Letting kl be a generator of
K1, k leaves C (Z, t) Z L invariant and induces an automorphism of L
which centralizes the Sylow p-subgroup Z" of L and leaves K invariant.
Hence k induces the trivial autmorphism of L (see [9]) and, consequently,
centrali.es K. No element of K distinct from centrali.es an element of
T Z so we conclude that K contains the normal abelian group K K1 with
KnK t.

Furthermore, K/K acts as a regular group of automorphisms on the non-
trivial elements of Z which implies that K/KI _< q 1. Hence
Ki _< (q 1) and KK is a subgroup of K of index at most 2.

If ]KI (q 1), K/KI acts transitively on the nontrivial elements of Z.
This violates (c) of Hypothesis i and we conclude K K K

Notice that the structure of K given by (2.7) coincides with the structure
of K in PSp4 (q). Without condition (c) of Hypothesis A, it is possible for
[K K K] 2. Indeed, consider the semi-inner automorphism 0 of PSp4 (q)
which interchanges the two central classes of p-elements in PSp (q) (see [9]).
The extension of PSp4 (q) by 0 is a group which satisfies (a) and (b) of Hy-
pothesis t with ]KI (q 1).
By (2.7), K is an abelian group which acts irreducibly on P n J. Hence

K contains a subgroup K0 which centrali.es P n J with K/Ko cyclic. Since
K1 n K0 1, the structure of K forces

and K C(P J) KI.
We are now able to prove the main proposition of this section.

THEOREM 1. Let G be a finite group satisfying Hypothesis i. If N(M)
is not p-closed, No(M) MJ, M J 1 and J F X D where
F PGL (2, q) and D is cyclic of order (q 1 )/2.

Proof. Let x e J such that Z" is a conjugate of Z which belongs to T Z.
Then xtx- centralizes Z and is an involution of J C(Z) (P J)K.
For some a P J, (ax )t (ax)- so that ax C (t ). However, C (t) has
K as a subgroup of index 2 which implies that Z Z. Since Z Z",
Z Z" and we conclude that T Z contains the unique conjugate Z.
Furthermore, for any conjugate Z of Z which belongs to M T, there exists
a P n J fo which Z T 1. Let x Z T and notice tha centrali.es
x and must consequently centrali.e Z which is the center of Co(x). Hence
Z T Z and we have Z Z". This proves that Z, ZTM, where a ranges
over the q elements of P J, are the distinct conjugates of Z in M. Thus,
[J (P J)K] q - 1 and it follows that P J, (P j)a, a e P J are
the q - 1 Sylow p-groups of J.

Let us consider the representation of J as a permutation group of its q W 1
Sylow p-subgroups. Clearly (P J)K is the subgroup of J fixing a letter and
K fixes both P J and (P J). For 1 i <_ q 1, a P J, lc-ak b,
(P n J)’ Z". Hence, as k acts transitively on the nontrivial elements of
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P n J, K acts transitively on the remaining q 1 letters (P n J)T, a e P n J,
al.

Let D be the subgroup of J fixing three Sylow p-groups. Assuming D
fixes P n J and (P a J), D is a subgroup of K. Let d e D and let (P J)a,
a 1 be a third conjugate of P a J fixed by D. Then

(ra)d (ra)-I (p J)g

so that ada-1 (P J)*K. Letting d-lad b, b eP n J, aa-1 dba-and we conclude that ba-1 e (P n J) n (P n J)*. Since P n J is a T.I. subset
of J (see case q 9 of (2.6)), a b and we have that d centralizes a. We
have seen thatK K1 X C(PnJ) so that C(a) C(PnJ). This
implies D C(P n J). Clearly C (P n J)

_
D so that D C: (P J).

This proves that D fixes all Sylow p-subgroups of J and must therefore coin-
cide with the kernel of the representation of J on its Sylow p-groups. Conse-
quently J/D may be viewed as a triply transitive permutation group on q -b 1
letters for which the subgroup fixing 3 letters is t4vial. /k theorem of Zassen-
haus [12] now applies and we have that J/D PGL (2, q).
We have seen that K K1 D so that D (q 1)/2. Furthermore,

K K X D as r normalizes K and D. Hence k"1 kl e D for some integer i
satisfying (i, q 1 1. From the structure of K, k k has order (q 1 )/2
and we conclude that D is a cyclic group of order (q 1 )/2.
We now claim that J splits over D. It is computed that

J q(q - 1)(q 1)/2

so that if r is an odd prime divisor of D I, a Sylow r-subgroup of K is a Sylow
r-subgroup of J. Since K is abelian, a Sylow r-subgroup R of J splits over
R n D for all odd prime divisors r of D I. It remains to consider a Sylow 2-
groupSofJ. If q--- -lmod4, (q- 1)/2 is odd so that S n D 1. If
q 1 mod 4, let q 1 2e, (2, e) 1. The element r normalizes K and
re K so that we may assume r has 2-power order. Consider the 2-group
(k, k*) which is a Sylow 2-group of K of order 2-. Since r interchanges
k, k*, S (k, r) is a 2-group of order 2 and a comparison of orders shows
that S is a Sylow 2-group of J. Now J is generated by (P n J)K and
(P n J)* and we have seen that D centralizes (P n J)K. Furthermore, as D
is normal in J, D centralizes (P n J)" and we conclude that D is a subgroup of
the center of J. In particular, S n D C(r) ((kl k)’, t). A comparison
of orders shows that S n D is generated by (kl k[) or (k k[)’. Let

((7k), t).

It is seen that EI 2 and that E is normalized by r. Thus E(r) is a 2-
group of order 2+1 and satisfies E(r)n (S n D) 1. Thus S E(r) X
(S n D) and S splits over S n D. A theorem of Gaschiit now applies and we
conclude that J FD, F D 1. As D is in the center of J and
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J/D PGL (2, q),

and the statement of Theorem 1 follows.

J=FXD

3. The nonsimple case

Throughout this section let G be a finite group satisfying Hypothesis B.

HYPOTHESIS B. G satisfies (a), (b) of Hypothesis A for p 3, q 3m,
m odd, m > 1. The subgroup Na (M) has P as a normal Sylow 3-subgroup.

It will be shown that a group satisfying Hypothesis B is an extension of
Co(Z) by a group of automorphisms of order less than or equal to q 1.
After a series of lemmas, it is shown that a group satisfying Hypothesis B has
a quaternion or semidihedral Sylow 2-group. This gives enough information
to establish the structure of G.

It is an immediate consequence of Hypothesis B that No(M) No(P).
This fact, together with the fact that M is a characteristic subgroup of P,
implies that No(M) No(P). Hence No(M) PK, P n K 1 and K
can be chosen to be a complement for P containing in its center. Because
C (t) T and T is an elementary abelian 3-group of order q containing Z,
Co(T) is a subgroup of Co(Z). It is calculated that Co(T) M(t) and we
have that M is a characteristic subgroup of Co(T). Therefore M is normal in
No(T) and No(T) MK. This implies that T is a Sylow 3-subgroup of
Co(t).
For all nontrivial elements z Z, C (z, t) Z X L where L is isomorphic to

SL(2, q). Let us identify L with its 2-dimensional matrix representation
over Fq in such a way that T n L corresponds to the collection of all mtriees

01)
and K1 C (Z) corresponds to

where c is a primitive element of F. Then any automorphism of L is given
by B A-I#A where A is a nonsingular 2-dimensional matrix over F and
is an automorphism of F (see [9]). It is easily calculated that any auto-
morphism of L which centralizes the quaternion group generated by

1
and yx --1 --1

is a field automorphism. In the following series of lemmas let Q be the quater-
nion group generated by x and y. As q is an odd power of 3, 4 is the highest
power of 2 dividing q q- 1 so that Q is a Sylow 2-group of L.

(3.1) If Co(Q) ZC(Q), Co(Q)/(t} is isomorphic to PSL(2, q).
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Proof. The involution is contained in the center of Q so that Ca (Q) is a
subgroup of Ca(t). Also, Ca(t) has an abelian Sylow 3-group so a Sylow
3-group of Ca(Q) containing Z must centralize Z. Since

Ca(Q) n Ca(Z) Z<t>,
Z is a Sylow 3-group of Ca (Q).
Suppose that y eNa(Z) n Ca(Q). Then y induces an automorphism of L

which centralizes Q. From the remark preceding (3.2), y normalizes T n L
and K1. As T (T n L)Z, y normalizes T so y TK. Since

TK n Na (KI ZK, y eZK.

Therefore, Na(Z) n Ca(Q) ZC(Q).
Let X Ca(Q)/<t> and let Z be the image of Z in X.

zeZ,
Ca (Q n Ca (z Z<t>

For all nontrivial

so that Cx ($) 2. Hence Z is a CO-subgroup of X of order q. If

C(Q)- I, No (Z n Ca (Q

and Ca (Q) has a normal 3-complement E. Then

E II..,, (z)

which implies that E Z(t). Hence Ca (Q) Z(t> contrary to the hypothe-
sis of (3.1). On the other hand, suppose [C(Q)-[ q 1 so that
C: (Q) 2 (q 1). Because q 1 is not divisible by 4, a Sylow 2-group

of C(Q) has order 4 and contains the central involution t. Let us suppose
that C(Q) contains an element fl of order 4. As f t, fl acts in a fixed-
point-free manner on the q 1 elements of M inverted by t. This implies
that 4 divides q 1 which is not the case. We may therefore assume that
C (Q) contains a four-group (t, r) and the involution r induces an automor-
phism of L sending

(1x 01)to (lk 01)
where is an automorphism of Fq. Because q 3m, m odd, L admits no field
automorphism of order 2. We conclude CK (Q)-I q 1.
We have now shown that X contains 2 as a CC-subgroup of order q and

[Nx (2)" 2] 1 or q 1. In addition, 2 is not a normal subgroup of X as
otherwise Ca(Q) ZC(Q) contrary to hypothesis. By (5.1) of [8],
X ---PSi (2, q).
As a result of (3.1) we will now investigate the structure of groups satisfying

Hypothesis C.

HrPOTHESIS 3. G satisfies Hypothesis B and Ca (Q ZC (Q ).

Groups satisfying Hypothesis C require a rather detailed discussion of their
2-structure. After a series of propositions, it will be shown that no such groups
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can exist. This, of course, implies that a group satisfying Hypothesis B must
have Ca (Q ZC (Q ).

(3.2) Let G satisfy Hypothess C. Then

Na (Q) (x)QCa (Q) or (x, or)Ca (Q)

where x is an element of T a L which normalizes Q and r is an involution of
Na(Z) with Q(a) a semi-dihedral group of order 16.

Proof. It is seen that NL (Q) is the subgroup of L generated by

and Q. The group Na(Z)rlNa(Q) induces a group of automorphisms of Z
with kernel.Z(x}Q and, since Na(Z) f Na(Q)/Z(x}Q acts regularly on Z,

[Na(Z) nla(Q) :Z(x)Q] <_ q- 1.

By (3.1),ICK(Q)I q- 1sol (Z(x)Q)C(Q)i IZ(x)Qi (q- 1)/2and
we conclude (Z(x)Q)CK(Q) has index at most 2 in Na (Z) n Na(Q).

Let us suppose [Na(Z) rNa(Q) (Z(x)Q)C:(Q)] 2. Then K/K1 acts
transitively on Z so that K (q 1 )3 and K has a Sylow 2-group of order
4. This implies that K contains an involution r such that (t, r) is a four group.
Because r does not centralize Q, r induces an automorphism of L which comes
from the natural action of GL (2, q) on SL (2, q) so that L(r) is isomorphic to
a subgroup of GL (2, q). Let be an appropriate involution of L(r) such that
Q(a) is a Sylow 2-group of L(r). Then Q(a) has order 16 and, by a compari-
son of orders, is isomorphic to a Sylow 2-group of GL (2, q). By [2], Q(a) is
semi-dihedral and

Na (Z) n Na (Q) ix, r)QC (Q).

For y Na(Q), Z is a Sylow 3-group of Ca(Q) so for some w Ca(Q),
Z Z. HenceyweNa(Z) rNa(Q) andy (Na(Z)fNa(Q))Ca(Q). We
conclude that Na (Q (x)QCa (Q or (x, a)QCa (Q ).

(3.3) Let G satisfy Hypothesis C and W be a Sylow 2-group of Ca(Q).
Then W is quaternion or elementary abelian of order 8.

Proof. Let W be a Sylow 2-group of Ca(Q). Since a Sylow 2-group of
PSL (2, q) is a four-group, W/(t) is a four-group and W 8. If W contains
no element of order 4, W is elementary abelian as desired. We may therefore
assume that W contains an element a of order 4. Furthermore, the involu-
tions of W/(t) are conjugate in Ca (Q) so W must contain another element b of
order 4 with (a)n (b) (t). Now a and b do not commute as otherwise ab
is an involution conjugate to a or at in Ca(Q). Thus W is nonabelian and
must be quaternion.
We have seen that Ca(Q)/(t) - PSL(2, q) so that C(Q)/(t) is cyclic of

order (q 1)/2. By hypothesis (q 1)/2 is odd and it follows that C (Q)
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contains an element of order q 1. Let k. be a generator of C (Q) and con-
sider the action of k. as an automorphism of L. Since ks centralizes Q, k
sends B --* B

y where B is any 2-dimensional matrix of L and is an auto-
morphism of Fq. In particular, we have identified T n L with the collection

SO k2 centralizes

On the other hand, x normalizes Q and induces an automorphism of Ca(Q
which centralizes the Sylow 3-normalizer ZC:(Q)/(t) and must consequently
induce the trivial automorphism. Let W be any Sylow 2-group of Ca(Q).
Then x centralizes W/(t) and therefore W.

If the involution exists, Q(a) is a semi-dihedral group by (3.2). In addi-
tion, induces an automorphism of Ca (Q) inverting the nontrivial elements of
the Sylow 3-group Z. If W is elementary abelian, W (t, r, g) for some in-
volutions r and g. Applying a theorem of Gaschiitz, Ca (Q) splits over (t) so
that Ca(Q) (t) X Y, Y --- PSL(2, q) and we may assume W
Then a normalizes Y and inverts Z so that Y(a) is isomorphic to a subgroup
of PFL(2, q) containing PSL(2, q) as a subgroup of index 2. Choosing W
appropriately, (r, #, a) is a dihedral group of order 8. If W is quaternion,
W(a)/(t) is isomorphic to a Sylow 2-group of PFL (2, q) and is dihedral of
order 8. Let s be an element of W(a) such that s has order 4 in the factor
group W(a)/(t). If s 1, s is an involution of W and we must have s t.
This contradicts our choice of s and we have s t. Hence W<a) has a maximal
cyclic subgroup of order 8 and since W is quaternion, W(a) is not dihedral or
generalized quaternion. A characterization of such groups [5, p. 193] implies
that W(} is semi-dihedral.
We are now in a position to determine a Sylow 2-group of G.

(3.4) Let G satisfy Hypothesis C. If a Sylow 2-group W of Ca(Q) is ele-
mentary abelian, QW or QW(a) is a Sylow 2-group of G.

Proof. In the preceding paragraph we noticed that

Ca(Q) (t> Y, Y_ PSL(2, q)

where W (t, r, #} and W n Y (r, g}. All involutions of Y are conjugate
and there exists an element of order 3 which cyclically permutes them. In
fact, Z is a Sylow 3-group of Y so that for suitable choice of W, we may assume
(r, g) is normalized by an element z of Z. Furthermore,

Na (Q n Na (QW) (x, z>QW or (x, z, a)QW

where x e T n L, permutes the subgroups of Q of order 4, and centralizes W.
LetQ (a, b ( b t, ab ba-1}. ConsideryeNa(QW) andsup-
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poseau f, by hwforf, heQ and #, / e (r, u). Becausea
f and h do not commute. Hence x or x interchanges f) and (h) so that
a’ h#or the, ie{1, 2}. In the case/ % ’ 3’forje{1, 2} and
auz hw or th,. That is, a’ by or tb and - -.YXZY eNo(Q). In par-
ticular, xz normalizes Q. In the case , a’ h/or th, with i e 1, 2}
and a’ b or tb. Hence x leaves Q invariant. In any case, Q is nor-
malied by n element of the form zz, i 0.

It is co.m.puted that QW contains 7 quaternion groups normalized by
element x z, i 0. Indeed, let the action of z on (r, u and x on Q be given
as follows:

z’r---r; x: a b ab.

Then xz normalizes each of the quaternion groups Q Q, Q
Q (a, br) and Q (ar, br) while xz leaves Q (at, abe),
Q (art, abr) and Q7 (au, abler) invariant. Notice that a q.u.aternion
group containing an element of Q or order 4 and normali,ed by x’z, i 0
must coincide with Q and Q is the only quaternion group normalized by
This proves that the 7 quaternion groups Q are exactly the quaternion sub-
groups left invariant by an element x’z, i O.
Now No(QW) induces a permutation group on the Q with (x, z)QW or

(x, z, a)QW the subgroup fixing the letter Q. Hence, if No(QW) acts transi-
tively on the Q, No(QW) has a subgroup of index 7. However (QW)’
and W coincides with the center of QW. Therefore any automorphism of QW
of order 7 centralizes W, QW/W and consequently QW. As Ca(QW) W,
Na(QW) can contain no element of order 7 and we conclude that No(QW)
acts intransitively on the Q.

Let us suppose No (QW) QW or (x, z, r)QW. Without loss of generality
assume Q and Qz are conjugate. Since z transitively permutes Q,
and x permutes Q, Q and Q7 transitively, Q and Q caa not be conjugate.
Otherwise No(QW) acts transitively on the Q in contradiction to the previous
paragraph. We see that No (QW) induces a transitive permutation group on
the orbit {Q, Q, Q, Q} with kernel QW(xz). However, let us consider
Co(xz, t). We have seen that No(T) MK and that TK is a Sylow 3-nor-
malizer of Co(t). In addition K/Kxl _< q 1 so that K KxK. or
[K K Kz] 2. In both cases K leaves Z and T n L invariant. Now K
acts 1/2-transitively on the nontrivial elements of T n L and C (z) K so it
follows that C(xz) (t) and T(t) is a Sylow 3-normalizer of Ca(xz, t).
Hence Ca(xz, t) has a normal 3-complement E which is left invariant by Z.
We conclude that

E (TnL)(t) and Ca(xz, t) T(t).
Finally, for y eNa(QW), (xz) QW(xz) so that (xz)" xz or (xz) for some
s QW. In the first case ys e T(t) n Na(QW) (x, z, t) and y (x, z)QW.
In the second case (xz) and (xz) are conjugate so that a must exist. Then
(xz)’’ xz as a inverts the nontrivial elements of Z and T n L. We have
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that ysa (x, z, t) and y e (x, z, a)QW. In both cases y normalizes Q a contra-
diction to hypothesis. We conclude Na(QW)

If a does not exist, Na(QW) (x, z)QW and QW is a Sylow 2-group of G
as desired. We may therefore assume that
where Q() is semi-dihedral and (r, #, a) is dihedral. Let r be the central
involution of W(a). Then S’ (a, r) where a is an element of Q or order 4.
Furthermore, Cs(S’) (s)W where s is an element of Q(a) of order 8. Since
every involution of (s)W belongs to W, W is a characteristic subgroup of
(s)W and consequently is characteristic in S. We conclude that C(W) QW
is left invariant by Na (S) and the conclusion of the preceding paragraph yields
that Na (S) QW(). Therefore QW(r) is a Sylow 2-group of G.

(3.5) Let G satisfy Hypothesis C. If a Sylow 2-group of Ca (Q) is quater-
nion, QW or QW(a} is a Sylow 2-group of G.

Proof. Let us first assume that QW is a Sylow 2-group of Na(Q). We
show that no element of Q of order 4 is conjugate in G to an element of W.
Indeed, suppose y is an element of Q of order 4 and there exists g e G with
yg e W. Then Ca (yg) contains Zg and the remarks preceding (3.4) imply that
yg is centralized by an element x e T a L. A Sylow 3-group of Ca(y) which
contains Z is abelian and is thus a subgroup of Ca(y, Z) Z(d) where d is an
element of L of order q - 1. Hence Z is a Sylow 3-group of Ca(y). It fol-
lows that x is conjugate to an element z Z. However, x and z are elements of
M where M is the unique abelian subgroup of P of order qS. This implies that
y and z are conjugate in Na (M) PK. Since Z is a characteristic subgroup
of P, this is impossible. The elements of QW of order 4 belong to Q or W so
that Na (QW) permutes the elements of Q of order 4 and leaves Q invariant.
Therefore QW is a Sylow 2-group of Na(QW) and is a Sylow 2-group of G.
On the other hand suppose that QW((r) is a Sylow 2-group of hra (Q). Let

S QW(cr} and notice that Q() and W(a) are semi-dihedral groups. Let
x e Q, y e W and suppose xyr is an element of order 4. Then (x)4 (ya)4 I so
that (x)’ e Q n l (t). If (xcr)* t, (ya)4 t and (x), (y) are elements
of order 4 belonging to Q and W respectively. Hence (xy(r) (xa) (y(r)
is an involution of QW different from t. When (xa)4 1, (ya)4 li one of
the elements x and ya has order 4 which, without loss of generality, we may
assume to be ya. Because W(z) is semi-dihedral, W contains all elements of
W(a} of order 4. In particular, ya e W which is not the case. We have there-
fore shown that an element of order 4 which belongs to S QW has as its
square an involution of QW different from t. The center of S is generated by
so that no element of Q of order 4 is conjugate in Na(S) to an element of
S QW. Thus Na(S) permutes the elements of QW of order 4 and, as
no element of order 4 in Q is conjugate to an element of W, Na(S) leaves Q
invariant. This implies Na(S) S and we conclude that S QW(() is a
Sylow 2-group of G.
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(3.6) If G satisfies Hypothesis B, Ca (Q ZCK (Q ).
group satisfying Hypothesis C can exist.

In particular, no

Proof. If G satisfies Hypothesis C, the structure of a Sylow 2-group of G
is given by (3.4) and (3.5). We will show that in any of these cases is con-
jugate to no involution of a Sylow 2-group of G other than itself. This im-
plies that G Ca(t)O (G). Because Ca(t) has a Sylow 3-group of order q2
and a Sylow 3-group P of G containing Z has order q, P n 0 (G) is a nontrivial
normal subgroup of P and Z n 0 (G) 1. Consequently, Ca (Q) has a non-
trivial normal subgroup of odd order which is impossible unless

Ca (Q zc (Q ).

In order to complete the proof of (3.6) it is therefore sufficient to show that
in a group G satisfying Hypothesis C, is conjugate to no involution of QW or
QW(a) other than itself.

Let us assume that W is elementary abelian and that QW is a Sylow 2-group
of G. As W coincides with the center of QW and contains all involutions, fu-
sion of involutions is controlled by Na(QW). However, Na(QW) (x, z)QW
as seen in (3,4) so that is conjugate to no involution of QW
We may now let QW(a) be a Sylow 2-group of G with W elementary abelian.

Let W (t, r, ) so that (, , a) is dihedral of order 8. Every involution xya,
x e Q, y e (r, #) satisfies (xa) (ya) 1 so that xa and ya are involutions of
Q(a) and (r, t, a) respectively. Since (r, t, a) is dihedral and ya
ya is conjugate in (r, , a} to a. Hence xya is conjugate to aa, a e Q. Now
Q(a} is semi-dihedral so has two classes of involutions with representatives
and a. We conclude that xya is conjugate to a and every involution of
QW(a} QW is conjugate to a. Let r be the central involution of
so that (t, r} is the center of QW(a}. Every involution of QW- (t} is con-
jugate in Ca(Q) to or tr, and by (3.4), Na(QW(a)) QW(a}. Hence t,, tr belong to distinct conjugacy classes of G.

Let us assume that is conjugate to an involution of QW(a) (t} so that
is conjugate to a and let R be a Sylow 2-group of Ca(a) containing (t, r,
As a and are conjugate, G has exactly three classes of involutions K,
i 1, 2, 3 with representatives t, and tr. The involutions of (t, r, a} are
partitioned among these classes such that K1 It, a, ta, tra, ra/, K2 {r/,
K {tr}. Letting E NR(t, r, a}, E centralizes (r, t} and, since QW(a} is
a Sylow 2-group of Ca(t, r), there exists g e Ca(t, r) for which E

_
QW(a).

By our choice of E, E centralizes (t, r, a) and a is an involution of QW(a)
different from t. Now a is not conjugate to r or tr so a QW. Hence
is conjugate in QW(a) to a. However, Ca(a)n QW(a) (t, r, a) so that
E 8. Hence E (t, r, a) is a Sylow 2-group of Ca(a), a contradiction

to our assumption that and a are conjugate. We conclude that is conju-
gate to no involution of QW(a) (t).
We now consider W to be quaternion. Let Q be generated by elements al

and b of order 4 and assume W is generated by corresponding elements a, b.
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Every involution of QW different from
and y have order 4. Furthermore (z, z) normalizes QW such that z transi-
tively permutes the subgroups of W of order 4 and centralizes W. Hence
every involution of QW (t) is conjugate to v a a.

In the case that QW is a Sylow 2-group of G and is conjugate to an involu-
tion of QW (), and v are conjugate. Let V be a Sylow 2-group of C (v)
containing R (a, a, b b). Since R has index 2 in QW, R and R’ are nor-
mal subgroups of V. It is computed that R (t) so that (t is left invariant
by V. This implies (t, v is contained in the center of V which is impossible
as QW and V are isomorphic. We conclude that is conjugate to no involution
of QW

Finally, let us consider the case when W is quaternion and QW(a) is a Sylow
2-group of G. An involution ywr, x Q, w W satisfies (ya)* (wa)* i so that
yo and wa areboth elements of order 4 or both involutions. If wa has order 4,
w ae W because W contains the elements of order 4 in W(). Thus we is an
involution of W(a) different from and is conjugate in W(a) to a. This im-
plies ywcr is conjugate to an involution of Q(a) different from t. But Q() is
also semi-dihedral so that yw(r is conjugate to . This proves that every in-
volution of QW(a) (t) is conjugate to a or v. The centralizer of v in QW(cr) is
R (a, a., b b., a) which has index 2 in QW(cr). Furthermore, R (t) so
that the argument of the preceding paragraph implies and v are not conju-
gate.
We may assume, therefore, that and are conjugate. Then G has two

classes of involutions with representatives and v. The involutions of
(t, v, a) are partitioned in such a way that t, , w, ta and vta belong to one class
while v, vt belong to the second class. Let S be a Sylow 2-group of Ca()
containing (t, v, a) and consider E Ns(t, v, a). Clearly E permutes and vt
so leaves (v, t) invariant and, since
E QW(a) for some g e G. Now (t, r, a) QW(a) so that a is an involu-
tion different from t. Furthermore, v and are not conjugate and we conclude
that a is conjugate to a in QW((r). Also, Ca((r) a QW(a) (t, v, a) which
implies E is conjugate to a subgroup of (t, v, a). Therefore E (t, v, a) is
a Sylow 2-group of Ca (). We conclude that and a are not conjugate.

(3.8) If G satisfies Hypothesis B, a Sylow 2-group of G is quaternion of order
8 or semi-dihedral of order 16.

Proof. From the beginning remarks of this section, Ca(z, t) ZL for
z e Z and Na (P) PK where K is a complement of P containing in its cen-
ter. Consider y e Na(Z) Ca(t). For z e Z, z and z are conjugate in K so
there exists k e K such that z z. Hence yk ZL and y e ZLK. We con-
clud,e that Na(Z) n Ca(t) ZLK.
Let us suppose [ZLK: ZL] is odd. It follows that Q is a Sylow 2-group of

ZLK and by (3.6), Ca(Q) ZC(Q). HenceNa(Q) ZLK and Q must be
a.Sylow 2-group of G.
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If [ZLK: ZL] is even, K/K1 induces a regular group of permutations of the
nontrivial elements of Z with K/KI even. Since q I is not divisible by 4,
K has a Sylow 2-group of order 4. Thus K contains an involution r different
from and r induces a nontrivial outer automorphism of L of order 2. Hence
L(r) is isomorphic to a subgroup of GL (2, q) containing SL (2, q) as a subgroup
of index 2. Letting a be an appropriate involution of GL (2, q) which nor-
realizes Q, Q() is isomorphic to a Sylow 2-group of GL (2, q). In particular,
Q(a) is semi-dihedral of order 16 and is a Sylow 2-group of ZLK. Now Q is
a characteristic subgroup of Q() so that Na(Q(())

_
Na(Q). However,

Na (Q)

_
ZLK and we conclude Q(a) is a Sylow 2-group of G.

(3.9) If G satisfies Hypothesis B, Ca (t) ZLK.

Proof. By (3.8), Q or Q(a) is a Sylow 2-group of Ca(t). Hence
X Ca(t)/(t) has a dihedral Sylow 2-group. As X involves PSL (2, q), [6]
implies X/O(X) is isomorphic to a subgroup of PFL(2, q) containing
PSL (2, q). Let D be the largest normal subgroup of Ca(t) of odd order.
Then Ca (t)/D has a Sylow 3-group of order q so T n D q. Now L has no
normal subgroup of odd order which implies T n D contains no element of
T n L. Furthermore, K acts --transitively on the nontrivial elements of
T n L so that D can contain no element of T Z. Otherwise D would contain
an element of T n L which is not the case. We conclude that D T Z
and that Z is a Sylow 3-group of D. Moreover, CD(Z) Z so that Z is a
CC-subgroup of D. If Z is not a normal subgroup of D, (4.4) of [8] implies
D] is even. We conclude that Z is characteristic in D and consequently
normal in Ca (t). Hence Ca (t) ZLK.

TEOM 2. If G satisfies Hypothesis B, G Ca(Z)K.

Proof. If Q is a Sylow 2-group of G, is the unique involution of Q and [3]
implies G Ca(t)O (G). Hence P n 0 (G) 1 and 0 (G) is divisible by 3.
Let A be a minimal characteristic subgroup of 0 (G) and assume A is a 3-group. As A is left-invariant by Z, A is a subgroup of Ca(Z) which is im-
possible. This implies that A is a normal subgroup of P and A n Z 1.
Let z A n Z and consider g G. Then zg A n Z as z is conjugate to no ele-
ment of P Z and there exists keK such that zg z. This implies
g Ca(Z)K and G Ca(Z)K as desired.
We may now assume that Q(a) is a Sylow 2-group of G. If a and are not

conjugate, G Ca(t)O (G) and the argument of the preceding paragraph ap-
plies. Thus, let and be conjugate. We may further assume 0 (G) 1
for otherwise G contains a normal 3-subgroup A such that A Z 1. Propo-
sition 2, p. 15 of [1] may now be used to conclude that G contains a normal
subgroup X of odd index with X a simple group with Sylow 2-group
Clearly Cx (t) contains L() so that P n X is a nontrivial normal subgroup of
P. Consequently, Z X i and since Cx(t) ZLK, Z X is a normal
subgroup of Cx(t). An application of the first main theorem of [1] implies
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n is a subgroup of the center of ffz (t) contrary to the fact that inverts
the nontfivial elements of n . e conclude that and can not be con-
jugate and o()K as desired.

4. The structure of C(t)
Throughout this section let G be group stisfying Hypothesis A for the

prime p 3 and q 3, m odd, m > 1. We vdll prove the following main
proposition.

THEOREM 3. Let be the centralizer in PSp4 (3), m odd, rn > 1 of an ele-
ment of order 3 lying in the center of some Sylow 3-subgroup. Let G be a finite
group satisfying:

(a ) G contains an element a of order 3 such that Co(a) is isomorphic to .
(b) For all z in the center of C(a), Co(z) Co(a).
(c) Not all central 3-elements belong to the same conjugacy class of G.

Then one of the following cases occurs:
(i) Co (a) is a normal subgroup of G.
(ii) G is a simple group isomorphic to PSp4 (3).

Let G be a group satisfying (a), (b) of Theorem 3. The results of Section
3, particularly Theorem 2, imply that we may assumeN(M) is not 3-closed.
Otherwise Co (a) is normal in G and we are in case (i) of the above theorem.
Hence the results of Section 2 are valid and the structure ofN(M) is given by
Theorem 1. Since q is an odd power of 3, q -b 1 is divisible by 4
with q 1 4e, (2, e) 1. We retain this notation throughout the section.

(4.1) N(T) n Co(t) TK(r} where r is an involution of N(M).

Proof. We have seen that T is an elementary abelian group of order q
centralized by which contains Z. Hence Co(T) M(t}. Clearly M is
characteristic in Co(T) so that No(T)

_
No(M). From (2.6),

[No(T) n N(M): MK] 2

so that No(T) n No (M) MK(r) where r is an involution which centralizes
but does not normalize Z. Thus

No(T) MK(r) and N(T) n Co(t)

As a result of (2.7), the structure of K is given by K K1K[, [K1, K[] 1,
K, n KI <t) and r is the same involution which appears in the statement
of (4.1). Now Z is the unique conjugate of Z in T Z and is normalized
by K. Since a generator k ofK has order q 1, k(*- t. Furthermore,
no element of K, different from centralizes an element of T Z so that K
induces a group of automorphisms of Z which partitions the nontrivial ele-
ments into two orbits of length (q 1 )/2 with representatives z*, z for some
z, Z. Similarly, K[ partitions the nontrivial elements of Z into two orbits
of length (q 1 )/2 such that z and z- lie in different orbits. Thus the action
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of K is determined on T and we compute for any z Z, z 1,

Ca(z-z) n TK(r) T<t), Ca(zz) n TK<r) T(t,

(4.2) For any z e Z, Co(], t) T(t).

Proof. The above remar imply that T(t) is a Sylow 3-normalizer of
Ca(z-], t) so that Ca(z, t) has a normal 3-complement B such that
Ca (z-z", t) TB, T n B 1. By hothesis, Z is a noncyclic elementary
abelian 3-group so that B ,z C(z). However, C(z) Z X L and
it is seen that C. (z) (t) for all z e Z. Hence B (t) and we have

Ca(, t)

(4.3) For z Z, Ca(zz, t) T(t,

Proof. We have seen that T(t, ) is a Sylow 3-normalier of Cq(zz, t) and
it is calcated that (zz z Z) is in the center of T(t, ). Applng a theorem
vf Gr, Ca(z, t) has a normal subgroup R of index q such that

Let X R/(t) and consider the image (R n T)- of R n T h X. Since
Ca(y) (Rn T)(t) for all y eRa T, (R n T)- is a CC-subgroup of X.
Furthermore, Cq(zz, t, R n T) Ca(z, zz, t) T(t) so that

Na(R n T) Ca(z, t) T(t,

We conclude that N(R n T) (R n T)(t, ) and consequently,

N (R T)- ((R

Thus (R n T)- has hdex 2 hN(R n T)-and Theorem 4.4 of [8] now applies.
We conclude that (R n T)- is a normal subgroup of X so that

R (RnT)(t,r) and Ca(z],t) T(t,

Section 1 of [11] shows that the structure of the centralizer of a central
volution in PSp (q) to have (as a normal subgroup of hdex 2) a subgroup
which is the central product of two copies of SL (2, q). In fact, if C is the
centralizer of a central involution t0 of PSp(q), C LL(ro) where
[L, L] 1, L SL (2, q), L L (t0) and r0 is an involution which hter-
changes L and L. In the follong proposition we will show that Ca(t)
has a subgroup isomorphic to LL (r0). The remaining part of the section
1be devoted to showing that this subgroup coincides th Ca (t).

(4.4) Ca(t) contains a bgroup L a an involution r for which

LSL(2, q), LaL (t), [L,L] 1.

Proof. We have seen that Cq(z, t) Z X L th L SL (2, q) and that
r is an involution of Ca (t) th Z a Sylow 3-subgroup of L. Let c be an
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ment of order 4 in L which inverts a generator of K1. ThenL is the union of
the two double cosets ZK1 and ZcK1.

Since K1 leaves Z L invariant, K induces a group of automorphisms of
L which centralizes the Sylow 3-normalizer ZK. Consequently, K induces

ga trivial group of automorphisms and 1, L] 1. This implies [K1, L’] 1.
Furthermore, [Z, L] 1 so that [Z, L] 1 and we conclude that ZK1 cen-
tralizes L. Because L is the union of the cosets ZKI and ZcKI, it now fol-
lows that [L, L] [ZcKI, ZcKI]. We now apply elementary commutator
relations (see [5, p. 18]) to conclude [L, L] [c, c]. In addition, c inverts
K1 with c so that K centralizes [c, c].

Let A [c, c] and notice that A is a normal subgroup of (L, L’). Thus, if
A is divisible by 3, T n A 1. But K centralizes no element of T other

3’than the identity. Hence A is a -group. Now A is left invariant by Z and
we conclude that A

___
L. This implies A (t) and c-cc c or ct. In

either case c induces an automorphism of L which centralizes ZK. Therefore
c is the trivial automorphism and A [L, L] 1. Finally, L n L" is a sub-
group of the center of L so that L
As a result of (4.4), [L, L] 1 and H (llll e H) is a subgroup of LL

isomorphic to PSL (2, q). Retaining this notation, we are now able to com-
pute Ca (t, r).

(4.5) Ca (t, r (t, r} X H, where H (ll e L}.

Proof. Let D (zY z eZ). From (4.3), Ca(D, t) T(t, r) and

No(D) Ca(t,

Hence D(k[ k, t, r) is a Sylow 3-normalizer of Ca(t, r). Let

x c (t,

and consider the image D of D in X. For yeD, xCa(t, r) such that
(xy)- (yx)- we see that x normalizes (y). In addition, x leaves

Ca (t, r, y) D(t, r)

invariant and must leave D fixed. However, no element of (kl k)- centralizes
so that /). This proves that/) is a CC-subgroup of X of order q with
Nx (D) q(q 1)/2. Theorem 5.1 of [8] applies and we conclude that
X --- PSL(2, q).
Now H (ll[l eH) is a subgroup of Ca(t, r) isomorphic to PSL(2, q)

with H n (t, r) 1. A comparison of orders implies Ca(t, r) (t, r) H
as desired.
A Sylow 2-group of L is a quaternion group Q of orde 8. Let Q be gener-

ated by elements a and b of order 4 which satisfy a b t, ab ba-1.
Then every involution of LL different from has the form xy where x and y
are elements of order 4 in L and L respectively and, as all elements of order 4
in SL (2, q) are conjuga.te, every involution of LL (t) is conjugate to v aa.
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On the other hand, for x L, y L and (xyr) 1, (xy") (yx) 1 so that
xy L n L (t). Hence xyr (xr)y xrx-or xtrx-. We conclude
that every involution of LL’(r) LL" is conjugate to r or

(4.6) QQ(r) is a Sylow 2-group of G.

Proof. Let S be a Sylow 2-group of G which contains the 2-group QQ
and consider y Ns(QQ(r)). The center of QQ(r) is generated by so that
y-ry is an involution of QQ’(r) different from t. Furthermore, if y-ry QQ,
the remarks preceding (4.6) imply that r and v are conjugate. However,
(a, bb, r) centralizes v while (a, bb) X (t, r) is a Sylow 2-group of Ca(t, r).
A comparison shows that r and v are not conjugate in Ca(t). Hence y ry
is an involution of QQ(r) QQ’. For x LL, (yx)-r(yx) (r, t) and we
conclude that yx leaves (t, r) and Cq (t, r) invariant. Now

Ca(t, ’) (t, ) X H

where H PSL (2, q) with H (ll L}. Therefore, if t is an element of
order 3 in (zY z Z), H and for some h e H, ta (t). By (4.3),
Ca(, t) T(t, and we conclude that yxh leaves T fixed. Hence

yxh TK(r) and y LL(r).

This implies Ns(QQ(r) QQ(r) and S
We will retain the notation introduced in (4.6) for the Sylow 2-group

S QQ(r). In particular, the involutions v aa and w bb are of im-
portance in the following discussion.

(4.7) The involutions v and are not conjugate m G.

Proof. Let E (t, r, v, w) and notice Ca(E)

_
Ca(t, r) (t, r) X H so

that Ca(E) E. The proof of (4.7) is now identical to (2.2) of [11].

(4.8) The involution is conjugate to r or r.

Proof. If is conjugate to no involution of S QQ, G Ca(t)O (G) by
[3]. In this case P a 0 (G) is a nontrivial normal subgroup of P and we con-
clude Z 0 (G) 1. Consequently, 0 (Cq (t)) contains a nontrivial element
z Z and we conclude that zY 0 (Ca(t)). This implies that (lV ll L) has
a normal subgroup of odd order which is impossible. Hence is conjugate
to an involution of S (t). The remarks preceding (4.6) and the fact that
v and are not conjugate imply that is conjugate to r or tr.
For the remainder of this section let us assume that is conjugate in G to the

involution tr rather than r. This assumption can be made without loss of
generality because the arguments which follow are symmetric in r and r.
Particularly important is the fact that r and tr are in different conjugacy
classes of G. Indeed, we have the following proposition.

(4.9) G has exactly two classes of involutions K and K such that K Ca (t
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consists of classes in Ca(t) represented by and tr and K a Ca(t) consists of
classes represented by r and v.

Proof. This is identical to (2.4) of [11] with the notational change r u.
The structure of SL (2, q) together with the fact that q -k 1 is divisible by 4

implies C (a) (d} where d is an element of L of order q A- 1. Using this
notation we compute Ca (a).

(4.10) Ca (a ) (d)L’, (d) n L (t), [(d), L’] 1.

Proof. The 2-group F (a, d, b) is a subgroup of S of order 16 which
centralizes a. Let W be a Sylow 2-group of Ca (a) containing F and assume
W rs F. Since the center of S is generated by t, [W" F] 2 and W _c Na (F).
Now (a, a’, b, b) is a 2-group of Na(F) and S contains no normal cyclic sub-
group of order 4. This implies that (a, d, b, b) is a Sylow 2-group of Nq (F).
Comparing orders, W and (a, a, b, b) are isomorphic. This is impossible
as the centers of these groups have orders 4 and 2 respectively. We conclude
that F is a Sylow 2-group of Ca (a).

Let A be the largest normal subgroup of Ca (a) of order relatively prime to
3. Clearly A contains a. In addition, Ca(a) is a subgroup of Ca (t) so has
an abelian Sylow 3-subgroup containing Z. This fact, together with
Ca (a, Z) (d) X Z, implies Z is a Sylow 3-group of Ca (a). Furthermore. A
is Z-invariant so that A (d).

Let X Ca(a)/A and notice that (a, a’, b’)- (a, b’)- is a Sylow
2-group of X. Because L n A (t), F is a four-group and

(L) PSL (2, q).

Let D be a subgroup of Ca (a) for which 0 (X) D/A. Then Z n D 1 as
otherwise 0 (X) n (U)- 1. We conclude that D is a 3-group and D __c A.
Therefore, O(X) 1 and, using [6], X is isomorphic to a subgroup of
PrL (2, q) containing PSL (2, q). It follows that LA is a normal subgroup
of Ca(a). Finally, Nq(Z) Cq(Z)K with C(a)aNa(Z) Z<d>IC.
Applying the Frattini argument, Ca (a) <d>L" as desired.
The involution v aa" is centralized by d, r and w bb’. In particular,

C(v, t) n LL’<r> <d, r, w>. Let R <a, a’, tr, w>. It is computed that
(d, r, w> R(d, (d’)’> where (d’, (d’)’> is a normal 2-complement for <d, r, w>.
Keeping this same notation we are able to determine Ca (v,

(4.11) Ca(t, v) <d, ’, w).

Proof. Let R (a, a’, tr, w). As [RI 32 and a Sylow 2-group of G
has order 64 with center of order 2, R is a Sylow 2-group of Ca (t, v). We first
determine N Na(R)n Ca(t, v). For yeN, y-(t)y R (a, d, w).
Furthermore, r and tr are not conjugate so there exists x e LL’(r) for which
(yx)-tr(yx) tr. Hence yx Ca(tr, t) LL(r) and y e LL’(v). Conse-
quently, N

___
<d, r, w) and we have that N has a normal 2-complement B

with N R X B. This implies N’ R’.n R Using a theorem of Griin,
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the focal subgroup R* is the subgroup of R generated by all elements of R
which are conjugate in Ca(t, v) to elements of R’. However, R’ (t, v) and
we conclude R* R’. This implies Ca(t, v) has a normal subgroup X of
index 8 with X n R (t, v) and, by a theorem of Burnside, X has a normal
2-complement E. Clearly E is a normal 2-complement for Ca(t, v) and we
have Ca (t, v) RE, R E 1.
To complete (4.11) it remains to show E (r, d, w). Indeed, the four-

group (r, w) leaves E invariant so that E C(r)C (rw)C (w). Now

Ca(t, r, v)= (t, ) X (dd, w)
so that C(r) ((dd)4). On the other hand, b-l(rw)b tr so b inter-
changes Ca (t, v, rw) and Ca (t, v, r). It follows that

Ca (t, v, rw) (t, rw) X (d-ld", w)
and we compute C(rw) ( (d-d’)4).
We shall now show C(w) 1. Because a interchanges w and wt, a leaves

C(w) fixed. Furthermore, Ca(a) (d)L so Ca(t, v, a) (d, d) and we
compute Ca (t, v, a, w) (t, v). This implies that a induces a fixed-point-free
auotmorphism of C (w) which inverts the nontrivial elements. Similarly, b
interchanges v and vt so leaves (t, v) and Ca(t, v) invariant. In particular, b
leaves E invariant. But [w, b] 1 so b induces an automorphism of C(w).
Now a and b are conjugate by x e T n L so that Ca(b) (d)L. It follows
that Ca (t, v, b) (d) and Ca(t, v, b, w) (t). We conclude that b induces
a fixed-point-free automorphism of C(w) which inverts the nontrivial ele-
ments. Consequently, ab centralizes C(w). However, Ca(t, ab, v) (d)
and Ca(t, ab, v, w) (t). Thus C(w) 1, E C(r)C(rw) (d, (d)’)
and (4.11) now follows.

(4.12) Ca(t) LL’(r),LrL (t), [L,L] 1, L SL(2, q).

Proof. We have seen (4.4) that Ca(t) contains a subgroup LL(r) with the
properties (4.12). We must show that LL(r) coincides with Ca(t). To ac-
complish this we show that LL(r) contains all involutions of Ca(t) and then
apply a Frattini argument.

Let u be an involution of Ca(t) different from and consider the image
of u in the factor group Ca(t)/(t). Because u is conjugate in Ca(t) to
or v, is conjugate to or in Ca(t)/(t). In fact, Ca(t, v) and Ca(t, r) are
not isomorphic so and belong to different conjugacy classes of

Let us assume and are conjugate in Ca(t)/<t). Then (u, r)- is a di-
hedral group with a nontrivial central involution 4, x Ca (t). Thus

-x (t, )

and since r and tr belong to different conjugacy classes of G, x-rx r. We
conclude that x Ca(t, r) and is conjugate to an involution of the 2-group
(t, r, v, w). From (ux)- (xu)-, xu ux or uxt. In the first
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case u Ca(x, t)

_
LL(r) by (4.5) and (4.11). We may therefore assume

uxu xt. Should x be conjugate to r or rt in Ca(t), uxu xt implies r and
tr are conjugate. We conclude that x is conjugate in Ca (t, r) to an involution
of (t, v, w). In particular, x and xt are conjugate in LL(r. Hence for some
y LL(r), (uy)-lx(uy) x so that uy Ca(x, t)

_
LL(r). This implies

u LL(r) in this case as well.
Now let us assume and e are conjugate so that (u, v)- contains an involu-

tion in its center. Then x leaves the four-group (t, v) invariant and (4.11)
implies x e (d, r, w, b). If x is an element of order 4 with x t, u centralizes
x2 and u Ca(, t) LL(r). If x t, x is conjugate in LL(r) to a. But
Ca(a) (d)L so Na(a) (d, b)L and because u centralizes or inverts x,
u e Na(x)

_
LL(r). Consequently we may assume x is an involution of

(d, r, w, b) different from t. In addition we may assume uxu xt as otherwise
u LL(r) as desired. The argument of the preceding paragraph now applies
and we have u LL(r in all cases.
We have shown LL(r) contains all involutions of Ca (t) and since LL(r) is

generated by involutions, LL(r) is a normal subgroup of Ca(t). Finally, T is
a Sylow 3-subgroup of LL(r) and a Frattini argument can be applied to con-
clude

Ca(t) LLir) (Ca(t). Na(T)).

But Ca(t) n Na(T) TK(r) which yields Ca(t) LL(r).
A consequence of (4.12) is the fact that G is a finite group satisfying the

hypothesis of the main theorem of [11]. We conclude G Ca(t)O(G) or
G - PSp4 (q). In the first case P n 0 (G) is a nontrivial normal subgroup of
P and thus Z n 0 (G) 1. However Ca (t) contains no normal subgroup of
odd order. Hence G

_
PSp4 (q) and the proof of Theorem 3 is completed.
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