A CHARACTERIZATION OF THE FINITE SIMPLE GROUPS
PSp,(3™), m ODD

BY
Joun L. HAYDEN

Introduction

The aim of this paper is to characterize the finite simple groups PSps-(3™),
m odd, in terms of the structure of the centralizer of an element of order
3. The groups PSp:(3™) belong to the family of all projective symplectic
groups of dimension 4 over a finite field of ¢ = p" elements where p is an arbi-
trary prime. For odd characteristic these groups have order 3¢'(¢® + 1)-
(¢* — 1) and a Sylow p-subgroup has order ¢*. The center of a Sylow p-sub-
group is elementary abelian of order q and the centralizer in PSp,(g) of each
of t121e nonunit central p-elements of a p-Sylow subgroup is a group € of order
q (g —1).

Although this paper deals extensively with ¢ = 3™, m odd, m > 1, Sections
1 and 2 obtain results for arbitrary odd characteristic. This study is a con-
tinuation of a work by the author in [7] and is very similar in nature to results
obtained for even characteristic by Suzuki [10]. The main result of this paper
is the following proposition:

TaEOREM 3. Let @ be the centralizer in PSps(8™), m odd, m > 1, of an ele-
ment of order 3 lying in the center of some Sylow 3-subgroup. Let G be a finite
group satisfying:

(a) @ contains an element o of order 3 such that Cq(a) ts isomorphic to C.

(b) For all z in the center of C¢(a), Ce(z) = Cq(a).

(¢) Not all central 3-elements belong to the same conjugacy class of G.

Then one of the following cases holds:
1) Cg(a) 78 a normal subgroup of G.
(i) @ is a simple group isomorphic to PSps(3™).

A similar but not identical result has been obtained for PSp,(3) in [7].

Let G be a finite group. A nontrivial proper subgroup D of G is called a
CC-subgroup if D contains the centralizer of each of its nonunit elements.
The methods of this paper use extensively the results on CC-subgroups which
were studied by Herzog in [8]. It is shown that in the simple case of Theorem
3 a group satisfying conditions (a), (b) and (c¢) has a local 3-structure identi-
cal to that of PSp,(3™), modd. This knowledge is then used to determine the
structure of the centralizer of a central involution and the results of Wong [11]
are applied to conclude that G is isomorphic to PSps(3™). In the nonsimple
case it is found that the center of a Sylow 3-group P of G is weakly closed in P.
This is enough information to determine that a Sylow 2-group of G is quater-
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nion or semi-dihedral. The results of Gorenstein and Walter [6], Alperin,
Brauer, Gorenstein [1], and Glauberman [3] are then used to determine the
structure of G.

A more general study of the groups PSps(q), ¢ odd, is found in Section 2.
This section characterizes the local p-structure of groups satisfying the follow-
ing hypothesis:

Hyroruesis A. Let C be the ceniralizer in PSPpy(p™) of an element of order
p > 2 in the center of some Sylow p-subgroup. Let G be a finite group satisfying:

(a) @G contains an element a of order p such that Cq(a) is tsomorphic to C.

(b) For all z in the center of Cg(a), Ca(2) = Cg(a).

(¢) Not all central p-elements belong to the same conjugacy class of G.

It will be shown that groups satisfying Hypothesis A have a Sylow p-group
P of order ¢* and P has a unique elementary abelian subgroup M of order ¢’.
We prove the following proposition.

TueoreMm 1. Let G satisfy hypothesis A. If Ne(M ) in not p-closed, N ¢ (M)
=MJ,MnJ = 1whereJ = F X D, F = PGL(2, q) and D is a cyclic group
of order (g — 1)/2.

The author feels that Theorem 3 can be extended to include the entire
family PSps(p") and that Theorem 1 is the basic foundation for such an ex-
tension. At the moment the proof seems to be limited by the character theory
results on CC-subgroups. A slight modification of the methods in this paper
together with theorems similar to those found in [8] is thought to be sufficient
for such an extension. Moreover, the methods of this paper could possibly
be used to investigate the larger dimensional classical groups.

1. Structure of @

Let ¢ be a power of an odd prime number p.
Setting

we may take PSps(q) as the group of all matrices A of degree 4 with coeffi-
cients in F, such that A'JA = J, where A’ denotes the transpose of A and we
identify two such matrices if they are negatives of each other. Let @ be the
centralizer in PSp,(g) of the element « of order p given by,

1000

L0100
0010f
1001

It is calculated that @ consists of all matrices
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10 00

a 0
) 58S ol

c e F 1

where S = (s;;) is a 2-dimensional matrix of determinant 1, ¢ = bsy — asy,
f = b8y — as.
Let us define L to be the subgroup of € consisting of all matrices (1) for
whicha = b = ¢ = 0. 1n particular,
S e SL(2, q)>

e

and is a subgroup of @ isomorphic to SL (2, ¢).

The mapping of € which sends every element of @ to the corresponding
element of L is a homomorphism of € whose kernel is a p-group of order
¢’ and exponent p. Denote by U the kernel of this homomorphism so that

1

a 1
U={1ls 0 1

c b —a 1

It follows that @ = UL, UnL = land that | € | = ¢*(¢° — 1). The index
of € in PSp.(q) is (¢ + 1) (¢ — 1) and is a number relatively prime to p
so that @ contains a Sylow p-group of PSpi(g). In fact, a Sylow p-group of
€ has order ¢* and consists of all matrices,

P=(|y 41 0le=t—0dsf=—a

Several subgroups of € will be used in the following sections so they are
listed here for convenience. Define M to be the subgroup of P consisting of all
matrices with a = 0. It is easily verified that M is the unique elementary
abelian subgroup of P of order ¢* and is thus characteristic in P. The center
of P is elementary abelian of order ¢ and is the subgroup of M withd =d = 0.
Denote the center of Pby Z. Since @ = UL and L is isomorphic to SL(2, ¢),
Z coincides with the center of €.

Define K; to be the subgroup of € given by,

10 00
0 ¢ 0 O
K = 00 o0 ?
00 0 1

where ¢ is generator of the multiplicative group of F,. Clearly K, is a cyclic
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group of order ¢ — 1 and contains a unique involution ¢ given by

It is calculated that PK, is the normalizer of P in @ and that C»(t) is a sub-
group T of M of order ¢’ consisting of all matrices of M with b = 0.

2. Structure of N4(M)

Throughout this section let G be a finite group satisfying the following
hypothesis.

Hyporarsis A. Let C be the centralizer in PSpy(p") of an element of order
p > 2 1n the center of some Sylow p-subgroup. Let G be a finite group satisfy-
ing:

(a) @ contains an element a of order p such that Cg(a) vs isomorphic to C.

(b) For all z in the center of Ce(a), Ce(2) = Cq(a).

(¢) Not all central p-elements belong to the same conjugacy class of G.

We will use the properties of € discussed in Section 1 and identify the sub-
groups of € with subgroups of G retaining the same notation given earlier.

(2.1) P is a Sylow p-subgroup of G.

Proof. Let S be a Sylow p-subgroup of G containing P and let « be an ele-
ment in the center of S. The element « centralizes P and thus z ¢ S n Cg ()
= P. 'This implies that « is in the center of P and that S € Ce(z) = C¢(a).
Therefore S = P and P is a Sylow p-subgroup of G.

(2.2) Ne(M)=MJ,MnaJ = 1.

Proof. From (2.1), P is a Sylow p-group of Ne¢(M). Furthermore,
P=AM,AnM = 1, where A is a complement for M of order ¢q. It follows
by a theorem of Gaschiitz that N (3 ) splits over M.

Let N¢(P) = PK, PnK = 1 and choose K so that C4¢(Z)n K = K.
Then K; is a normal subgroup of K and the involution ¢ is in the center of K.
Throughout the remainder of this section we will keep this same notation so
that ¢ is a central involution of K.

(2.3) The group K contains no four-group (t, v) such that ¢t and r are conju-
gate in Ng(M).

Proof. Suppose that (¢, 7) is a four-group contained in K and that r = ¢
for some y e Ng(M). Then is an involution of K — K; and thus acts fixed-
point-free on the nontrivial elements of Z. Furthermore, Cx(r) = T" is an
elementary abelian subgroup of M of order ¢’.

Let I be the subgroup of U containing all elements inverted by ¢ It is
calculated that | 1 | = ¢’ and that I n M is a subgroup of P’ of order ¢. In
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fact, P = (I n M)Z and since I n M is left invariant by (¢, ), = centralizes
no element of P’ not contained in I n M. However, P’ and T" are subgroups
of M of order ¢’ so that | P nT%| > ¢. It follows that P’ nT% = I n M.

On the other hand, I = C;(7) X C;(tr). If r centralized an element = of
I — (InM), rwould centralize [z, I n M] = Z which is not the case. Hence
C:(tr) is a subgroup of I of order ¢ and P = C;(tr)M. It follows that ir
centralizes P/M. We have seen that P’ n T¥ = I n M is a subgroup of order
gsothat M = TYP’. Thus  centralizes M /P’ and, since ¢ centralizes M/P’,
tr centralizes M /P’

This implies that tr stabilizes the normal series P/P' © M/P' D 1 of
P/P’ so that tr centralizes P/P'. From the structure of P, P’ = ®(P) and
we conclude that ¢r centralizes P. This is impossible and the proposition
(2.3) follows.

(2.4) No element of P’ — Z is conjugate to an element of Z.

Proof. Let z be an element of Z and suppose that z is conjugate to an ele-
ment of P — Z. From the structure of PKj, Cex, (@) = Mforallze P — Z
so that x has ¢(g — 1) conjugates in P’ — Z. This implies that all elements
of P' — Z are conjugate and that z is conjugate to an element v of P — Z
which is inverted by ¢. The group M is the unique elementary abelian sub-
group of P of order ¢’ so that z and v are conjugate in Ng¢(M). Let 2’ = v,
y € Ng(M). Then ¢ normalizes C¢(Z”) and the involution yty™ normalizes
C¢(Z) and M. Tt follows that yty™ normalizes Or(Ce(Z)) = U and hence
leaves P = UM invariant.

Thus the involutions yty™ and ¢ belong to PK and for some z ¢ PK,
(xy)t(zy)™ and ¢t are involutions of K conjugate in Nq(M). Using (2.3),
(xzy)t(xy)™ = tand 2y e Co(t). Then (Z)™ = Z'is a subgroup of M cen-
tralized by ¢ This is impossible as Z° contains an element v inverted by ¢.
The proposition now follows.

From (2.2),N¢(M) = MJ, M nJ = 1and J may be chosen to contain K.
The next proposition begins the investigation of the structure of J.

(2.5) If Ne(M) is not p-closed, C;(t) = K.

Proof. Using (2.1), P is a Sylow p-group of Ne¢(M ) and thus Pn J is a
Sylow p-group of J with Sylow p-normalizer (P n J)K. The group N,(Z)
leaves Op(C¢(Z)) invariant and hence normalizes UM = P. Therefore,
N;(Z) = (PnJ)K.

If N;(Z) coincides with J, J = (P nJ)K and P is a normal subgroup of
N e (M) contrary to hypothesis. It follows that J contains an element y such
that Z” is a subgroup of M different from Z. From (2.4) we conclude that for
some z e Z, 2 ¢e M — P’ and, as every element in M — P’ is conjugate in PK;
to an element of T — Z, we may assume 2’ ¢ T — Z, y e J.

Then ¢ centralizes 2¥ and (b) of Hypothesis A implies that ¢ centralizes Z*.



FINITE SIMPLE GROUPS 627

Therefore yty " is an involution of J which centralizes Z and we have
yty~ e (P n J)K;.

Using (2.3), there exists z ¢ P n J for which (y)t(vy)™ = ¢ so that zy e C, (¢).
Then Z®¥ = Z* and we conclude that zy does not normalize Z and, conse-
quently, C;(t) £ K.

The next proposition is most critical in our discussion of the structure of J.
The group TK, is a subgroup of C¢(Z) so that we will describe the action of
K; on T in such a way that 7T is identified with a group of matrices as given in
section 1.

(2.6) If No(M) is not p-closed, [C;(t) : K] = 2. Moroever, for
reC;(t) — K, Z" = {xeT | has (4.1) entry zero}.

Proof. Let Z, and Z; be any two conjugates of Z in G and suppose
ZinZy, % 1. For z € Zy n Z,, condition (b) of Hypothesis A implies that Z,
is the center of Cg(x). Similarly, Z; must be the center of C¢(z) and thus
Zy = Z,. We conclude that distinct conjugates of Z intersect trivially.

By (2.5), C,() contains an element 7 which does not normalize Z. Thus
Z'"C T —Zand T = ZZ'. Let ky be a generator of K; and assume that &,
does not normalize Z°. From the above remarks, Z*'nZ" = 1 and
T = Z'Z™. Let ceF, and let 2 be an element of Z with (4.1) entry c.
Then z = xy for some z e Z, y ¢ Z™'. Since y = w* for some w ¢ Z” and k;
leaves the (4, 1) entry of w fixed, 2w is an element of Z" ith (4, 1) entry c.
We conclude that every element of F, appears as a (4, 1) entry of an element
of Z" and, by a comparison of the number of elements, every element of Z”
has a different (4, 1) entry. Furthermore, for x ¢ 27, 2*1,1 < ¢ < (g — 1)/2
is an element of Zri with the same (4, 1) entry as « but (3, 2) entry multi-
plied by &’. Thus 2*i can not be an element of Z'. We conclude that
Z7% 1 < i < (¢ — 1)/2 are distinct conjugates of Zin T — Z.

For purposes of contradiction let us now assume that the conjugates
Z™i,1 < 1 < (g — 1)/2 are all of the conjugates of Zin T — Z. Foi any
conjugate Z; of Z in M, (2.4) implies that Z; = Zor Z, € M — P'. Fur-
thermore, every element of M — P’ is conjugate in P to an element of T — Z
s0, for a conjugate Z, of Z in M — P’, there exists an element a ¢ P n J such
that ZinT % 1. Let x eZinT. Then ¢ centralizes « and must centralize
Z3 which is the center of Cg(z). This implies that Zi & T — Z and must be
one of the (¢ — 1)/2 conjugates Z*i. It follows that Z; is a conjugate of Z
via the action of PK;. It is calculated that no element of (P n J)K; whose
order is divisible by p can normalize Z™ so that Npg,(Z") = M({¢). Hence
Z" has exactly q(¢ — 1)/2 conjugates in M — Z via the action of PK;. We
conclude that M contains exactly ¢(¢ — 1)/2 + 1 conjugates of Z and calcu-
late | J | = q(¢ — ¢+ 2) | K |/2. The number of conjugates of Zin T — Z
is (¢ — 1)/2 and all occur via the action of C;(¢). Thus,

1C;@) [ = 1K (g +1)/2
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and we conclude that (¢ 4+ 1)/2 divides q(¢* — ¢ + 2)/2. The integers
(¢ + 1)/2 and gq are relatively prime so (g + 1)/2 divides (¢* — ¢ + 2)/2.
However,

ag+1)/2—- (@ —qg+2)/2=q¢-1

so that (¢ + 1)/2 divides ¢ — 1. This occurs if and only if ¢ = 3. The
case ¢ = 3 is exceptional and has been investigated in (2.4) of [7].

As a consequence of the preceding paragraph, we may now assume that
T — Z contains, in addition to the (¢ — 1)/2 conjugates Z”‘l another conju-
gate Z; of Z.

First of all, consider the subgroup V of M containing all elements of M in-
verted by ¢. It is calculated that V is a subgroup of P’ of order ¢ and, as 7
leaves V invariant, every element of the coset Vz, z ¢ Z is conjugate to an ele-
ment of the set V2. Let x, y be two elements of Z™ with the same (3, 2)
entry. Thenay ' eZnZ = lsothatz = y. Thus the elements of Z” have
distinct (3, 2) entries and every element of F, appears as a (3, 2) entry of
some element in Z". Let 2" be an element of Z™ with (3, 2) entry 1 and (4, 1)
entry ¢ so that a typical element of the coset V2" is given by,

1000
0100
2) b 11 0/ beFq.
c b 01
It is calculated that an element of the form (2) is conjugate in PK; to the

(g — 1)/2 elements,

1 0 0O
0 1 00 .
(3) 0 82%’ 1 O ) 1 S 1 _<_ (q - 1)/2'
c—b 0 01

In fact, as b is an arbitrary element of F,, there are (¢ — 1)°/4 elements of
the form (3) each of which is conjugate to an element of the coset Vz. Re-
placing the (3, 2) entry of (2) by ¢, the same argument shows that 7 — Z
contains (¢ — 1)°/4 elements with (3, 2) entries ¢*™, 1 < 7 < (¢ — 1)/2
and each of these elements are conjugate to elements of P' — Z. Counting
the elements of T — Z which belong to the (¢ — 1)/2 conjugate Z"cl there are
exactly ¢ — 1 elements of 7 — Z which do not belong to one of the con]ugates
Z'M or are not conjugate to an element of P’ — Z. It follows that Z; must be
the only conjugate of Z in T' — Z distinet from Zf"l 1<1< (g—1)/2

We have shown that T — Z contains (g + 1)/2 conJugates of Z and that
the conjugate Z; does not belong to the orbit of Z™ under the action of K.
Hence K leaves Z, fixed. Furthermore, an earlier argument shows that any
conjugate of Zin M — P’ is conjugate in PKyto Z" or Z;. Using the structure
of P, Nx,(Z:) = MK, so that Z; has ¢ conjugates in M — P’ via the action
of PK; while Z" has g(g — 1)/2 such conjugates. Thus Z; and Z" are not
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conjugate in PK; and M — P’ contains exactly ¢(g + 1)/2 conjugates of Z.
This implies that M contains exactly (¢* + ¢ + 2)/2 conjugates of Z and we
calculate | J | = ¢(¢ + ¢+ 2) | K |/2.

If C, (t) acts intransitively on the set {Z, 2, Z4}, | C;(¢) | = (g+ 1) | K |/2
and (¢ + 1)/2 divides (¢ + ¢ + 2)/2 which is impossible. It follows that
C;(¢) acts transitively and that |C;(¢)| = (¢ + 3)| K |/2. This implies
that (¢ + 3)/2 divides q(¢* + ¢ + 2)/2 which occurs only in the cases
g = 3,5,9. We shall now investigate each of these cases and show that we
have an impossible situation in each case.

Let ¢ = 3. The structure of J given in (2.4) of [7] shows that T — Z
contains exactly one conjugate of Z, a contradiction to the existence of the
(¢ + 1)/2 conjugates Zi, Z*i. If g = 9,|C,(t)| = 6| K| and ¢ centralizes
an element of order three. Thus there exists y € J such that & centralizes an
element of PnJ. However, Pn J is a T.L subset of J. 1ndeed, let S be a
Sylow 3-subgroup of N¢ (M) such that S n P contains an element z not con-
tained in M. From the structure of P, Cx (x) = Z so that Z must coincide
with the center of S. Using the structure of C¢(Z), S contains both U and M
so that S = P. It now follows that & ¢ (P n J)K and, for some ¢ e Pn J,
#* ¢ K. Using (2.3),¢* = t. This is impossible as t'* centralizes an element
of P n J while ¢ inverts the nontrivial elements of P n J.

For g = 5,|C,;()| = 4|K|and | J| = 25| K|. Furthermore, K/K;
induces a group of automorphisms of the cyclic group Z so that K/K, is a 2-
group with | K/K, | < 4. The conjugate Z; of Z is a subgroup of T of order
5 and is left invariant by K so, letting k; be a generator of K; and noticing
that k; centralizes no element of T — Z, k; induces an automorphism of Z;
of order 2. It follows that a generator z of Z is conjugate in K to 2~ and that
| K/Ky! % 1. Hence | K| = 2° or 2. In the latter case J has a Sylow 2-
group of order 2° which is impossible as J is isomorphic to a subgroup of
GL(3,5). Thus|K|=2"and|J| = 5-2". Thisimpliesthat J hasa Sylow
2-group S which is isomorphic to a Sylow 2-group of GL (3, 5) and we may
assume that S contains the 2-group C;(¢). Using [2] and computing the cen-
tralizers in S of non-central involutions, we must have that | C;(t) | = 2° or
2. However, Cs(t) = C,(¢) and is a 2-group of order 2°.  We conclude that
the case ¢ = 5 is impossible.

We have finally shown that for no value of ¢ is it possible for the (g + 1)/2
conjugates Z™i 7, to exist. It follows that Z” is a conjugate of Z normalized
by K, and, from the structure of TKy, Z" = {x ¢ T | z has (4, 1) entry zero}.
More important, r was an arbitrary element of C, (¢) — K so we conclude that
[C;(¢) : K] = 2.

(2.7) Assume Ng(M) is not p-closed. Then K = K1 Kj, [Ky, K3} = 1,
Kin Ki = (t) where 7 is some element of C;(t) — K.

Proof. As a consequence of (2.6), K is a normal subgroup of C;(¢) of in-
dex 2 so that C,(t) = K(r) for some 7 ¢C;(t) — K. This implies that K7
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is a normal subgroup of K which centralizes Z'. Letting k; be a generator of
K, k1 leaves C(Z,t) = Z X L invariant and induces an automorphism of L
which centralizes the Sylow p-subgroup Z' of L and leaves K, invariant.
Hence k1 induces the trivial autmorphism of L (see [9]) and, consequently,
centralizes K;. No element of K, distinct from ¢ centralizes an element of
T — Z so we conclude that K contains the normal abelian group K, K; with
K1 n K; = {.

Furthermore, K/K; acts as a regular group of automorphisms on the non-
trivial elements of Z which implies that | K/Ki| < ¢ — 1. Hence
|[K| < (g — 1)’ and K; K] is a subgroup of K of index at most 2.
If | K| = (¢ — 1)°, K/Ki acts transitively on the nontrivial elements of Z.
This violates (¢c) of Hypothesis A and we conclude K = K; K.

Notice that the structure of K given by (2.7) coincides with the structure
of K in PSps(q). Without condition (c¢) of Hypothesis A, it is possible for
[K : K1 Ki] = 2. Indeed, consider the semi-inner automorphism 6 of PSp.(q)
which interchanges the two central classes of p-elements in PSp4(q) (see [9]).
The extension of PSps(g) by 6 is a group which satisfies (a) and (b) of Hy-
pothesis A with | K | = (¢ — 1)%

By (2.7), K is an abelian group which acts irreducibly on P nJ. Hence
K contains a subgroup K, which centralizes P n J with K/K, cyclic. Since
Kin K, = 1, the structure of K forces

We are now able to prove the main proposition of this section.

TarorEM 1. Let G be a finite group satisfying Hypothesis A. If Ng(M)
is not p-closed, Ne(M) = MJ, Mand = 1 and J = F X D where
F = PGL(2, q) and D is cyclic of order (¢ — 1)/2.

Proof. Let x e J such that Z° is a conjugate of Z which belongs to T’ — Z.
Then ztz™' centralizes Z and is an involution of J nCe(Z) = (PnJ)K,.
For some a ¢ Pn J, (az)t(az)™ = tso that ax ¢ C,(t). However, C,(t) has
K as a subgroup of index 2 which implies that Z* = Z". Since Z* = Z%,
Z® = Z' and we conclude that T — Z contains the unique conjugate Z'.
Furthermore, for any conjugate Z; of Z which belongs to M — T, there exists
aePnJ for which Zin T = 1. Let x ¢ Zi n T and notice that ¢ centralizes
z and must consequently centralize Z1 which is the center of Co(z). Hence
Zi € T — Z and we have Z;y = Z'. This proves that Z, Z™, where a ranges
over the ¢ elements of P n J, are the distinct conjugates of Z in M. Thus,
[J:(PnJ)K] = q+ 1and it follows that PnJ, (PnJ)* aePnJ are
the ¢ + 1 Sylow p-groups of J.

Let us consider the representation of J as a permutation group of its ¢ 4+ 1
Sylow p-subgroups. Clearly (P n J)K is the subgroup of J fixing a letter and
K fixesbothPnJ and (PnJ). Forl <i<gq—1,aePnJ, kyaki =0,
(PnJ)* = Z™. Hence, as k; acts transitively on the nontrivial elements of
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P n J, K acts transitively on the remaining ¢ — 1 letters (Pn J)*, a e Pn J,
a#= 1

Let D be the subgroup of J fixing three Sylow p-groups. Assuming D
fixes PnJ and (PnJ), Dis a subgroup of K. LetdeD and let (Pn J)™,
a # 1be a third conjugate of P n J fixed by D. Then

(ra)d(ra) e (PnJ)K

so that ada™ ¢ (PnJ)YK. Letting dad = b, bePnJ, ada™ = dba™
and we conclude that ba™ ¢ (PnJ)n (PnJ)". Since P n J is a T.I. subset
of J (see case ¢ = 9 of (2.6)), a = b and we have that d centralizes a. We
have seen that K = K; X Cx(PnJ) so that Cx(a) = Cxk(PnJ). This
implies D € Cx(Pn J). Clearly Ck(PnJ) & D sothat D = Cx(Pn J).
This proves that D fixes all Sylow p-subgroups of J and must therefore coin-
cide with the kernel of the representation of J on its Sylow p-groups. Conse-
quently J/D may be viewed as a triply transitive permutation group on ¢ + 1
letters for which the subgroup fixing 3 letters is trivial. A theorem of Zassen-
haus [12] now applies and we have that J/D == PGL (2, q).

We have seen that K = K; X D so that | D | = (¢ — 1)/2. Furthermore,
K = Ki X D as r normalizes K and D. Hence ¥ ki ¢ D for some integer ¢
satisfying (¢, — 1) = 1. From the structure of K, ki %1 has order (¢ — 1)/2
and we conclude that D is a cyclic group of order (¢ — 1)/2.

We now claim that J splits over D. It is computed that

|J| =qlg+ 1)(g — 1)*/2

so that if 7 is an odd prime divisor of | D |, a Sylow r-subgroup of K is a Sylow
r-subgroup of J. Since K is abelian, a Sylow r-subgroup R of J splits over
R n D for all odd prime divisors r of | D |. It remains to consider a Sylow 2-
group Sof J. If g= —1mod 4, (¢ — 1)/2is odd so that SnD = 1. If
g=1mod4,let g — 1= 2%, (2,¢) = 1. The element r normalizes K and
7 ¢ K so that we may assume r has 2-power order. Consider the 2-group
(k3, k™) which is a Sylow 2-group of K of order 2. Since r interchanges
ki, ki, 8 = (ki, ) is a 2-group of order 2 and a comparison of orders shows
that S is a Sylow 2-group of J. Now J is generated by (PnJ)K and
(P n J)" and we have seen that D centralizes (P n J)K. Furthermore, as D
isnormal in J, D centralizes (P n J)" and we conclude that D is a subgroup of
the center of J. In particular, SnD C Cs(7) = ((k1 k1)°, t). A comparison
of orders shows that S n D is generated by (k1 k1)° or ¢(ki ki)°. Let

E = ('K, t).

It is seen that | E | = 2 and that E is normalized by . Thus E(r) is a 2-
group of order 2”* and satisfies E(r)n (SnD) = 1. Thus 8 = E(r) X
(Sn D) and S splits over Sn D. A theorem of Gaschiitz now applies and we
conclude that J = FD, FnD = 1. As D is in the center of J and
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J/D=PGL?2,q), J=FXD

and the statement of Theorem 1 follows.

3. The nonsimple case
Throughout this section let G be a finite group satisfying Hypothesis B.

Hyroraesis B. @ satisfies (a), (b) of Hypothesis A for p = 3, q¢ = 3",
m odd, m > 1. The subgroup N¢(M) has P as a normal Sylow 3-subgroup.

It will be shown that a group satisfying Hypothesis B is an extension of
Ce¢(Z) by a group of automorphisms of order less than or equal to ¢ — 1.
After a series of lemmas, it is shown that a group satisfying Hypothesis B has
a quaternion or semidihedral Sylow 2-group. This gives enough information
to establish the structure of G.

It is an immediate consequence of Hypothesis B that Ne(M) & No(P).
This fact, together with the fact that M is a characteristic subgroup of P,
implies that N¢(M) = N¢(P). Hence N¢(M) = PK, PnK = 1and K
can be chosen to be a complement for P containing ¢ in its center. Because
Cx(t) = T and T is an elementary abelian 3-group of order ¢* containing Z,
Cq(T) is a subgroup of C¢(Z). It is calculated that Ce(T) = M(t) and we
have that M is a characteristic subgroup of C¢(T'). Therefore M is normal in
Ng(T) and N¢(T) = MK. This implies that 7 is a Sylow 3-subgroup of
Cq(t).

For all nontrivial elements z ¢ Z, C (2, t) = Z X L where L is isomorphic to
SL (2, ¢). Let us identify L with its 2-dimensional matrix representation
over Fyin such a way that 7' n L corresponds to the collection of all matrices

10
()\ 1>, AeF,

and K; = Cx(Z) corresponds to

5 %)

where ¢ is a primitive element of F;. Then any automorphism of L is given
by B — A7'8%°A where A is a nonsingular 2-dimensional matrix over F, and ¢
is an automorphism of F, (see [9]). It is easily calculated that any auto-
morphism of L which centralizes the quaternion group generated by

(1 1 4 .-( 01
T=\1 —1) Y= 1 0

is a field automorphism. In the following series of lemmas let @ be the quater-
nion group generated by = and y. As ¢ is an odd power of 3, 4 is the highest
power of 2 dividing ¢ + 1 so that @ is a Sylow 2-group of L.

(8.1) If Ce(Q) = ZCx(Q), Ca(Q)/(t) ts tsomorphic to PSL (2, g).
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Proof. The involution ¢ is contained in the center of @ so that C¢(Q) is a
subgroup of Cg(t). Also, Ce(¢) has an abelian Sylow 3-group so a Sylow
3-group of C¢(Q) containing Z must centralize Z. Since

Ce(@)nCo(Z) = Z(t),
Z is a Sylow 3-group of C¢(Q).
Suppose that y e N¢(Z) n C¢(Q). Then y induces an automorphism of L
which centralizes Q. From the remark preceding (3.2), y normalizes T n L
and Ki. AsT = (T'nL)Z, y normalizes T so y ¢ TK. Since

TKnNe(Ky) = ZK, yeZK.

Therefore, N¢(Z) n Co(Q) = ZCx(Q).
Let X = Cq(Q)/(t) and let Z be the image of Z in X. For all nontrivial
zel,

Ce@)nCo(z) = Z({t)
so that Cx(2) = Z. Hence Z is a CC-subgroup of X of order ¢. If
Cx@)" =1, Ne(@Z)nCe@) = Z(t)
and Ce(Q) has a normal 3-complement £. Then

E = Huz# Cz(2)

which implies that £ € Z({t). Hence C¢(Q) = Z(¢t) contrary to the hypothe-
sis of (3.1). On the other hand, suppose |Cx(Q)"| = ¢ — 1 so that
| Cx(Q) | = 2(g — 1). Because ¢ — 1 is not divisible by 4, a Sylow 2-group
of Cx(Q) has order 4 and contains the central involution ¢. Let us suppose
that Cx(Q) contains an element 8 of order 4. As g* = t, 8 acts in a fixed-
point-free manner on the ¢ — 1 elements of M inverted by ¢. This implies
that 4 divides ¢ — 1 which is not the case. We may therefore assume that
Cx (Q) contains a four-group (¢, =) and the involution r induces an automor-

phism of L sending
10 4 1 0
A1) 0\

where ¢ is an automorphism of F,. Because ¢ = 3™, m odd, L admits no field
automorphism of order 2. We conclude | Cx(Q)™ | # ¢ — 1.

We have now shown that X contains Z as a CC-subgroup of order ¢ and
[Nx(Z): Z] # 1or ¢ — 1. In addition, Z is not a normal subgroup of X as
otherwise Ce(Q) = ZCx(Q) contrary to hypothesis. By (5.1) of [8],
X =~ PSL(2, q).

As aresult of (3.1) we will now investigate the structure of groups satisfying
Hypothesis C.

Hyporuesis 3. @ satisfies Hypothesis B and C¢(Q) = ZCk(Q).

Groups satisfying Hypothesis C require a rather detailed discussion of their
2-structure. After a series of propositions, it will be shown that no such groups
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can exist. This, of course, implies that a group satisfying Hypothesis B must
have C¢(Q) = ZCx (Q).

(8.2) Let G satisfy Hypothesis C. Then
Ne(@) = (@)QCe(@) or (z,0)Ca(Q)

where x ts an element of T n L which normalizes Q and o ts an tnvolution of
N¢e(Z) with Q{o) a semi-dihedral group of order 16.

Proof. It is seen that N (Q) is the subgroup of L generated by

(10
T=\1 1
and Q. The group Ne¢(Z) n Ng(Q) induces a group of automorphisms of Z
with kernel Z{x)Q and, since N¢(Z) n Ne¢(Q)/Z{x)Q acts regularly on Z,

[Ne(Z)nNe@) : Z(2)Q) < ¢ — L

By (3.1),|Cx(@) ] = ¢ — 150 | (Z@)Q)Cx(@Q) | = | Z)Q | (¢ — 1)/2 and
we conclude (Z{z)Q)Cx (Q) has index at most 2in Ne¢(Z) n N¢(Q).

Let us suppose [N¢(Z) nNe(Q) : (Z(2)Q)Cx(Q)] = 2. Then K/K; acts
transitively on Z so that | K | = (¢ — 1)® and K has a Sylow 2-group of order
4. Thisimplies that K contains an involution = such that (¢, ) is a four group.
Because r does not centralize @,  induces an automorphism of L which comes
from the natural action of GL (2, ¢) on SL (2, ¢) so that L{(r) is isomorphic to
a subgroup of GL (2, q¢). Let o be an appropriate involution of L{r) such that
Q(o) is a Sylow 2-group of L{r). Then Q(c) has order 16 and, by a compari-
son of orders, is isomorphic to a Sylow 2-group of GL (2, q). By [2], Q{(s) is
semi-dihedral and

Ne(Z)nNe(@) = (z,0)QCx(Q).

For y e Ne(Q), Z¥ is a Sylow 3-group of C¢(Q) so for some w ¢ Cq(Q),
Z" = 7. HenceyweNg(Z)nNg(Q)andy e (Ne(Z)nNeg(Q))Co(Q). We
conclude that N¢(Q) = («)QCe(Q) or {(x,d)QCe(Q).

(8.3) Let G satisfy Hypothesis C and W be a Sylow 2-group of Ce(Q).
Then W 1is quaternion or elementary abelian of order 8.

Proof. Let W be a Sylow 2-group of Ce¢(Q). Since a Sylow 2-group of
PSL (2, q) is a four-group, W/(t) is a four-group and | W | = 8. If W contains
no element of order 4, W is elementary abelian as desired. We may therefore
assume that W contains an element a of order 4. Furthermore, the involu-
tions of W/(t) are conjugate in C¢(Q) so W must contain another element b of
order 4 with (@) n (b) = (). Now a and b do not commute as otherwise ab
is an involution conjugate to a or at in Ce(Q). Thus W is nonabelian and
must be quaternion.

We have seen that Cq(Q)/{t) = PSL(2, q) so that Cx(Q)/{t) is cyclic of
order (¢ — 1)/2. By hypothesis (¢ — 1)/2 is odd and it follows that Cx (Q)
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contains an element of order ¢ — 1. Let k. be a generator of Cx (@) and con-
sider the action of k. as an automorphism of L. Since k, centralizes @, k.
sends B — B? where B is any 2-dimensional matrix of L and ¢ is an auto-
morphism of F,. In particular, we have identified T n L with the collection

10
<)\ 1>, NeFq

= (i 9)

On the other hand, # normalizes @ and induces an automorphism of Ce(Q)/{t)
which centralizes the Sylow 3-normalizer ZCx (Q)/(t) and must consequently
induce the trivial automorphism. Let W be any Sylow 2-group of C4(Q).
Then z centralizes W/{t) and therefore W.

If the involution o exists, Q@(c) is a semi-dihedral group by (3.2). In addi-
tion, ¢ induces an automorphism of C¢ (@) inverting the nontrivial elements of
the Sylow 3-group Z. If W is elementary abelian, W = (¢, r, u) for some in-
volutions 7 and u. Applying a theorem of Gaschiitz, C¢(Q) splits over () so
that Ce(Q) = () X Y, Y = PSL(2, q) and we may assume W n Y = (7, u).
Then ¢ normalizes Y and inverts Z so that Y(s) is isomorphic to a subgroup
of PTL(2, q) containing PSL(2, q) as a subgroup of index 2. Choosing W
appropriately, (r, u, o) is a dihedral group of order 8. If W is quaternion,
W{e)/(t) is isomorphic to a Sylow 2-group of PTL (2, ¢) and is dihedral of
order 8. Let s be an element of W{o) such that s has order 4 in the factor
group W{)/{t). If s* = 1, s is an involution of W and we must have s* = .
This contradicts our choice of s and we have s* = t. Hence W{s) has a maximal
cyclic subgroup of order 8 and since W is quaternion, W{e) is not dihedral or
generalized quaternion. A characterization of such groups [5, p. 193] implies
that W (o) is semi-dihedral.

We are now in a position to determine a Sylow 2-group of G.

(8.4) Let G satisfy Hypothesis C. If a Sylow 2-group W of Ce(Q) s ele-
mentary abelian, QW or QW{s) is a Sylow 2-group of G.

80 k, centralizes

Proof. In the preceding paragraph we noticed that
CG(Q) = (t) X Y: Y = PSL(Z’ Q)

where W = (¢, r, ) and W nY = (7, u). All involutions of ¥ are conjugate
and there exists an element of order 3 which cyclically permutes them. In
fact, Z is a Sylow 3-group of Y so that for suitable choice of W, we may assume
{r, p) is normalized by an element z of Z. Furthermore,

Ne(@)nNe@QW) = (2, 2)QW or (z,2, a)QW

where z € T n L, permutes the subgroups of @ of order 4, and centralizes W.
Let Q = (a,b|a® = b® = t,ab = ba™"). Consider y e N¢(QW) and sup-
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pose @’ = f8, b = hy for f, heQ and B, v € (r, u). Because o’ inverts b",
f and h do not commute. Hence x or 2° interchanges (f) and (h) so that
a* = hB or thB, i e{l, 2}. In the case 8 = v, 8 = ¥ for je{l, 2} and
@' = hy or thy. That is, @ = b or %" and ya'2’y " ¢ No(Q). In par-
ticular, z°2’ normalizes Q. 1n the case 8 = v, a* = hy or thy with ¢ e {1, 2}
and ' = b or #*. Hence 7' leaves Q" invariant. In any case, @” is nor-
malized by an element of the form 2'2’, ¢ 5 0.

It is computed that QW contains 7 quaternion groups normalized by an
element z'2’, 7 5 0. Indeed, let the action of z on (r, u) and z on Q be given
as follows:

2iTr—>u— Tu; Xia—b— ab.

Then xz normalizes each of the quaternion groups @ = @, @ = {(ar, bu),
Qs = (au, bru) and Q, = (arw, br) while z2 leaves Qs = (ar, abu),
Qs = (aru, abr) and Q7 = (au, abur) invariant. Notice that a quaternion
group containing an element of @ or order 4 and normalized by 22, ¢ = 0
must coincide with @ and @ is the only quaternion group normalized by (z).
This proves that the 7 quaternion groups @; are exactly the quaternion sub-
groups left invariant by an element 22/, ¢ = 0.

Now N¢(QW) induces a permutation group on the Q; with (x, 2)QW or
(z, 2, 7)QW the subgroup fixing the letter Q. Hence, if N¢(QW ) acts transi-
tively on the Q;, N¢(QW ) has a subgroup of index 7. However (QW)" = (t)
and W coincides with the center of QW. Therefore any automorphism of QW
of order 7 centralizes W, QW /W and consequently QW. As Cq(QW) = W,
Ng(QW) can contain no element of order 7 and we conclude that N¢(QW)
acts intransitively on the Q.

Let us suppose N¢(QW) = QW or {z, 2, s)QW. Without loss of generality
assume @ and @ are conjugate. Since z transitively permutes @, @; and @
and x permutes @, Qs and @, transitively, @ and s can not be conjugate.
Otherwise N¢ (QW) acts transitively on the @, in contradiction to the previous
paragraph. We see that N¢(QW ) induces a transitive permutation group on
the orbit {Q, Q., Qs, Q4 with kernel QW<(xz). However, let us consider
Cg(xz,t). We have seen that Ng(T') = MK and that TK is a Sylow 3-nor-
malizer of Cg¢(¢). In addition | K/K;| < ¢ — 1 so that K = K K, or
[K : K1 K;] = 2. In both cases K leaves Z and T n L invariant. Now K,
acts -transitively on the nontrivial elements of T n L and Cg(2) = K so it
follows that Cx(xz) = (f) and T(t) is a Sylow 3-normalizer of Cq(zz, t).
Hence C¢(xz, t) has a normal 3-complement E which is left invariant by Z.
We conclude that

EC (TnL){ and Ce(xz,t) = TQ).

Finally, for y e N¢(QW), (x2)" ¢ QW (2z) so that (x2)** = zz or (22)* for some
s eQW. In the first case ys e T{{) n Ne(QW) = (x, 2, t) and y € (z, 2)QW.
In the second case (xz) and (22)” are conjugate so that ¢ must exist. Then
(22)"*" = 2z as ¢ inverts the nontrivial elements of Z and Tn L. We have
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that yso € (&, 2, t) and y € (2, 2, 0)QW. In both cases y normalizes @ a contra-
diction to hypothesis. We conclude N¢(QW) = (x, 2)QW or (z, 2)QW (o).

If o does not exist, N¢(QW) = (z, 2)QW and QW is a Sylow 2-group of G
as desired. We may therefore assume that o exists and consider S = Q(r, 4, 5)
where Q{¢) is semi-dihedral and (r, y, o) is dihedral. Let 7 be the central
involution of W{s). Then 8 = (a, 7) where a is an element of @ or order 4.
Furthermore, Cs(8’) = (s)W where s is an element of Q(¢’) of order 8. Since
every involution of (s)W belongs to W, W is a characteristic subgroup of
(s)W and consequently is characteristicin S. We conclude that Cs(W) = QW
is left invariant by N ¢ (8) and the conclusion of the preceding paragraph yields
that N¢(8) = QW{s). Therefore QW{s) is a Sylow 2-group of G.

(8.5) Let G satisfy Hypothesis C. If a Sylow 2-group of Ce(Q) is quater-
nion, QW or QW {a) is a Sylow 2-group of G.

Proof. Let us first assume that QW is a Sylow 2-group of N¢(Q). We
show that no element of @ of order 4 is conjugate in G to an element of W.
Indeed, suppose y is an element of @ of order 4 and there exists g e G with
¥’ ¢ W. Then Cq(y°) contains Z° and the remarks preceding (3.4) imply that
1’ is centralized by an element z ¢ T n L. A Sylow 3-group of Ce(y) which
contains Z is abelian and is thus a subgroup of Ce(y, Z) = Z(d) where d is an
element of L of order ¢ + 1. Hence Z is a Sylow 3-group of Ce(y). It fol-
lows that 2 is conjugate to an element z ¢ Z. However, « and z are elements of
M where M is the unique abelian subgroup of P of order ¢>. This implies that
y and z are conjugate in Ng¢(M) = PK. Since Z is a characteristic subgroup
of P, this is impossible. The elements of QW of order 4 belong to @ or W so
that N¢(QW ) permutes the elements of @ of order 4 and leaves @ invariant.
Therefore QW is a Sylow 2-group of N¢(QW') and is a Sylow 2-group of G.

On the other hand suppose that QW (s} is a Sylow 2-group of N¢(Q). Let
S = QW{s) and notice that Q(¢) and W{(s) are semi-dihedral groups. Let
z €Q, y e W and suppose 2yo is an element of order 4. Then (z¢)* (yo ) =1s0
that (zo)' eQnW = &). If (zo)* =t, (yo)* = tand (20 )’, (yo)” are elements
of order 4 belonging to Q@ and W respectively. Hence (zyo)* = (z0)*(yo)®
is an involution of QW different from ¢. When (z¢)* = 1, (yo)* = 1, one of
the elements zo and yo has order 4 which, without loss of generality, we may
assume to be yo. Because W{o) is semi-dihedral, W contains all elements of
W<{o) of order 4. In particular,yoc ¢ W which is not the case. We have there-
fore shown that an element of order 4 which belongs to 8 — QW has as its
square an involution of QW different from ¢. The center of S is generated by ¢
so that no element of Q of order 4 is conjugate in N¢(S) to an element of
S — QW. Thus N¢(S) permutes the elements of QW of order 4 and, as
no element of order 4 in Q is conjugate to an element of W, N4(S) leaves Q
invariant. This implies N¢(S) = S and we conclude that S8 = QW{s) is a
Sylow 2-group of G.
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(8.6) If G satisfies Hypothesis B, C4(Q) = ZCx(Q). In particular, no
group satisfying Hypothesis C can exist.

Proof. If @ satisfies Hypothesis C, the structure of a Sylow 2-group of G
is given by (8.4) and (3.5). We will show that in any of these cases ¢ is con-
jugate to no involution of a Sylow 2-group of G other than itself. This im-
plies that G = C¢(t)0(Q). Because Cg(t) has a Sylow 3-group of order ¢*
and a Sylow 3-group P of G containing Z has order ¢*, P n O (@) is a nontrivial
normal subgroup of P and Zn O (@) # 1. Consequently, C¢(Q) has a non-
trivial normal subgroup of odd order which is impossible unless

Ce(Q) = ZCx(Q).

In order to complete the proof of (3.6) it is therefore sufficient to show that
in a group G satisfying Hypothesis C, ¢ is conjugate to no involution of QW or
QW {a) other than itself.

Let us assume that W is elementary abelian and that QW is a Sylow 2-group
of G. As W coincides with the center of QW and contains all involutions, fu-
sion of involutions is controlled by N¢(QW ). However, Ng(QW) = (x, 2)QW
as seen in (3.4) so that ¢ is conjugate to no involution of QW — (¢).

We may now let QW (o) be a Sylow 2-group of G with W elementary abelian.
Let W = (i, v, u) so that (r, u, o) is dihedral of order 8. Every involution zyo,
T eQ,y e (r,p) satisfies (20)’(yo)® = 1 so that zo and yo are involutions of
Q{o) and (r, u, o) respectively. Since (r, u, o) is dihedral and yo ¢ (7, p),
yo is conjugate in (7, u, o) too. Hence ayo is conjugate to ao, @ e Q. Now
Q(o) is semi-dihedral so has two classes of involutions with representatives ¢
and ¢. We conclude that xzyo is conjugate to ¢ and every involution of
QW (o) — QW is conjugate to . Let r be the central involution of (r, u, o)
so that (¢, 7) is the center of QW<{s). Every involution of QW — (¢) is con-
jugate in Ce(Q) to = or ir, and by (8.4), Ne(QW{(s)) = QW(s). Hence i,
7, t7 belong to distinct conjugacy classes of G.

Let us assume that ¢ is conjugate to an involution of QW {¢) — (t) so that ¢
is conjugate to o and let R be a Sylow 2-group of Cq(s) containing (¢, 7, o).
As o and ¢ are conjugate, G has exactly three classes of involutions K;,
1 = 1, 2, 3 with representatives ¢, r and ¢r. The involutions of (¢, 7, o) are
partitioned among these classes such that Ky = {{, g, {0, iro, 7o}, K, = {7},
K; = {tr}. Letting E = Ng{i, 7, 0), E centralizes (r, t) and, since QW (o) is
a Sylow 2-group of C(t, 7), there exists g e Ce(t, v) for which E° & QW (o).
By our choice of E, E’ centralizes (f, 7, ¢°) and ¢’ is an involution of QW (o)
different from ¢. Now ¢’ is not conjugate to 7 or ¢r so ¢’ ¢ QW. Hence ¢’
is conjugate in QW{(s) to . However, Co(c) n QW{c) = {t, 7, o) so that
| E°| = 8. Hence E = (¢, 7, o) is a Sylow 2-group of C¢(s), a contradiction
to our assumption that ¢ and ¢ are conjugate. We conclude that ¢ is conju-
gate to no involution of QW (o) — (t).

We now consider W to be quaternion. Let @ be generated by elements a;
and b; of order 4 and assume W is generated by corresponding elements as, bs.
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Every involution of QW different from ¢ is given by zy, « ¢ Q, y ¢ W where 2
and y have order 4. Furthermore (z, z) normalizes QW such that z transi-
tively permutes the subgroups of W of order 4 and z centralizes W. Hence
every involution of QW — (t) is conjugate to v = a; a».

In the case that QW is a Sylow 2-group of G and ¢ is conjugate to an involu-
tion of QW — (), t and v are conjugate. Let V be a Sylow 2-group of Cq (v)
containing R = {(ay, as, b1 by). Since R has index 2 in QW, R and R’ are nor-
mal subgroups of V. It is computed that R’ = (t) so that (¢) is left invariant
by V. This implies (¢, v) is contained in the center of V which is impossible
as QW and V are isomorphic. We conclude that ¢ is conjugate to no involution
of QW — (t).

Finally, let us consider the case when W is quaternion and QW<{s) is a Sylow
2-group of G. An involution ywe, ¢ €Q, w ¢ W satisfies (yo)*(wo)* = 1 so that
yo and wo areboth elements of order 4 or both involutions. If we has order 4,
wae W because W contains the elements of order 4 in W(s). Thuswe is an
involution of W{c) different from ¢ and is conjugate in W{(¢) to ¢. This im-
plies ywo is conjugate to an involution of Q(¢) different from ¢. But Qo) is
also semi-dihedral so that ywo is conjugate to ¢. This proves that every in-
volution of QW {c) — {t) is conjugate to o orv. The centralizer of v in QW (s is
R = (a1, Gz, by by, ¢) which has index 2 in QW (s). Furthermore, R’ = {t) so
that the argument of the preceding paragraph implies ¢ and » are not conju-
gate.

We may assume, therefore, that ¢ and ¢ are conjugate. Then G has two
classes of involutions with representatives ¢ and v. The involutions of
{t, v, o) are partitioned in such a way that ¢, o, vo, to and vio belong to one class
while v, vt belong to the second class. Let 8 be a Sylow 2-group of Ce(o)
containing (¢, v, o) and consider E = Ng(t, v, o). Clearly E permutes » and vt
so leaves (v, t) invariant and, since QW (o) is a Sylow 2-group of N{, t),
E°’ C QW{o) for some g ¢ G. Now (¢, r,d’) C QW{o) so that ¢° is an involu-
tion different from ¢. Furthermore, v and ¢ are not conjugate and we conclude
that ¢’ is conjugate to o in QW{s). Also, Ce(c) n QW{(e) = (¢, v, ¢) which
implies E’ is conjugate to a subgroup of (¢, v, ). Therefore E = (t, v, o) is
a Sylow 2-group of Ce¢(s). We conclude that ¢ and ¢ are not conjugate.

(8.8) If G satisfies Hypothesis B, a Sylow 2-group of G is quaternion of order
8 or semi-dihedral of order 16.

Proof. From the beginning remarks of this section, Ce(z, t) = ZL for
zeZ and N¢(P) = PK where K is a complement of P containing £ in its cen-
ter. Consider y e Ne(Z) n Cq(t). For z e Z, 2¥ and z are conjugate in K so
there exists k ¢ K such that 2* = z. Hence yk ¢ ZL and y e ZLK. We con-
clude that N¢(Z)nCe(t) = ZLK.

Let us suppose [ZLK: ZL] is odd. It follows that @ is a Sylow 2-group of
ZLK and by (3.6), Ce(Q) = ZCx(Q). Hence N¢(Q) & ZLK and Q must be
a'Sylow 2-group of G.
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If [ZLK: ZL] is even, K/K, induces a regular group of permutations of the
nontrivial elements of Z with | K/K; | even. Since ¢ — 1 is not divisible by 4,
K has a Sylow 2-group of order 4. Thus K contains an involution r different
from ¢ and 7 induces a nontrivial outer automorphism of L of order 2. Hence
L(r) is isomorphiec to a subgroup of GL (2, q) containing SL (2, ¢) as a subgroup
of index 2. Letting o be an appropriate involution of GL (2, ¢) which nor-
malizes @, @(¢) is isomorphic to a Sylow 2-group of GL (2, ¢). In particular,
Q(o) is semi-dihedral of order 16 and is a Sylow 2-group of ZLK. Now @ is
a characteristic subgroup of Q(c) so that N¢(Q(s)) € N¢(Q). However,
N¢(Q) & ZLK and we conclude Q(¢) is a Sylow 2-group of G.

(3.9) If G satisfies Hypothesis B, Cq(t) = ZLK.

Proof. By (3.8), @ or Q{(o) is a Sylow 2-group of Ce(t). Hence
X = Cg(t)/{t) has a dihedral Sylow 2-group. As X involves PSL (2, ¢), [6]
implies X/0(X) is isomorphic to a subgroup of PTL(2, ¢) containing
PSL (2, ¢). Let D be the largest normal subgroup of C4(¢) of odd order.
Then C¢(t)/D has a Sylow 3-group of order gso | TnD | = ¢ Now L has no
normal subgroup of odd order which implies 7'n D contains no element of
T nL. Furthermore, K; acts }-transitively on the nontrivial elements of
T n L so that D can contain no element of T' — Z. Otherwise D would contain
an element of T n L which is not the case. We conclude that DnT = Z
and that Z is a Sylow 3-group of D. Moreover, Cp(Z) = Z so that Z is a
CC-subgroup of D. If Z is not a normal subgroup of D, (4.4) of [8] implies
| D| is even. We conclude that Z is characteristic in D and consequently
normal in Ce¢(t). Hence C¢(t) = ZLK.

Tueorem 2. If G satisfies Hypothesis B, G = C4¢(Z)K.

Proof. 1f Q is a Sylow 2-group of G, ¢ is the unique involution of @ and [3]
implies @ = C¢(t)0(@). Hence PnO(G) = 1 and | O(G) | is divisible by 3.
Let A be a minimal characteristic subgroup of O(G) and assume A4 is a 3'-
group. As A is left-invariant by Z, A is a subgroup of C¢(Z) which is im-
possible. This implies that A is a normal subgroup of P and AnZ = 1.
Let 2z ¢ A n Z and consider g ¢ G. Then 2° ¢ A n Z as 2 is conjugate to no ele-
ment of P — Z and there exists k ¢ K such that 2* = 2z This implies
geCe(Z)K and G = C4(Z)K as desired.

We may now assume that Q{c) is a Sylow 2-group of G. If o and ¢ are not
conjugate, @ = C¢(t)0(G) and the argument of the preceding paragraph ap-
plies. Thus, let ¢ and ¢ be conjugate. We may further assume O(G) = 1
for otherwise (¢ contains a normal 3-subgroup 4 such that A nZ = 1. Propo-
sition 2, p. 15 of [1] may now be used to conclude that G contains a normal
subgroup X of odd index with X a simple group with Sylow 2-group Q(c).
Clearly Cx(¢) contains L{a) so that P n X is a nontrivial normal subgroup of
P. Consequently, Zn X » 1and since Cx(t) & ZLK, Zn X is a normal
subgroup of Cx(¢). An application of the first main theorem of [1] implies
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Z n X is a subgroup of the center of Cx (¢) contrary to the fact that ¢ inverts
the nontrivial elements of Zn X. We conclude that ¢ and ¢ can not be con-
jugate and G = C¢(Z)K as desired.

4. The structure of Cq(f)

Throughout this section let G' be a group satisfying Hypothesis A for the
prime p = 3 and ¢ = 3", m odd, m > 1. We will prove the following main
proposition.

THEOREM 3. Let @ be the centralizer in PSps(8™), m odd, m > 1 of an ele-
ment of order 3 lying in the center of some Sylow 3-subgroup. Let G be a finite
group satisfying:

(a) @ contains an element o of order 3 such that Cq(a) s <somorphic to €.

(b) For all 2 in the center of Ce(a), Ce(2) = Cq(a).

(¢) Not all central 3-elements belong to the same conjugacy class of G.

Then one of the following cases occurs:
(i) Cg(a) 78 a normal subgroup of G.
(ii) G s a stmple group isomorphic to PSp,(3™).

Let G be a group satisfying (a), (b) of Theorem 3. The results of Section
8, particularly Theorem 2, imply that we may assume N¢ (M) is not 3-closed.
Otherwise C¢(a) is normal in G and we are in case (i) of the above theorem.
Hence the results of Section 2 are valid and the structure of N¢ (M) is given by
Theorem 1. Since ¢ is an odd power of 3, ¢ 4+ 1 is divisible by 4
with ¢ + 1 = 4e, (2,¢) = 1. We retain this notation throughout the section.

(4.1) Ng(T)nCqe(t) = TK(r) where  is an tnvolution of Ng(M).

Proof. We have seen that T is an elementary abelian group of order ¢’
centralized by ¢ which contains Z. Hence Co¢(T) = M(t). Clearly M is
characteristic in C¢ (T') so that N¢(T) C Ne(M). From (2.6),

[Ne(T)nNe(M): MK] = 2

so that Ng¢(T)n Ne¢(M) = MK(r) where 7 is an involution which centralizes
¢t but does not normalize Z. Thus

No(T) = MK(r) and N¢(T)nCe(t) = TK(r).

As a result of (2.7), the structure of K is given by K = K; Kj, [K;, Kj] = 1,
K; n Ki = (t) and 7 is the same involution which appears in the statement
of (4.1). Now Z" is the unique conjugate of Z in T — Z and is normalized
by Ki. Since a generator k; of Ky has order ¢ — 1, k{™ " = {. Furthermore,
no element of K; different from ¢ centralizes an element of 7 — Z so that K,
induces a group of automorphisms of Z” which partitions the nontrivial ele-
ments into two orbits of length (¢ — 1)/2 with representatives 2’, 2™ for some
zeZ. Similarly, K; partitions the nontrivial elements of Z into two orbits
of length (¢ — 1)/2 such that z and 2™ lie in different orbits. Thus the action
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of K is determined on 7' and we compute for any z e Z, z 5 1,
Coe(@)nTK(r) = T{), Ce¢(Z)nTK(r) = T, 7).
(4.2) ForanyzeZ, Co(@'2,t) = T{).
Proof. The above remarks imply that 7'(t) is a Sylow 3-normalizer of
Ce(27'7, t) so that Ce(27'7, t) has a normal 3-complement B such that
Ce(z7,t) = TB, TanB = 1. By hypothesis, Z is a noncyclic elementary

abelian 3-group so that B = J]..z# Cs(z). However, C5(2) S Z X L and
it is seen that C (2) = (t) for all z ¢ Z¥. Hence B = (t) and we have

Ce(Z7,t) = T().
43) ForzeZ,Cq(zd,t) = T, 7).

Proof. We have seen that T'(t, ) is a Sylow 3-normalizer of Cq (22", t) and
it is calculated that (22" | z € Z) is in the center of T'(, 7). Applying a theorem
of Griin, C¢ (22", t) has a normal subgroup R of index g such that

RnT = (7% |zeZ).
Let X = R/({t) and consider the image (RnT)  of RnT in X. Since

Cr(y) = (RaT){®) for all yeRnT, (RnT)  is a CC-subgroup of X.
Furthermore, Ce (22", ¢, Rn T) = Cq(z, 22", t) = T(t) so that

NeRnaT)nCe(z,t) = T, 7).
We conclude that Nx(RnT) = (Rn T){i, ) and consequently,
Nx(RaT) = (BaT)m))".

Thus (Rn T) hasindex 2in Nx (R n 7)™ and Theorem 4.4 of [8] now applies.
We conclude that (R n T')™ is a normal subgroup of X so that

R=RnT)t ) and Ce(,t) = T{, 7).

Section 1 of [11] shows that the structure of the centralizer of a central in-
volution in PSp4(g) to have (as a normal subgroup of index 2) a subgroup
which is the central product of two copies of SL(2, ¢). In fact, if C is the
centralizer of a central involution # of PSpi(g), C = LjLy(r) where
[Ly, Ly) = 1, L; =2 SL(2, q), Lin Ly = () and 7 is an involution which inter-
changes L, and L;. In the following proposition we will show that Cea(t)
has a subgroup isomorphie to L; L. { 7o). The remaining part of the section
will be devoted to showing that this subgroup coincides with C¢ (t).

(4.4) Cq(t) contains a subgroup L and an tnvolution r for which
L = SL(2, q), Lol = (), L, L7 = 1.

Proof. We have seen that Ce(z,t) = Z X L with L =2 SL (2, ¢) and that
7 is an involution of C¢(¢) with Z" a Sylow 3-subgroup of L. Let ¢ be an ele-
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ment of order 4 in L which inverts a generator of K;. Then L is the union of
the two double cosets Z'K; and Z"cK;.

Since Kj leaves Z X L invariant, K induces a group of automorphisms of
L which centralizes the Sylow 3-normalizer Z'K. Consequently, K7 induces
a trivial group of automorphisms and [Ki, L] = 1. This implies [K;, L'] = 1.
Furthermore, [Z, L] = 1 so that [Z", L'] = 1 and we conclude that Z'K; cen-
tralizes L'. Because L’ is the union of the cosets ZKi and Z¢ Kj, it now fol-
lows that [L, L'} = [Z"¢K,, Zc'K7). We now apply elementary commutator
relations (see [5, p. 18]) to conclude [L, L] = [¢, ¢']. In addition, ¢ inverts
K, with ¢® = ¢ so that K centralizes [¢, ¢'].

Let A = [¢, ¢'] and notice that A is a normal subgroup of (L, L). Thus, if
| A| is divisible by 8, Tn A > 1. But K centralizes no element of T other
than the identity. Hence A is a 3'-group. Now A is left invariant by Z and
we conclude that A © L. This implies A € () and ¢ ¢¢ = cor c¢f. In
either case ¢’ induces an automorphism of L which centralizes Z'K,. Therefore
¢ is the trivial automorphism and A = [L, L] = 1. Finally, L n L" is a sub-
group of the center of L so that Ln L™ = (¢).

As aresult of (4.4),[L, L] = Land H = (Il' |l ¢ H) is a subgroup of LL’
isomorphic to PSL (2, ¢). Retaining this notation, we are now able to com-
pute Cq(t, 7).

(4.5) Ce(,7) =, 7) X H,where H = (' |l eL).
Proof. Let D = (22" |zeZ). From (4.3), Ce(D,t) = T, ) and
NeD)nCe(t,7) & Ng(T) = TK(7).
Hence D(k; k1, t, v) is a Sylow 3-normalizer of Cs(t, 7). Let
X = Cqet, )/, 7

and consider the image D of D in X. For yeD, zeCq(t, 7) such that
(xzy)” = (yz)~ we see that z normalizes (y). 1n addition, x leaves

CG(ta Ty y) = D<t’ 7'>

invariant and must leave D fixed. However, no element of (ky k1)~ centralizes
7 so that & e D. This proves that D is a CC-subgroup of X of order ¢ with
|Nx(D)| = q(g — 1)/2. Theorem 5.1 of [8] applies and we conclude that
X =~ PSL (2, q).

Now H = (' |l e H) is a subgroup of C¢(t, 7) isomorphic to PSL(2, q)
with Hn {¢, v) = 1. A comparison of orders implies Ce(t, v) = {, ) X H
as desired.

A Sylow 2-group of L is a quaternion group @ of order 8. Let @ be gener-
ated by elements a and b of order 4 which satisfy o® = b* = ¢, ab = ba™".
Then every involution of LL™ different from ¢ has the form zy where z and y
are elements of order 4 in L and L’ respectively and, as all elements of order 4
in SL (2, ¢) are conjugate, every involution of LL™ — (t) is conjugate tov = aa’.
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On the other hand, for z e L, y e L” and (ayr)* = 1, (zy") (y«') = 1 so that
2y eLnL" = (t). Hence ayr = (xr)y’ = zr& " or ztra . We conclude
that every involution of LL'(r) — LL" is conjugate to = or 7.

(4.6) QQ'(r) is a Sylow 2-group of G.

Proof. Let S be a Sylow 2-group of G which contains the 2-group QQ (r)
and consider y e Ns(QQ"(r)). The center of QQ'{r) is generated by ¢ so that
¥ ry is an involution of QQ"(r) different from ¢. Furthermore, if 'y ¢ QQ’,
the remarks preceding (4.6) imply that r and v are conjugate. However,
(a, bb", ) centralizes v while (aa’, bb") X (¢, =) is a Sylow 2-group of Ce(t, 7).
A comparison shows that  and v are not conjugate in Ce(t). Hence y 'ry
is an involution of QQ(r) — QQ". For z ¢ LL", (yz) ' (yz) € (r, t) and we
conclude that yx leaves (¢, 7) and C¢(t, 7) invariant. Now

Ce(t,7) = (¢, ) X H

where H =2 PSL (2, q) with H = (II' |l ¢ L). Therefore, if 8 is an element of
order 3 in (22" |z € Z), B ¢ H and for some heH, 8" ¢(8). By (4.3),
Ce(B,t) = T(t, r) and we conclude that yxh leaves T fixed. Hence

yaeh e TK(r) and yeLL'(r).

This implies Ns(QQ"(7)) = QQ'(r) and S = QQ(r).

We will retain the notation introduced in (4.6) for the Sylow 2-group
S = QQ(r). In particular, the involutions » = aa” and w = bb" are of im-
portance in the following discussion.

(4.7) The involutions v and t are not conjugate in G.

Proof. Let E = (i, r, v, w) and notice C4(E) € Ce(t, 7) = (¢, ) X H 50
that C¢(E) = E. The proof of (4.7) is now identical to (2.2) of [11].

(4.8) The tnvolution t is conjugate to T or tr.

Proof. If ¢ is conjugate to no involution of 8 — QQ", G = Ce¢(t)0(G) by
[3]. In this case P n O (@) is a nontrivial normal subgroup of P and we con-
clude Zn O(G@) % 1. Consequently, O(Ce(t)) contains a nontrivial element
z ¢ Z and we conclude that 22" ¢ O (C¢(t)). This implies that (I |l € L) has
a normal subgroup of odd order which is impossible. Hence ¢ is conjugate
to an involution of S — (). The remarks preceding (4.6) and the fact that
v and ¢ are not conjugate imply that ¢ is conjugate to = or ¢r.

For the remainder of this section let us assume that ¢ is conjugate in G to the
involution ¢{r rather than r. This assumption can be made without loss of
generality because the arguments which follow are symmetric in r and ¢r.
Particularly important is the fact that r and ¢{r are in different conjugacy
classes of G. Indeed, we have the following proposition.

(4.9) G has exactly two classes of tnvolutions Ky and K, such that Kyn Ce(t)
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consists of classes in Cq(t) represented by t and tr and Kyn Ce(t) consists of
classes represented by r and v.

Proof. This is identical to (2.4) of [11] with the notational change r = w.

The structure of SL (2, ¢) together with the fact that ¢ + 1 is divisible by 4
implies C(a) = (d) where d is an element of L of order ¢ + 1. TUsing this
notation we compute Cg(a).

(#.10) Co(a) = @L', @ nL" = {), (), L'] = L

Proof. The 2-group F = (a, o, b") is a subgroup of S of order 16 which
centralizes a. Let W be a Sylow 2-group of C¢(a) containing F and assume
W = F. Since the center of S is generated by ¢, [W: F] = 2and W & N (F).
Now (a, a’, b, b") is a 2-group of N¢(F) and S contains no normal cyclic sub-
group of order 4. This implies that (a, a’, b, b") is a Sylow 2-group of N4(F).
Comparing orders, W and {(a, a’, b, b") are isomorphic. This is impossible
as the centers of these groups have orders 4 and 2 respectively. We conclude
that F is a Sylow 2-group of Cg¢(a).

Let A be the largest normal subgroup of Cg(a) of order relatively prime to
3. Clearly A contains a. In addition, Cg(a) is a subgroup of C¢(f) so has
an abelian Sylow 38-subgroup containing Z. This fact, together with
Cela, Z) = {d) X Z, implies Z is a Sylow 3-group of C¢(a). Furthermore. A
is Z-invariant so that 4 < (d). ~

Let X = Cg(a)/A and notice that ¥ = {a, a’, b")” = {(a’, )" is a Sylow
2-group of X. Because L'n A = (t), F is a four-group and

(L") = PSL(2, q).

Let D be a subgroup of C¢(a) for which O(X) = D/A. ThenZnD = 1as
otherwise O0(X)n (L")” % 1. We conclude that D is a 3'-group and D C 4.
Therefore, O(X) = 1 and, using [6], X is isomorphic to a subgroup of
PTL (2, q) containing PSL (2, ¢). It follows that L'A is a normal subgroup
of Cg(a). Finally, Ne(Z) = Ce¢(Z)Ki with Ce(a)nNe(Z) = Z(d)K].
Applying the Frattini argument, C¢(a) = (d)L" as desired.

The involution » = ad” is centralized by d, r and w = bb". In particular,
Ce(,t)nLL(r) = (d, 7, w). Let R = {(a, @, tr, w). It is computed that
(d, r,w) = R(*, (d")") where (d*, (d")*) is a normal 2-complement for (d, 7, w).
Keeping this same notation we are able to determine Cg (v, t).

@.11) Colt,v) = {d, 7, w).

Proof. Let B = (a, d, tr, w). As |R| = 32 and a Sylow 2-group of G
has order 64 with center of order 2, R is a Sylow 2-group of Ce¢(t,v). We first
determine N = Ng(R)nCg(t, v). For yeN, y '(¢r)yeR — (a, ', w).
Furthermore, = and ¢{r are not conjugate so there exists x ¢ LL'(r) for which
(yx) "tr (yz) = tr. Hence yz € Ce(tr, t) € LL(r) and y e LL'(7). Conse-
quently, N C {d, 7, w) and we have that N has a normal 2-complement B
with N = R X B. This implies N'nR = R’. Using a theorem of Griin,
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the focal subgroup R* is the subgroup of R generated by all elements of R
which are conjugate in Cg(t, v) to elements of R’. However, R’ = (¢, v) and
we conclude R* = R’. This implies Cg¢(f, ») has a normal subgroup X of
index 8 with X n R = (¢, v) and, by a theorem of Burnside, X has a normal
2-complement E. Clearly E is a normal 2-complement for C¢ (¢, v) and we
have C¢(t,v) = RE,RnE = 1.

To complete (4.11) it remains to show E C (r, d, w). Indeed, the four-
group (7, w) leaves E invariant so that E = Cx(7)Cz(vuw)Ce(w). Now

CO (t, Ty 7)) = <t’ T) x (ddf} w)

so that Cg(r) = ((dd")*). On the other hand, ™ (rw)b = ¢r so b inter-
changes C4(t, v, 7w) and Ce(t, v, 7). It follows that

Ce(t, v, Tw) = {t, Tw) X {d7'd", w)

and we compute Cz(rw) = ((d7'd")*).

We shall now show Cz(w) = 1. Because a interchanges w and wi, a leaves
Cgz(w) fixed. Furthermore, Ce(a) = (d)L" so Ce(t, v, a) = (d, d") and we
compute Cg (¢, v, a, w) = (¢, v). This implies that a induces a fixed-point-free
auotmorphism of Cgz(w) which inverts the nontrivial elements. Similarly, b
interchanges v and vt so leaves (¢, v) and C4 (%, v) invariant. In particular, b
leaves E invariant. But [w, b] = 1 so b induces an automorphism of Cz(w).
Now a and b are conjugate by x ¢ T n L so that Ce(b) = (d°)L". It follows
that Ce(t, v, b) = (d") and Ce(t, v, b, w) = ({). We conclude that b induces
a fixed-point-free automorphism of Cgz(w) which inverts the nontrivial ele-
ments. Consequently, ab centralizes Cz(w). However, Ce(t, ab, v) = (d")
and C4 (¢, ab, v, w) = (t). Thus Cz(w) = 1, E = Cx(r)Cr(rw) = (@, (d")"
and (4.11) now follows.

(4.12) Co(t) = LL(z),LnL = {t),[L,L7] = 1,L = SL(2, q).

Proof. We have seen (4.4) that Cq(¢) contains a subgroup LL'(r) with the
properties (4.12). We must show that LL'(7) coincides with C4(¢). To ac-
complish this we show that LL"(r) contains all involutions of C¢(t) and then
apply a Frattini argument.

Let » be an involution of C¢ () different from ¢ and consider the image %
of u in the factor group C¢(t)/{f). Because u is conjugate in Cq(t) to 7, ¢7
or v, 1 is conjugate to 7 or ¥ in Ce(t)/{t). In fact, Ce¢(t, v) and C4(¢, 7) are
not isomorphic so 7 and 7 belong to different conjugacy classes of Cq(t)/(¢).

Let us assume % and ¥ are conjugate in Cq(¢)/(f). Then (u, 7)~ is a di-
hedral group with a nontrivial central involution &, # ¢ C¢(¢). Thus

e et 1)

and since 7 and ¢r belong to different conjugacy classes of G, ¢ r¢ = r. We
conclude that x e C¢(f, ) and is conjugate to an involution of the 2-group
@, 7, v, w). From (uz)” = (2u)", 2u = wuzx or wxt. In the first
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case u € Cg(x, t) & LL'(r) by (4.5) and (4.11). We may therefore assume
uzu = zt. Should z be conjugate to = or 7t in Ce(t), uru = «t implies » and
tr are conjugate. We conclude that x is conjugate in C¢ (¢, 7) to an involution
of (t, v, w). In particular,  and zt are conjugate in LL'(7). Hence for some
y e LL'(7), (uy) " z(uy) = x so that uy e Ce(z, t) & LL(s). This implies
% ¢ LL'(7) in this case as well.

Now let us assume @ and 7 are conjugate so that (u, v)” contains an involu-
tion £ in its center. Then « leaves the four-group (¢, v) invariant and (4.11)
implies z € (d, 7, w, b). If zis an element of order 4 with a® = t, u centralizes
?and u e Ce(@’, t) & LL'(r). If 2* = t, 2 is conjugate in LL'(7) to a. But
Ce(a) = (d)L" so Ngla) = (d, b)L" and because u centralizes or inverts z,
u eNg(z) € LL™(r). Consequently we may assume z is an involution of
{d, v, w, b) different from ¢. In addition we may assume uau = xt as otherwise
u ¢ LL'(7) as desired. The argument of the preceding paragraph now applies
and we have u ¢ LL'(} in all cases.

We have shown LL'(r) contains all involutions of C¢(t) and since LL'(r) is
generated by involutions, LL'(7) is a normal subgroup of C4¢(¢). Finally, T is
a Sylow 3-subgroup of LL'(r) and a Frattini argument can be applied to con-
clude

Ce(t) = LL'(7)(Ce(t) n Ng(T)).

But Ce(t) n No(T) = TK(r) which yields C¢(t) = LL (7).

A consequence of (4.12) is the fact that G is a finite group satisfying the
hypothesis of the main theorem of [11]. We conclude G@ = C¢(t)O(G) or
G = PSps(q). Inthefirst case P n O (@) is a nontrivial normal subgroup of
P and thus ZnO(G@) # 1. However Cq(t) contains no normal subgroup of
odd order. Hence G =2 PSp.(g) and the proof of Theorem 3 is completed.
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