
THE ALGEBRAIC STRUCTURE OF CERTAIN -SPECT

BY
/. V. 1VIIELKE

Introduction
An t2-spectrum SP () for cohomology with coefficients in a module bundle
is shown to be of the form SP (v) T (R) where T is a homotopy-commu-

tative tensor algebra of group bundles. Furthermore, T is shown to be the
image of the sphere spectrum under a suitable imbedding of the category of
finite cell-complexes in an appropriate category of group bundles. Finally,
an interpretation of the cohomology modules of a fibre space in terms of this
imbedding is given.

1. Compactly generated bundles
Let CG be the category of compactly generated spaces in the sense of [3,

2]. For B CG let C CG B be the category of spaces over B (see [2, p.
46]) and C* be the category of "sectioned" spaces over B (an object of
consists of a C together with a continuous section S of ; a morphism of
C* is a section preserving morphism of C). For , " C* denote by " and
/% " the fibre product and fibre smash product respectively. (The fibre
of /k over b B is the smash product of the fibres of and over b with
respect to the base points S(b) and S (b) respectively. Give /k " the
quotient topology defined by the canonical quotient map /: -. /k ’.
Since q is a relative homeomorphism, /k C* by 2.5 [3]. )
A short ezac$ sequence in C* is a sequence of the form

where idB, i and 4 are induced by i and the projection o b respec-
tively,/ is s closed injection, 8 is s proclusion (see [3, p. 276]) and

image n CI (image .+i) (n 1, 2).

Exactness in GB, the category of compactly generated sbelian group bundles
over (v e G means v e C*, the fibres have sn sbelisn group structure for
which addition and inversion are globally continuous, and v is the 0-section)
is similarly defined. A homotopy in C* (respectively ) is required to be
a map in C* (respectively G) for each e I.

Let C be the category of finite cell-complexes with base point (typically
denoted by *) and base point preserving maps. For X e C the assignment
X -- (X, z), where X denotes the product space over B with fibre X
and Sz (b) (b, *), defines a covariant functor C --* C* for which (X/% Y)
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Xs/ Y where the first/ denotes smash product in C. In view of Prop-
osition 2.2 [3], ( ) is an exact functor.

2. Free group bundles
For e C* define F (), the free abelian group bundle generated by , as

follows" the fibre of F () over b e B is the free abelian group (no topology yet)
generated by the fibre b of over b, where St (b) (identified with 0x for 0 e Z
the integers, x e b) is understood to be the zero of the group. For m _> 0
define m" (Zs ) -- F () by

Cm (nl, xl), (nm, xm) ’ n x,

(Z. ) is the image of S). Clearly the bm’s extend to a map on the topo-
logical sum [J:--0 (Z )m --+ F (). F () is then given the quotient topology
of . That addition, inversion, the projection and the 0-section of F () are
continuous is seen by factoring through the proclusion and applying the
fibred version of 2.2 [3]. One shows F () is compactly generated by showing,
as in 6 [3], that F () has the topology of the union of the compactly generated
spaces Image Cm, m _> 0. Further, for f’ --* in C*, F(f) defined by
n x --* nf(xi) is clearly a morphism F () -- F () in Gs.

2.1. LEMMA. F C* Gs is a covariant, homotopy preserving, exact functor.

Proof. That F is covariant and homotopy preserving is trivial. Exactness
for the most part is direct. That F preserves the properties "closed injection"
and "proclusion" is proved as in 6.7 [3].

3. Tensor products

Define the tensor product (R) , of , , e G as follows" the fibre of (R) ,
over b is the tensor product (no topology yet) of the corresponding fibres of
and. Give (R) the quotient topology of t F (,) --. (R) , the canonical

epimorphism defined by the standard construction of tensor product. That
addition, inversion, the projection and the 0-section are continuous is proved
as in the F () case above. In general (R) , may not be in Gs but the follow-
ing lemma shows it is in Gs when is free.

3.1. LEMMA. If , e C* and "r e Gs then (a) F () (R) , e Gs (b) F (/k )
and F ( (R) F ( ) are naturally isomorphic in Gs.

Proof. (a) Let F ( ;,) be the bundle obtained by replacing Z by , in
the construction of F (), 2. That F( ;) is in Gs follows as in the F ()
case. Part (a) will follow if it is shown that F ( ;) and F () (R) , are iso-
morphic. To this end consider the diagram where

where
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’(... (g,, z,), ) (..., (1, 1, z,, g,), )" (7) --+ (Z,(Z. ))",
U.,,#*’ where, for 1, m nd 1, p,

""(’.. (a,, (n,j, x,i), g,); ...)
(..., ((a,n)g,, x,j), ) (Z(Z )7)" (7)",

; U ((id) (id)) where (and , ) is the map of 2 ssociated to
(resp. 7, F ()7) and 0 is the canonical map associated to the tensor product.

Clearly a, are continuous and form a commutative diagram with a, B respec-
tively. Since the horizontal maps are quotient maps, a and are seen to be
continuous mutual inverses.

,,>

U,,...o (Z,(F()7)) F(F()7) F() @ 7

(b) Letting 7 F () in the above argument shows F (; F ()) and
F () (R) F () are naturally G-isomorphic. Similarly one shows F (; F ())
and F(/ ) are naturally G-isomorphic (see 6.13 [3]).

An exact sequence

4. Principal bundles

0-’*7 >v >7-*0
in G is universal ff v is G-shrinkable (there is a homotopy h" v --* v in G,
with h0 id, hi 0) and is locally split (numerably split) if there is an open
(numerable) cover {U} of 71 and continuous rrmps s" Ua --* v such that
js, idva. This defines j v -* 71 as a universal (local or numerable) princi-
pal 7-bundle in the sense of [4], [5] and [6]. Rell 7 e G is n (L)NDR if
(locally) the 0-section is a deformation retract of n open neighborhood (see
[4]). Write F for the composition F o ( ) C -- C*. If the unit interval
I nd its boundary SO {0, 1} hve base point 0, then 0 ---. SO ---. I ---. I/S
S --* is exact in C.

4.1. LE_. If is an (L)NDR then (a) F,(S) (R) is an (L)NDR and
(b) the sequence

o ) (R). (R). ’) (R). 0

is a universal, numerably (locally) split exact sequence.

Proof. (a) The proof of 3.1 (a) shows F,(S1) (R) and F(S; ) are iso-
morphic. This ltter bundle cn be described by "fibring" the construction
of 9 [3] or 5 [7]. This is done in [4] and part (a) follows from Theorem 1 [4].
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(b) The sequence is exact since ( )B, F, and (R) v are exact (2.1 and the
fact that FB(S1) is flee). Universality follows by noting that if h is a G-
shrinking of F(I) (h exists by 2.1) then h (R) id is a G-shrinking
of Fs(I) (R) . Finally, note that the sequence in question is essentially
sequence 3.1 of [5]. The results of [4] (in particular 3.3 [5]) then imply the
remainder of (b).

5. 2-spectra and tensor algebras
An acyclic resolution of e GB is an exact sequence in G,

O-+’y vo v-+ ..-,
for which 0 --* Image i, --. -- Image i+1 --* 0 is a universal, locally sprit
exact sequence for n > 0. The spectrum of the resolution is the family
{Image/n, n >_ 1}.
The result of applying /kS to the exact sequence

0 "- S
O /0 j

; I... I/S

is the exact sequence

, -, S / _J’..>i/kS S1/kS1--**

(note SO/k X X/k SO X). Iterating this operation generates a family
of exact sequences. These sequences can be joined to produce the canonical
resolu$ion of S"

0--.S io ;I i I/S I/S/S ...
where in k in, n >_ 1.
The family {Image is, n _> 1} associated to this resolution defines the sphere
spectrum SP (recall S S-/k S) [1, pp. 10-11].

5.1. PIOPOSITIOII. (a) The image of the canonical resolution of SO under
the functor Fs is an acyclic resolutwn of Zs with spectrum FB (SP ).

(b) For . an LNDR, the sequence obtained by applying (R) "r to the resolu-
tion in (a) is an acyclic resolution of "r wth spectrum SP (’r ) F(SP (R) %

Proo$. Since ZB is LNDR, part (a) is part (b) when Z. To show
(b) note that 0 -- F(S) @ --* F(/) (R) , --, FB(S) @ --. 0 is a uni-
versal, locally split exact sequence by 4.1 (b) with . Let S be the
sequence of 4.1 (b) with v Fs(S) @ % S is a universal, locally split
exact sequence since is LNDR by 4.1 (a). Further, S is isomorphic to

0 ---. F(S) (R) "r F,(I A S) @ , F(S A S) @ "r 0

in view of 3.1 (b). Iterating this argument produces the result.
For C, , G let H" (; ,) be the nth cohomology group of with co-
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efficients in (see 4 [5]). An n-spectrum for H* (--; ,) on a subcategory
C’ of CB is a family {’n}, n _> 1 ofn e GB such that (1) H(- ;) and [-, ]
([ denotes fibre homotopy classes) are naturally equivalent functors on C’,
n >_ 1 and (2) there is a fibre homotopy equivalence g. . --* t,n+l (n.+l is
the vertical loop space of ,+1, see 6 [6]).
For a free bundle e Gs, let T () be the (positively graded) tensor algebra

of ; i.e., TI() , Tn+() T() (R) . For , eGs denote T() (R) /

by T (; ,). Let P, be the full subcategory of Cs consisting of those with
paracompact total space.

5.2. THEOREM. If " eGB is an LNDR then T(FB(S1); ,) is an n-spectrun
for H* (- ,) on P.

Proof. By 3 [5] and 6.1 [6] the spectrum of an acyclic resolution of , is an
n-spectrum for H* (--; ) on PB. The result now follows from 5.1 (b) in
view of 3.1 (b) and the definition of SP.

If G is a discrete abelian group then, as in 10.6 [3], T. (F (S1); G) is an Eilen-
berg-MacLane space K (G, n). With the understanding that K(G, n) is
represented by Tn (F (S); G) one has"

5.3. COROLLARY. For G a discrete abelian group,

K(G, n) ((R).K(Z, 1)) (R) G.

5.4. Remark. Since S is a topological group, it is not difficult to see that
F(S) can be identified with the group ring, Z(S), of S1. Thus T(F,(S))
is the n-fold tensor product of group ring bundles. Note, however, that the
multiplication of F (S) is homotopically trivial in view of the homotopy type
of the spaces involved.
The above results can be extended to include more general coefficients

(see [6]). If, for example, A is a compactly generated, commutative ring
bundle with unit then for any compactly generated A-module bundle #,

F () (R) ((R) over Z) has an obvious A-module bundle structure. In par-
ticular if is LNDR, T(F(S); #) is a graded A-module bundle and is an
n-spectrum on Ps for cohomology with coefficients in # (H (; #) is now a
module over the ring Horn (, A) (see 4 [6]). Further, if A is LNDR then
T(FB(S); A) is a graded A-algebra. As in 11.11 [3] one sees that the Z-
algebra T T(Fs(S)) is homotopy commutative ( and . o r are
homotopic where r T (R) T -- T+. is the product (isomorphism) in T
andr: T (R) Tn--T. (R) T is the twist map r(x (R) y) (-1)y (R) x)
and consequently T(Fs(SI); A) is a homotopy commutative graded h-alge-
bra. Summing up gives"

5.5. THEOREM. (a) If is an LNDR A-module bundle then the graded
A-module T (Fs (S ); is an n-spectrum for H* (-- # on P.

(b) If A is LNDR then T (Fs (S1); A) is a homotopy commutative A-algebra
and H* (-; A) has the structure of a commutative Hom (-, A)-algebra.
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In view of 5.4 [6], H* (- ) has the following interpretation"

5.6. COROLLARY. For P and an LNDR h-module bundle, H (; )
is in bijection with the se of isomorphisn classes of principal T_(F (S); )-
bundles on , n >_ 1 (here To (F (Sz); ) ).
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