THE ALGEBRAIC STRUCTURE OF CERTAIN Q-SPECTRA

BY
M. V. MIELKE

Introduction

An Q-spectrum SP (1) for cohomology with coefficients in a module bundle
u is shown to be of the form SP(u) = T ® u, where T is a homotopy-commu-
tative tensor algebra of group bundles. Furthermore, T is shown to be the
image of the sphere spectrum under a suitable imbedding of the category of
finite cell-complexes in an appropriate category of group bundles. Finally,

an interpretation of the cohomology modules of a fibre space in terms of this
imbedding is given.

1. Compactly generated bundles

Let CG be the category of compactly generated spaces in the sense of [3,
§2]. For B ¢ CGlet Cy = CG | B be the category of spaces over B (see [2, p.
46]) and C3 be the category of “sectioned” spaces over B (an object of Ca
consists of a £ ¢ C'p together with a continuous section S; of #; a morphism of
C3 is a section preserving morphism of C5). For £, ¢ C3 denote by & and
£ A ¢ the fibre product and fibre smash product respectively. (The fibre
of £ A\ ¢ over b ¢ B is the smash product of the fibres of £ and ¢ over b with
respect to the base points S;(b) and S;(b) respectively. Give £ A ¢ the
quotient topology defined by the canonical quotient map ¢ : & — £ A .
Since ¢ is a relative homeomorphism, ¢ A ¢ e C3 by 2.5 [3].)

A short exact sequence in C3 is a sequence of the form

o

8 PR NP B B

where 8 = id s, % and % are induced by S;, and the projection of & respec-
tively, 72 is a closed injection, 7 is a proclusion (see [3, p. 276]) and

image 7, = 7,31 (image Stpr) (0 =1,2).

Exactness in G5, the category of compactly generated abelian group bundles
over B (y ¢ Gz means v ¢ C3, the fibres have an abelian group structure for
which addition and inversion are globally continuous, and S, is the 0-section)
is similarly defined. A homotopy kin C3 (respectively G») is required to be
amap in C3 (respectively G) for each ¢ e I.

Let C be the category of finite cell-complexes with base point (typically
denoted by *) and base point preserving maps. For X e C the assignment
X — (X3, Sxp), where X5 denotes the product space over B with fibre X
and Sx,; () = (b, *), defines a covariant functor ¢ — C3 for which (X A Y)s
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= X5 /\ Yp where the first /\ denotes smash product in C. In view of Prop-
osition 2.2 [3], ( )z is an exact functor.

2. Free group bundles

For £ ¢ C'y define F (£), the free abelian group bundle generated by &, as
follows: the fibre of F (£) over b € B is the free abelian group (no topology yet)
generated by the fibre & of £ over b, where S; (b) (identified with Ox for 0 ¢ Z =
the integers, x € &) is understood to be the zero of the group. For m > 0
define ¢n: (Z5 £)™ — F (£) by

¢m((n17 xl)) ) (nmr xm)) = Zini Z;

((Z5 £)° is the image of S;). Clearly the ¢»’s extend to a map ¢ on the topo-

logical sum Un—g (Z5 £)" — F(¢). F(£) is then given the quotient topology
of . That addition, inversion, the projection and the 0-section of F (¢) are
continuous is seen by factoring through the proclusion ¢ and applying the
fibred version of 2.2 [3]. One shows F (£) is compactly generated by showing,
asin §6 [3], that F (¢) has the topology of the union of the compactly generated
spaces Image¢n, m > 0. Further, for f: { — £ in Ch, F(f) defined by
> ngxi— > n; f(x;) is clearly a morphism F (¢) — F (¢) in G'5.

2.1. Lemma. F : C3 — G5 is a covariant, homotopy preserving, exact functor.

Proof. That F is covariant and homotopy preserving is trivial. Exactness
for the most part is direct. That F preserves the properties “closed injection”
and “proclusion” is proved as in 6.7 [3].

3. Tensor products

Define the tensor product v ® v of », ¥ € G as follows: the fibre of » ® «
over b is the tensor product (no topology yet) of the corresponding fibres of
vandy. Give r ® v the quotient topology of 6 : F (»y) — v ® v, the canonical
epimorphism defined by the standard construction of tensor product. That
addition, inversion, the projection and the 0-section are continuous is proved
as in the F (£) case above. In general » ® v may not be in G5 but the follow-
ing lemma shows it is in G’ when » is free.

3.1. LemMA. If& ¢ eCrandy eGothen () F(¢) ® yeGs (b) F(EAT)
and F (¢) ® F () are naturally tsomorphic in Gp.

Proof. (a) Let F(%;v) be the bundle obtained by replacing Zz by v in
the construction of F (¢), §2. That F(¢;v) is in G5 follows as in the F (¢)
case. Part (a) will follow if it is shown that F (¢ ;v) and F (¢) ® v are iso-
morphic. To this end consider the diagram where

a(Xgiw) = 2 ® g, B (iz:)) ® g) = 2 (nig)ws,

a = U, o™ where
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a™ (oo (g @), ) = ooy (L1 @ 90), 00) 2 )" — (Zs(Zs E))™,
B = Un,B"" where, fort =1, --- ,mandj =1, ---,p,
B (e s @iy vy (ijy @)y oor , 9i)5 00 0)

= (-, ((@inij)gi, 2i5), -++) 2 (Ze(ZaE)y)" - (&¥)™",

é = Un ((id)¢1(id))™ where ¢1 (and ¢., ¢3) is the map ¢ of §2 associated to
£ (resp. v¢, F (£)y) and 6 is the canonical map associated to the tensor product.
Clearly &, § are continuous and form a commutative diagram with e, 8 respec-
tively. Since the horizontal maps are quotient maps, « and 8 are seen to be
continuous mutual inverses.

U ()™ i s P& )

JiE

U2 o (Z5(Z 8P)" = Ultmo (Zs (Usimo (ZaE")1)™ —2—

Uzme (Zs(FEN)" —Bs FF()) —— F®) ® v

(b) Letting v = F(¢) in the above argument shows F(¢; F(¢)) and
F(t) ® F(¢) are naturally Gg-isomorphic. Similarly one shows F (¢; F(¢))
and F (¢ A\ ¢) are naturally Gz-isomorphic (see 6.13 [3]).

4, Principal bundles
An exact sequence

0__)7_3.__.);'.;)71—)0

in G is universal if v is Gp-shrinkable (there is a homotopy h:: » — v in G
with hy = id, ks = 0) and is locally split (numerably split) if there is an open
(numerable) cover {U,.} of v1 and continuous maps s, : U, — » such that
JSa = idy,. This definesj : » — v1 as a universal (local or numerable) princi-
pal y-bundle in the sense of [4], [5] and [6]. Revall v ¢ Gz is an (L)NDR if
(locally ) the O-section is a deformation retract of an open neighborhood (see
[4]). Write F5 for the composition Fo ( )z : C — C3. If the unit interval
I and its boundary S° = {0, 1} have base point 0, then 0 — §°* — I — I/8° =
S' — « is exact in C.

4.1. Lemma. If visan (L)NDR then (a) F5(S') ® visan (L)NDR and
(b) the sequence

0——)FB(SQ) ® II——)FR(I) ® II—)FB(SI) ® v—0
18 a universal, numerably (locally) split exact sequence.

Proof. (a) The proof of 3.1 (a) shows F5(S') ® » and F(S%; ») are iso-
morphic. This latter bundle can be described by “fibring” the construction
of §9 [3] or §5 [7]. This is done in [4] and part (a) follows from Theorem 1 [4].
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(b) The sequence is exact since ( ), F, and ® » are exact (2.1 and the
fact that F(S') is free). Universality follows by noting that if &, is a G-
shrinking of Fz(I) (h, exists by 2.1) then h; ® id is a Gp-shrinking
of F(I) ® ». Finally, note that the sequence in question is essentially

sequence 3.1 of [5]. The results of [4] (in particular 3.3 [5]) then imply the
remainder of (b).

5. Q-spectra and tensor algebras
An acyclic resolution of v € G5 is an exact sequence in G,

) z
O—-)ly ,yo 1 ;yl-——)-..

’

for which 0 — Image %, — v» — Image ¢,41 — 0 is a universal, locally split
exact sequence for n > 0. The spectrum of the resolution is the family
{Image %,, n > 1}.

The result of applying — AS" to the exact sequence

0—28° —L —2 518 =8 -
is the exact sequence
o8 L IANS 25 SIAS — &

(mote S A X = X A 8 = X). Iterating this operation generates a family
of exact sequences. These sequences can be joined to produce the canonical
resolution of S°:

08— B L7 IAS 2 L IAS'AS —

where ¢, = knjn,n 2 1.
The family {Image 7., n > 1} associated to this resolution defines the sphere
spectrum SP (recall 8" = 8" A §') [1, pp. 10-11].

5.1. ProrosttioN. (a) The vmage of the canonical resolution of S° under
the functor F g is an acyclic resolution of Z g with spectrum F 5 (SP).

(b) For~ an LNDR, the sequence obtained by applying — ® « to the resolu-
tion in (a) s an acyclic resolution of v with spectrum SP(y) = F5(SP) ® 1.

Proof. Since Zp is LNDR, part (a) is part (b) wheny = Zz. To show
(b) note that 0 — F5(8°) ® v — Fs(I) ® v — Fz(S') ® ¥ — 0 is a uni-
versal, locally split exact sequence by 4.1 (b) with » = 4. Let S be the
sequence of 4.1 (b) with » = F3(S') ® v. 8 is a universal, locally split
exact sequence since v is LNDR by 4.1 (a). Further, S is isomorphic to

0->Fs(8)®vy—FsIANS)®y—Fs(SAS)®7y—0

in view of 3.1 (b). Iterating this argument produces the result.
For £ e Cp, v ¢ Gz let H"(¢; v) be the nth cohomology group of ¢ with co-
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efficients in v (see §4 [5]). An Q-spectrum for H*(—; v) on a subcategory
C" of Cpis a family {va}, n > 1 of v, € G5 such that (1) H"(—;v) and [—, vn]
([ ] denotes fibre homotopy classes) are naturally equivalent functors on C’,
n 2 1 and (2) there is a fibre homotopy equivalence g, : vn — Qa1 (Qynqa is
the vertical loop space of v,.1, see §6 [6]).

For a free bundle » € G, let T (v) be the (positively graded) tensor algebra
of v;ie, Ti(») = v, Topa(v) = Tu(») ® v. For y e @z denote T(») ® «v
by T (v;v). Let Pjp be the full subcategory of C5 consisting of those £ with
paracompact total space.

5.2. THEOREM. If~y ¢G5 is an LNDR then T (F5(S');v) is an Q-spectrum
for H*(—; ) on Ps.

Proof. By §3 [5] and 6.1 [6] the spectrum of an acyclic resolution of v is an
Q-spectrum for H*(—; v) on Pp. The result now follows from 5.1 (b) in
view of 3.1 (b) and the definition of SP.

If G is a discrete abelian group then, as in 10.6 [3], T, (F (S'); G) is an Eilen-
berg-MacLane space K (G, n). With the understanding that K(G, n) is
represented by T, (F(S"); G) one has:

5.3. CoroLLARY. For G a discrete abelian group,
K@, n) = (®.K(Z,1)) ® G.

5.4. Remark. Since S is a topological group, it is not difficult to see that
F (S') can be identified with the group ring, Z (8'), of 8. Thus T, (F5(S"))
is the n-fold tensor product of group ring bundles. Note, however, that the
multiplication of F (S") is homotopically trivial in view of the homotopy type
of the spaces involved.

The above results can be extended to include more general coefficients
(see [6]). If, for example, A is a compactly generated, commutative ring
bundle with unit then for any compactly generated A-module bundle g,
F(¢) ® p (® over Zz) has an obvious A-module bundle structure. In par-
ticular if u is LNDR, T (F5(S'); u) is a graded A-module bundle and is an
Q-spectrum on Pj for cohomology with coefficients in g (H"(§; p) is now a
module over the ring Hom (¢, A) (see §4 [6]). Further, if A is LNDR then
T(F5(S"); A) is a graded A-algebra. As in 11.11 [3] one sees that the Zp-
algebra T = T (F5(S')) is homotopy commutative (mm, and mmo 7 are
homotopic where 7mn ¢ Tw ® Ty — Tmyn is the product (isomorphism) in 7
and 7 :Tmw ® Tp = Ty ® This the twist map r(x ® y) = (—1)""y ® )
and consequently 7' (F5(S'); A) is a homotopy commutative graded A-alge-
bra. Summing up gives:

5.5. TrEOREM. (a) If w vs an LNDR A-module bundle then the graded
A-module T (F5(S*); n) is an Q-spectrum for H* (—; u) on Ps.

(b) If A isLNDR then T (F5(S"); A) is a homotopy commutative A-algebra
and H* (—; A) has the structure of a commutative Hom (—, A)-algebra.
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In view of 5.4 [6], H* (—; x) has the following interpretation:

5.6. CorROLLARY. For £ ¢ P and u an LNDR A-module bundle, H" (¢; u)
is in bijection with the set of isomorphism classes of principal Tns(F5(S"); u)-
bundles on £, n > 1 (here To(F5(S'); ) = u).
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