IMBEDDING DELETED 3-MANIFOLD NEIGHBORHOODS IN E^{3}

BY
Tom Knoblauch

The following question was asked by D. R. McMillan: Does every compact set in an orientable 3-manifold have a deleted neighborhood imbeddable in E^{3} ? We will exploit a result of Haken [1] (using a technique developed in [3] and used subsequently in [2]) to answer in the affirmative.

Definitions. We will be working with a compact $X \subseteq M^{3}$, a compact orientable 3 -manifold, and X may be written as $X=\bigcap_{i=0}^{\infty} N_{i}$ where each N_{i} is a polyhedral neighborhood of N_{i+1} and $N_{0}=M^{3}$.

A surface is a closed connected 2 -manifold. A surface S is incompressible in a compact 3 -manifold M^{3} if (1) S is not a 2 -sphere and when $D \subseteq M^{3}$ is a disk with $D \cap S=\operatorname{Bd} D$ then Bd D bounds a disk in S or (2) S is a 2 -sphere that bounds no 3 -cell in M^{3}. Two surfaces S_{1} and S_{2} in a 3 -manifold M^{3} bound a parallelity component of the disjoint collection $\left\{S_{1}, \cdots, S_{m}\right\}$ if $S_{1} \cup S_{2}$ bounds a component U of $M-\bigcup_{i=1}^{m} S_{i}$ and \bar{U} is homeomorphic to the product of S_{1} and an interval. And $\left\{S_{1}, \cdots, S_{r}\right\}$ forms a parallel system in $\left\{S_{1}, \cdots, S_{m}\right\}$ if $S_{i} \cup S_{i+1}$ bounds a parallelity component of $\left\{S_{1}, \cdots, S_{m}\right\}$ in M^{3} for $1 \leq i \leq r-1$.

Suppose there is a disk $D \subseteq M^{3}$ so that, $D \cap \operatorname{Bd} N_{j}=\operatorname{Bd} D$ for some j and $\mathrm{Bd} D$ bounds no disk in $\mathrm{Bd} N_{j}$, and either (1) $D \subseteq\left(N_{j}-N_{j+1}\right)^{-}$or (2) $D \subseteq\left(N_{j-1}-N_{j}\right)^{-}$. Then the collection $\left\{N_{1}, N_{2}, \cdots\right\}$ is changed by a simple move if N_{j} is respectively replaced by (1) $N_{j}-N(D)$ (where $N(D)$ is a regular neighborhood of D in $\left(N_{j}-N_{j+1}\right)^{-}$) or by (2) $N_{j} \cup N(D)$ (where $N(D)$ is a regular neighborhood of D in $\left(N_{j-1}-N_{j}\right)^{-}$.

Consider $\left(N_{1}-N_{n}\right)^{-}$for $n>0$. It is possible to change $\left\{N_{1}, N_{2}, \cdots, N_{n}\right\}$ by a finite number of simple moves to make each component of $\bigcup_{i=1}^{n} \operatorname{Bd} N_{i}$ either incompressible in M^{3} or a 2 -sphere bounding a 3 -cell in M^{3}, because a simple move along a simple closed curve bounding no disk in $\bigcup_{i=1}^{n} \mathrm{Bd} N_{i}$ reduces the sum $\sum_{S \in C}(\chi(S)-2)^{2}$ where C is the collection of surfaces in $\mathrm{U}_{i=1}^{n} \operatorname{Bd} N_{i}$ and $\chi(S)$ is the Euler characteristic of S.

Theorem. Suppose X is a compact subset of M^{3}, a closed orientable 3-manifold. Then there is a neighborhood N of X in M^{3} such that $N-X$ can be imbedded in E^{3}.

Proof. For each positive integer n we define a process for changing ($\left.N_{1}-N_{n}\right)^{-}$by a finite sequence of simple moves to make each surface of $\left\{\operatorname{Bd} N_{1}, \cdots, \operatorname{Bd} N_{n}\right\}$ either incompressible in M^{3} or a 2 -sphere bounding a 3cell in M^{3}. We will denote the set $Y \subseteq N_{1}-N_{n}$ after j steps of Process n by (Y, n, j).

Process n. Step 1. Make each surface of $\mathrm{Bd} N_{n}$ either incompressible in N_{n-1} or a 2 -sphere.

Step 2. Make each surface of $\left(\operatorname{Bd} N_{n}, n, 1\right)$ u $\operatorname{Bd} N_{n-1}$ either incompressible in N_{n-2} or a 2 -sphere.
\vdots
Step j. Make each surface of $\bigcup_{i=n-j+1}^{n}\left(\operatorname{Bd} N_{i}, n, j-1\right)$ either incompressible in N_{n-j} or a 2 -sphere.

Step n. Make each surface of $\bigcup_{i=1}^{n}\left(\operatorname{Bd} N_{i}, n, n-1\right)$ either incompressible in N_{0} or a 2 -sphere.

It is further required that the processes be compatible according to the following condition.
Condition. $\quad\left(\left(N_{1}-N_{n}\right)^{-}, n, j\right)$ is homeomorphic to $\left(\left(N_{1}-N_{n}\right)^{-}, n+1\right.$, $j+1)$.

The following lemma shows that the construction can be performed so that it satisfies the condition.

Lemma 1. Suppose $N_{3} \subseteq \operatorname{Int} N_{2} \subseteq \operatorname{Int} N_{1}$ where N_{1}, N_{2}, N_{8} are compact orientable polyhedral 3-manifolds. Suppose there is a finite sequence of simple moves in N_{1} changing N_{2} to N_{2}^{\prime} so each surface of $\operatorname{Bd} N_{2}^{\prime}$ is either incompressible in N_{1} or a 2 -sphere. Then $\left(N_{2}, N_{3}\right)$ can be changed by a finite sequence of simple moves in N_{1} to $\left(N_{2}^{\prime \prime}, N_{3}^{\prime}\right)$ so (1) each surface of $\mathrm{Bd} N_{2}^{\prime \prime} \cup \mathrm{Bd} N_{8}^{\prime}$ is incompressible in N_{1} or a 2 -sphere and (2) ($\left.N_{1}-N_{2}^{\prime \prime}\right)^{-}$is homeomorphic to $\left(N_{1}-N_{2}^{\prime}\right)^{-}$.

Proof. First make a slight change in the given sequence. The first simple move removes an annulus from $\operatorname{Bd} N_{2}$ and adds two disks D_{1} and D_{2}. Suppose the second move results from a disk D attached to $\mathrm{Bd} N_{2}$ along $\mathrm{Bd} D$. Then before performing this second move, move $\operatorname{Bd} D$ off D_{1} ч D_{2}. Continue in this way; for example, before the m th move, move the curve in question off the $2 m-2$ disjoint disks of previous moves.

The new sequence of moves can now be described. First make each surface of $\operatorname{Bd} N^{8}$ incompressible in N_{2} or a 2 -sphere. The first move of the given sequence results from a disk D attached to $\operatorname{Bd} N_{2}$ along $\operatorname{Bd} D$.

Case 1. If $D \subseteq\left(N_{1}-N_{2}\right)^{-}$then perform the move in $\left(N_{1}-N_{2}\right)^{-}$as in the given sequence.

Case 2. If $D \subseteq N_{2}$ put D in general position with Bd N_{3}. Suppose K is an innermost (in D) curve of $D \cap \operatorname{Bd} N_{3}$. Then K bounds a disk E in $\operatorname{Bd} N_{3}$. Let L be an innermost in E curve of $E \cap D$. Then L bounds subdisks E^{\prime} of E and D^{\prime} of D. Change D by replacing D^{\prime} with E^{\prime} and moving E^{\prime} off $\mathrm{Bd} N_{3}$. Continuing in this way D is made to miss $\mathrm{Bd} N^{3}$. Now perform the simple move by removing a regular neighborhood of D from N_{2}. In either case $\mathrm{Bd} N_{2}$ has an annulus removed and two disks D_{1} and D_{2} added.

Second, make each surface of $\mathrm{Bd} N_{3}$ incompressible in N_{2} or a 2 -sphere. Again think of the second move of the given sequence as resulting from a disk D attached to $\operatorname{Bd} N_{2}$.

Case 1. If $D \subseteq\left(N_{1}-N_{2}\right)^{-}$in the original sequence, then make the simple move along a corresponding disk in the $\left(N_{1}-N_{2}\right)^{-}$constructed in the previous paragraph.

Case 2. If $D \subseteq N_{2}$ in the original sequence, proceed as in Case 2 above to make D miss the disjoint sets $\operatorname{Bd} N_{2}, D_{1}$, and D_{2}. Then remove a regular neighborhood of D from N_{2}.

Continue in this way until all the given moves have been changed and finally make each surface of $\mathrm{Bd} N_{3}$ incompressible in N_{2} (which is now $N_{2}^{\prime \prime}$) or a 2sphere.

Now $\left(N_{1}-N_{2}^{\prime \prime}\right)^{-}$is homeomorphic to $\left(N_{1}-N_{2}^{\prime}\right)^{-}$since things were kept homeomorphic move by move. Take a disk D with $D \cap \operatorname{Bd} N_{2}^{\prime \prime}=\operatorname{Bd} D$ and move $\operatorname{Bd} D$ off the disks from the construction of $\operatorname{Bd} N_{2}^{\prime \prime}$. Then D can be made to miss the disks in the construction of $\mathrm{Bd} N_{2}^{\prime}$ as above (Int D may now hit Bd $N_{2}^{\prime \prime}$). So Bd D bounds a disk in $\operatorname{Bd} N_{2}^{\prime}$, and therefore Bd D bounds a disk in $\operatorname{Bd} N_{2}^{\prime \prime}$. Then each surface of Bd $N_{2}^{\prime \prime}$ is incompressible in N_{1} or a 2sphere. The lemma is proved.

Next notice that for a given $n,\left(\left(N_{1}-N_{n}\right)^{-}, n, 0\right)$ can be reconstructed from $\left(\left(N_{1}-N_{n}\right)^{-}, n, n\right)$ in M^{3} by reversing Process n. That is, perform the simple moves of Process n in reverse order and backwards. If a simple move consists of removing the regular neighborhood of a disk from N_{j}, then the move is performed backwards by adding a 1 -handle to N_{j}. If the move consists of adding a regular neighborhood of a disk to N_{j}, then the move is performed backwards by digging a tunnel in N_{j} (removing a regular neighborhood of a properly imbedded are).

Suppose there is a pair of integers (L, M) such that in the reconstruction of ($\left.\left(N_{L}-N_{M}\right)^{-}, M, 0\right)$ a 1-handle is attached to different boundary components of the same component of $\left(N_{L}-N_{M}\right)^{-}$. Then the original neighborhood is reduced from N_{1} to N_{M}. This is done again if the problem occurs for some (J, K) with $J, K>M$, and the problem occurs only finitely many times by [2, Lemma 3]. The neighborhoods are renumbered so that the reduced neighborhood is now N_{1}. So the following lemma holds for the new neighborhood.

Lemma 2. If $\left(N_{L}-N_{M}, M, M\right)$ is imbedded in E^{3}, then ($N_{L}-N_{M}, M, 0$) can be constructed in E^{3} by adding 1-handles and digging tunnels.

Now fix j. All the incompressible in N_{j} surfaces of

$$
\left(\operatorname{Bd} N_{n} \cup \cdots \cup \operatorname{Bd} N_{j+1}, n, n-j\right)
$$

lie in at most $\alpha\left(N_{j}\right)$ parallel systems in N_{j} where $\alpha\left(N_{j}\right)$ is an integer depending only on N_{j}, by [1, p. 91]. Then all but at most $\alpha\left(N_{j}\right)+\beta_{0}\left(N_{j}\right)+1$ (where $\beta_{0}\left(N_{j}\right)$ is the number of components of N_{j}) of the sets ($\left.\left(N_{i-1}-N_{i}\right)^{-}, n, n-j\right)$ where $j+1 \leqq i \leqq n$ have each component made up of a punctured 3 -cell or a punctured product (a 3 -cell with 3 -cells removed from the interior or the product of a surface and an interval with 3-cells removed from the interior). Allow n to vary. Using the condition, there is an
integer 1_{j} so that if $n>1_{j}$ then each component of ($\left.\left(N_{n-1}-N_{n}\right), n, n-j\right)$ is a punctured 3 -cell or a punctured product. Also notice that

$$
\left(\left(N_{1}-N_{j}\right)^{-}, n, n-j\right)
$$

has only finitely many components. Obviously each component of

$$
\left(\left(N_{1}-N_{n}\right)^{-}, n, n-j\right)
$$

is made up of (1) components of ($\left(N_{1}-N_{n-1}\right)^{-}, n, n-j$) and (2) components of $\left(\left(N_{n-1}-N_{n}\right)^{-}, n, n-j\right)$. Choose $n_{j}>1 j$ so that if $n>n_{j}$ then for each component of ($\left(N_{1}-N_{n}\right)^{-}, n, n-j$), all but at most one of its type(1) components miss $\left(\left(N_{1}-N_{j}\right)^{-}, n, n-j\right)$ and are punctured 3 -cells and punctured products. This proves Lemma 3.
Lemma 3. For each positive integer j there is a positive integer n_{j} so that if $n>n_{j}$ and if $\left(\left(N_{1}-N_{n}\right)^{-}, n, n-j\right)$ is imbedded in E^{8}, then

$$
\left(\left(N_{1}-N_{n+1}\right)^{-}, n+1, n+1-j\right)
$$

can be imbedded in E^{8} by adding collars to some of the boundary components of ($\left.\left(N_{1}-N_{n}\right)^{-}, n, n-j\right)$, removing 3 -cells from the collars, and by adding some new components, all of which are punctured 3 -cells or punctured products. This is done without changing the imbedding of $\left(N_{1}-N_{j}\right)^{-}$.
Now choose $N_{n_{1}}$ to be the N of the conclusion of the theorem. Use Lemma 3 to imbed $\left(\left(N_{n_{1}}-N_{n_{2}}\right)\right.$, $\left.n_{2}, n_{2}-1\right)$ in E^{3}. Use Lemma 2 to imbed $\left(\left(N_{n_{1}}-N_{n_{2}}\right)^{-}, n_{2}, n_{2}-2\right)$ in E^{3}. Use Lemma 3 to imbed

$$
\left(\left(N_{n_{1}}-N_{n_{8}}\right)^{-}, n_{3}, n_{3}-2\right)
$$

in E^{3}. Again use Lemma 2 to imbed $\left(\left(N_{n_{1}}-N_{n_{3}}\right)^{-}, n_{3}, n_{3}-3\right)$ in E^{3}. Continuing in this way, for a given positive integer K there will eventually be an imbedding of

$$
\left(\left(N_{n_{1}}-N_{n_{K}}\right)^{-}, n_{\mathbf{K}}, n_{\mathbf{K}}-K\right)
$$

in E^{3}. Use Lemma 3 to imbed ($\left.\left(N_{n_{1}}-N_{n_{\mathbf{K}+1}}\right)^{-}, n_{\mathrm{K}+1}, n_{\mathrm{K}+1}-K\right)$ in E^{3} without changing the imbedding of $\left(N_{n_{1}}-N_{K}\right)^{-}$. Now use Lemma 2 to imbed

$$
\left(\left(N_{n_{1}}-N_{n_{K+1}}\right)^{-}, n_{K+1}, n_{K+1}-K-1\right) .
$$

Notice the imbedding of $\left(N_{n_{1}}-N_{K}\right)^{-}$is not changed. This construction imbeds $N_{n_{1}}-X$ in E^{8}.

References

1. Wolfgang Haken, "Some results on surfaces in 3-manifolds" in Studies in modern topology, edited by P. J. Hilton, McGraw-Hill, 1968, pp. 39-98.
2. Tom Knoblauch, Imbedding Compact 8-manifolds in E^{s}, Proc Amer. Math. Soc., to appear.
3. D. R. McMillan, Jr., Compact, acyclic subsets of 9 -manifolds, Michigan Math. J., vol. 16 (1969), pp. 129-136.

University of Oklahoma
Norman, Oklahoma

