IMBEDDING DELETED 3-MANIFOLD NEIGHBORHOODS IN E³

BY

TOM KNOBLAUCH

The following question was asked by D. R. McMillan: Does every compact set in an orientable 3-manifold have a deleted neighborhood imbeddable in E^3 ? We will exploit a result of Haken [1] (using a technique developed in [3] and used subsequently in [2]) to answer in the affirmative.

DEFINITIONS. We will be working with a compact $X \subseteq M^3$, a compact orientable 3-manifold, and X may be written as $X = \bigcap_{i=0}^{\infty} N_i$ where each N_i is a polyhedral neighborhood of N_{i+1} and $N_0 = M^3$.

A surface is a closed connected 2-manifold. A surface S is incompressible in a compact 3-manifold M^3 if (1) S is not a 2-sphere and when $D \subseteq M^3$ is a disk with $D \cap S = \operatorname{Bd} D$ then Bd D bounds a disk in S or (2) S is a 2-sphere that bounds no 3-cell in M^3 . Two surfaces S_1 and S_2 in a 3-manifold M^3 bound a parallelity component of the disjoint collection $\{S_1, \dots, S_m\}$ if $S_1 \cup S_2$ bounds a component U of $M - \bigcup_{i=1}^m S_i$ and \overline{U} is homeomorphic to the product of S_1 and an interval. And $\{S_1, \dots, S_r\}$ forms a parallel system in $\{S_1, \dots, S_m\}$ if $S_i \cup S_{i+1}$ bounds a parallelity component of $\{S_1, \dots, S_m\}$ in M^3 for $1 \leq i \leq r - 1$.

Suppose there is a disk $D \subseteq M^3$ so that, $D \cap \text{Bd } N_j = \text{Bd } D$ for some j and Bd D bounds no disk in Bd N_j , and either (1) $D \subseteq (N_j - N_{j+1})^-$ or (2) $D \subseteq (N_{j-1} - N_j)^-$. Then the collection $\{N_1, N_2, \cdots\}$ is changed by a simple move if N_j is respectively replaced by (1) $N_j - N(D)$ (where N(D) is a regular neighborhood of D in $(N_j - N_{j+1})^-$) or by (2) $N_j \cup N(D)$ (where N(D) is a regular neighborhood of D in $(N_{j-1} - N_j)^-$.

Consider $(N_1 - N_n)^-$ for n > 0. It is possible to change $\{N_1, N_2, \dots, N_n\}$ by a finite number of simple moves to make each component of $\bigcup_{i=1}^{n} \operatorname{Bd} N_i$ either incompressible in M^3 or a 2-sphere bounding a 3-cell in M^3 , because a simple move along a simple closed curve bounding no disk in $\bigcup_{i=1}^{n} \operatorname{Bd} N_i$ reduces the sum $\sum_{s \in C} (\chi(S) - 2)^2$ where C is the collection of surfaces in $\bigcup_{i=1}^{n} \operatorname{Bd} N_i$ and $\chi(S)$ is the Euler characteristic of S.

THEOREM. Suppose X is a compact subset of M^3 , a closed orientable 3-manifold. Then there is a neighborhood N of X in M^3 such that N - X can be imbedded in E^3 .

Proof. For each positive integer n we define a process for changing $(N_1 - N_n)^-$ by a finite sequence of simple moves to make each surface of $\{\operatorname{Bd} N_1, \cdots, \operatorname{Bd} N_n\}$ either incompressible in M^3 or a 2-sphere bounding a 3-cell in M^3 . We will denote the set $Y \subseteq N_1 - N_n$ after j steps of Process n by (Y, n, j).

Received November 19, 1973.

Process n. Step 1. Make each surface of Bd N_n either incompressible in N_{n-1} or a 2-sphere.

Step 2. Make each surface of $(Bd N_n, n, 1) \cup Bd N_{n-1}$ either incompressible in N_{n-2} or a 2-sphere.

:

Step j. Make each surface of $\bigcup_{i=n-j+1}^{n}$ (Bd $N_i, n, j-1$) either incompressible in N_{n-j} or a 2-sphere.

Step n. Make each surface of $\bigcup_{i=1}^{n}$ (Bd N_i , n, n-1) either incompressible in N_0 or a 2-sphere.

It is further required that the processes be compatible according to the following condition.

Condition. $((N_1 - N_n)^{-}, n, j)$ is homeomorphic to $((N_1 - N_n)^{-}, n + 1, j + 1)$.

The following lemma shows that the construction can be performed so that it satisfies the condition.

LEMMA 1. Suppose $N_3 \subseteq \text{Int } N_2 \subseteq \text{Int } N_1$ where N_1, N_2, N_3 are compact orientable polyhedral 3-manifolds. Suppose there is a finite sequence of simple moves in N_1 changing N_2 to N'_2 so each surface of Bd N'_2 is either incompressible in N_1 or a 2-sphere. Then (N_2, N_3) can be changed by a finite sequence of simple moves in N_1 to (N''_2, N'_3) so (1) each surface of Bd N''_2 \cup Bd N'_3 is incompressible in N_1 or a 2-sphere and (2) $(N_1 - N''_2)^-$ is homeomorphic to $(N_1 - N'_2)^-$.

Proof. First make a slight change in the given sequence. The first simple move removes an annulus from Bd N_2 and adds two disks D_1 and D_2 . Suppose the second move results from a disk D attached to Bd N_2 along Bd D. Then before performing this second move, move Bd D off $D_1 \cup D_2$. Continue in this way; for example, before the *m*th move, move the curve in question off the 2m - 2 disjoint disks of previous moves.

The new sequence of moves can now be described. First make each surface of Bd N^3 incompressible in N_2 or a 2-sphere. The first move of the given sequence results from a disk D attached to Bd N_2 along Bd D.

Case 1. If $D \subseteq (N_1 - N_2)^-$ then perform the move in $(N_1 - N_2)^-$ as in the given sequence.

Case 2. If $D \subseteq N_2$ put D in general position with Bd N_3 . Suppose K is an innermost (in D) curve of $D \cap \text{Bd } N_3$. Then K bounds a disk E in Bd N_3 . Let L be an innermost in E curve of $E \cap D$. Then L bounds subdisks E' of E and D' of D. Change D by replacing D' with E' and moving E' off Bd N_3 . Continuing in this way D is made to miss Bd N^3 . Now perform the simple move by removing a regular neighborhood of D from N_2 . In either case Bd N_2 has an annulus removed and two disks D_1 and D_2 added.

Second, make each surface of Bd N_3 incompressible in N_2 or a 2-sphere. Again think of the second move of the given sequence as resulting from a disk D attached to Bd N_2 . Case 1. If $D \subseteq (N_1 - N_2)^-$ in the original sequence, then make the simple move along a corresponding disk in the $(N_1 - N_2)^-$ constructed in the previous paragraph.

Case 2. If $D \subseteq N_2$ in the original sequence, proceed as in Case 2 above to make D miss the disjoint sets Bd N_2 , D_1 , and D_2 . Then remove a regular neighborhood of D from N_2 .

Continue in this way until all the given moves have been changed and finally make each surface of Bd N_3 incompressible in N_2 (which is now N_2'') or a 2-sphere.

Now $(N_1 - N_2'')^-$ is homeomorphic to $(N_1 - N_2')^-$ since things were kept homeomorphic move by move. Take a disk D with $D \cap \operatorname{Bd} N_2'' = \operatorname{Bd} D$ and move Bd D off the disks from the construction of Bd N_2'' . Then D can be made to miss the disks in the construction of Bd N_2'' as above (Int D may now hit Bd N_2''). So Bd D bounds a disk in Bd N_2' , and therefore Bd D bounds a disk in Bd N_2'' . Then each surface of Bd N_2'' is incompressible in N_1 or a 2sphere. The lemma is proved.

Next notice that for a given n, $((N_1 - N_n)^-, n, 0)$ can be reconstructed from $((N_1 - N_n)^-, n, n)$ in M^3 by reversing Process n. That is, perform the simple moves of Process n in reverse order and backwards. If a simple move consists of removing the regular neighborhood of a disk from N_j , then the move is performed backwards by adding a 1-handle to N_j . If the move consists of adding a regular neighborhood of a disk to N_j , then the move is performed backwards by digging a tunnel in N_j (removing a regular neighborhood of a properly imbedded arc).

Suppose there is a pair of integers (L, M) such that in the reconstruction of $((N_L - N_M)^-, M, 0)$ a 1-handle is attached to different boundary components of the same component of $(N_L - N_M)^-$. Then the original neighborhood is reduced from N_1 to N_M . This is done again if the problem occurs for some (J, K) with J, K > M, and the problem occurs only finitely many times by [2, Lemma 3]. The neighborhoods are renumbered so that the reduced neighborhood. So the following lemma holds for the new neighborhood.

LEMMA 2. If $(N_L - N_M, M, M)$ is imbedded in E^3 , then $(N_L - N_M, M, 0)$ can be constructed in E^3 by adding 1-handles and digging tunnels.

Now fix j. All the incompressible in N_j surfaces of

$$(\operatorname{Bd} N_n \cup \cdots \cup \operatorname{Bd} N_{j+1}, n, n-j)$$

lie in at most $\alpha(N_j)$ parallel systems in N_j where $\alpha(N_j)$ is an integer depending only on N_j , by [1, p. 91]. Then all but at most $\alpha(N_j) + \beta_0(N_j) + 1$ (where $\beta_0(N_j)$ is the number of components of N_j) of the sets $((N_{i-1} - N_i)^-, n, n - j)$ where $j + 1 \leq i \leq n$ have each component made up of a punctured 3-cell or a punctured product (a 3-cell with 3-cells removed from the interior or the product of a surface and an interval with 3-cells removed from the interior). Allow n to vary. Using the condition, there is an

integer 1_j so that if $n > 1_j$ then each component of $((N_{n-1} - N_n), n, n - j)$ is a punctured 3-cell or a punctured product. Also notice that

$$((N_1 - N_j)^-, n, n - j)$$

has only finitely many components. Obviously each component of

$$((N_1 - N_n)^{-}, n, n - j)$$

is made up of (1) components of $((N_1 - N_{n-1})^-, n, n-j)$ and (2) components of $((N_{n-1} - N_n)^-, n, n-j)$. Choose $n_j > 1j$ so that if $n > n_j$ then for each component of $((N_1 - N_n)^-, n, n-j)$, all but at most one of its type (1) components miss $((N_1 - N_j)^-, n, n-j)$ and are punctured 3-cells and punctured products. This proves Lemma 3.

LEMMA 3. For each positive integer j there is a positive integer n_j so that if $n > n_j$ and if $((N_1 - N_n)^-, n, n - j)$ is imbedded in E^8 , then

$$((N_1 - N_{n+1})^{-}, n+1, n+1 - j)$$

can be imbedded in E^{*} by adding collars to some of the boundary components of $((N_1 - N_n)^-, n, n - j)$, removing 3-cells from the collars, and by adding some new components, all of which are punctured 3-cells or punctured products. This is done without changing the imbedding of $(N_1 - N_j)^-$.

Now choose N_{n_1} to be the N of the conclusion of the theorem. Use Lemma 3 to imbed $((N_{n_1} - N_{n_2})^-, n_2, n_2 - 1)$ in E^3 . Use Lemma 2 to imbed $((N_{n_1} - N_{n_2})^-, n_2, n_2 - 2)$ in E^3 . Use Lemma 3 to imbed

$$((N_{n_1} - N_{n_3})^{-}, n_3, n_3 - 2)$$

in E^3 . Again use Lemma 2 to imbed $((N_{n_1} - N_{n_3})^-, n_3, n_3 - 3)$ in E^3 . Continuing in this way, for a given positive integer K there will eventually be an imbedding of

$$((N_{n_1} - N_{n_K})^{-}, n_K, n_K - K)$$

in E^3 . Use Lemma 3 to imbed $((N_{n_1} - N_{n_{K+1}})^-, n_{K+1}, n_{K+1} - K)$ in E^3 without changing the imbedding of $(N_{n_1} - N_K)^-$. Now use Lemma 2 to imbed

$$((N_{n_1} - N_{n_{K+1}})^{-}, n_{K+1}, n_{K+1} - K - 1).$$

Notice the imbedding of $(N_{n_1} - N_{\kappa})^-$ is not changed. This construction imbeds $N_{n_1} - X$ in E^3 .

References

- 1. WOLFGANG HAKEN, "Some results on surfaces in 3-manifolds" in *Studies in modern* topology, edited by P. J. Hilton, McGraw-Hill, 1968, pp. 39-98.
- 2. TOM KNOBLAUCH, Imbedding Compact 3-manifolds in E³, Proc Amer. Math. Soc., to appear.
- D. R. MCMILLAN, JR., Compact, acyclic subsets of 3-manifolds, Michigan Math. J., vol. 16 (1969), pp. 129–136.

UNIVERSITY OF OKLAHOMA NORMAN, OKLAHOMA 601