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1. Let G be a fuchsian group acting on the unit disk U" z < 1. Let
q _> 1, and, for the moment, an integer. We say the function f, holomorphic
in U, is an automorphic form of weight q with respect to G, if

(1.1) f(Az)(A’(z)) q f(z) for all A G and z U.

The formf is integrable and we writef e Aq(G), if

where R is a fundamental region for G; f is bounded, and we write f . Bq(G) if

The spaces Aq(G), Bq(G), with the indicated norms, are Banach spaces and
were introduced by Bers.

It was conjectured some years ago that Aq(G) c Bq(G), and that the in-
jection is continuous. This has been proved for finitely generated G by a
number of writers; see the bibliography in [4], where still another proof is
given. In [5] we defined a class of infinitely generated groups for which the
conjecture holds.
The purpose of this paper is to improve the result of [5]. Our main result

is

THEOREM 1. Let G be a fuchsian group satisfying the following condition:

(1.2) traceA] 2 >_ m > 0 for all hyperbolic A e G,

where n depends only on G. Then Aq(G) Bq(G) and the inclusion map is
continuous.

The proof proceeds in two stages. First, we make no assumption about G.
At each cusp p of G we erect a distinguished horocycle II and show that in
II [ II, (z) (1 z s) q f(z) is bounded. This is done by utilizing
the Fourier expansion of f at p. Next, about each elliptic vertex of G we
describe a distinguished disk h and prove that in h (J h, is likewise
bounded. Here we use the Taylor series off in a special form.

In the second stage of the proof, we consider the complementary region
2; (II u A)’ II’n h’. It is here that the recent remarkable results of
A. Marden ([7]) are needed. These have the effect of localizing the action of
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the group G in the neighborhood of a point to one element of the group,
which can be handled when is in 2, provided one assumes the trace condition
(1.2).
One can also attempt to define a distinguished neighborhood of a pair of

hyperbolic fixed points and estimate b by expansion in an appropriate Fourier
series. The coefficients dk, ] 0, are easily estimated. But it has not so far
proved possible to treat do in the same way. Thus the method does not suc-
ceed in removing the hypothesis (1.2) from Theorem 1.
The trace condition has a natural geometric interpretation and has been used

by other writers, for example in [1]-[3].

2. Let G be an arbitrary fuchsian group acting on U z < 1; it need not
satisfy the trace condition (1.2). Let q >_ 1. In what follows we shall as-
sume q is an integer; see, however, Section 5. We denote by m a general posi-
tive constant depending at most on G and q. For S c U we write G(S) to
denote {gz g, G, z S} G is the stabilizer of x in G; H {z Im z > 0} is
the upper half-plane; (A, B, is the group generated by A, B, ....

Let p be a parabolic cusp of G, P 1. Define

(2.1) w Tvz =- Tz -i(z A- p)/(z p), z x A- iy, w u A- iv.

Then T maps U on H, carrying p to i. The mapping is isometric if we de-
fine the line element in H as ]dw I/2v, the area element as du dv/4v. Let
G1 TGT-I; G acts on H. If Gv (P), (G) (P), where P" w --* w -t- h.
Here X 2 c(p) I, and c(p) is defined by

z’ Pz, (z’ p)-l (z p)-l A- c(p).

Letf Aq(G) then f(w) =- f(z)(dz/dw) q Aq(G1) moreover

(2.2) (1 z I) a If(z) (2v) a Ill(W) l, [I f llx f !11,

the last symbol being the A(G1) norm of fl.
The Fourier series of fl is

e2.ikwlXfl(W) Z/--1 a
(2.3)

Xa, f,/fl(U + iv)e-2’’ du;

it is well known that a 0 for k < 0. We get

X lal v-e-x dv

d--h/2

ffR n(S(vo), w)vq-lf(w)l du dr, v0 > 0,
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where 1 is a fundamental re.on for , () /2, , and

(,) card, .
The last equality in (.4) follows from the -vace of () and of
the Poncar metric .

It iso that for any fuchsian roup K actg on and contain
translation, c(K) 0, where

(2.5) (K) n{ c O" (ab’cd)eK}.

We obtain a lower bound for c(G).

LEMA 1. co(Gx) 1

Proof. Let (ab Co d) G, then

Hence c k c0.
We now let Rx be the Ford fundamental re,on for Gx situated h the strip

]u X/2, and we let v0 k. Because of mma 1 every isometric ccle
]cw + d] 1 lies below the lhe v k; hence Rx S(). Thus
n(S(k), w) 1. Then (2.4) elds

We have

I X- v’ dr.

An elementary scussion shows that for all values of k d q,

I > mX-k-%.
We then obtain

(2.7) [a < --e’ ii
As an estimate for the Fourier coefficients this is ridiculously large, but
ously enough it suffices for our purpose and the proof is ey.
We now estimate f. In the region v 3X, we get, using k k,

and

<  (v/x 2)-’-’ +  (v/x
giving,

(2.8)
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Define H T-1 {v _> 3h}, a horocycle at p in U. Then by (2.2),

(2.9) (1 z i) q If(z) (2)q x(w) <-- m n f llx m [If [1.
Setting II Up II, the union being over all cusps p, we get

L.MMA 2. If G is any fuchsian group, f e Aq( G), then

(1 z [)q f(z) <- m [] f [[1, z eII.

(3.3)

Hence

3. In this section we treat the elliptic vertices.
Let oo be an elliptic vertex of G of order lo =- l, I0oi < 1, _> 2. Define

(3.1) w Tz Tz (z- )/(z- 1).

T is an isometric mapping of U onto U. Let

GI TGT-, f(w) f(z)(dz/dw) q Aq(G);
then

(3.2) (1 [z [) If(z) ( [w I) [fx(w) 1, llfilx llfx tl.
( T, G1, fl are of course not the same as in Section 2.) Write

G (E), (G)0 (El), El" z e, e e".
Because wqf(w) is invafiant under E we have an expansion of the form

wqf(w bw, f dw.
1 Wqfl( )

(3.4)

where

b p+-a

_
m f(pe’) P dO, w--pe

b J - m ffc (1 w I)q-[f(w) du dr,

c {w < }, J p+-(z p)- dp.

Recall that (Gx)o is generated by an element of order 1.

LEMMA 3. If Co has the meaning of (2.5), then co(G) >_ al if 7,
abs. const.

Proof. Let (" c) eG with[c[ Co. Then

(: :)(;
which implies that

a co.2 sin /l Co, (1 + c)/ [a[ 2-csc/l 1/2 > 1,
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or

We now assume _> 7 + 3/a. We construct the Ford fundamental region
R1 for G1, using for the purpose the sector {I arg w < /l} as a fundamental
region for (G)0 (E). Lemma 3 implies that

(3.5) K {w’l argw < ./l, wl< 1 1/l} R.
U--0 Then n(C, w) _< forw inChoose r 1 1/od, so that C -x K.

U. It follows that the right member of (3.4) is less than

Also

m ffr n(C, w)(1 Iw I)q-21f(w)ldudv <_ rnlllfll.

fY plk-Fl--q( q--2J >_. 1 p) dp, x 1--2/al, y--" 1--1/al.

Since from (3.3), lk >. q,

J,

which gives

(3.6)

At this point assume

(3.7) > l0 - 3/ + 7 + 2q,

which implies in particular

q < lo/2 <_1/2, lk-q> l(k-- 1) and l--q>_l/2.
Also

--loglwl > 1 --Iwl, 0 < Iwl < 1.

From (3.3), (3.6),

re(Z(1

In the region wl <_ 1 (1 + #)/l we have l(1 wl) # >_ 1, and so

S. e ffix 1)-;
thus

(z(1 -Iw i))’z,. < m
(t( -Iwl))’
e(x-l)-a 1

g m.

And for $1 we have

lSx <_ max ll w /2 _< m(-log w I)- _< m(1 w I)-,
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so that (l(1 w I))qS1 _< m.

Putting these results together, we get

where

(3.s)
Let

w e D,,

D {w:[wl < 1-- (1 +)[1}, l_> 10, abs. const.

the sum being over all elliptic vertices of G. The preceding results together
with (3.2) establish

(3.9) (1 --[zl2)a[fl(z)l
_
m ]]fl],, z l., >_ go.

We must now consider the possibility <: 10. Here we define D, to be the
empty set:

(3.10) D 0,
Then 11 f and (3.9) is fulfilled vacuously. This proves

LEMM_ 4. IfG is anyfuchsian group, f e A(G) then

4. We must now estimatef in the complementary region

z (H ,)’ r’ .’,
where the dash means the complement in U. It is here that we need the trace
condition (1.2) as well as A. Marden’s results in [7], which we now describe.

Write D(z, ) for the H-disk of center z and radius . Let

(z, t) {A G A(D(z, t)) n D(z, t) r 0}

and let 9(z, t) be the subgroup of G generated by a(z, t).

THEOa A (Marden). There exists a universal constant r > 0 with the
following property. Given any point z U and any fuchsian group G, either
9(z, r) is cyclic, or there exist E, F e 9(z, r) such that

9(z, r) (E, F E F 1).

LEx 5. If z eD(, t), < 1, > O, then

n(D(, t), z) card {9(, t)z n D(, t)}.

Proof. We have to show that Gz n D 9z n D, where D D(, t),
9 9(’, t). If gz is in the left member, then gz D but also gz e gD. Thus
gD n D contains gz, so g a 9.
For " e U and 0 < c < I define

ao() {z z- l < c( Il)}.
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By calculation we find the H-radius of Ac(i’) is less than

(1/2) og(( + c)/( c))

for all i" in U; hence we can choose an absolute constant c c so that the
radius of 5() is less than r, with the r of Theorem A. Thus to each U
there is a unique point s s() lying on the line arg z arg " such that the
disk D(s(), r) contains A() as an internal tangent at the point nearest
zl 1. We shall abbreviate A() to A(), D(s(), r) to D(), and
9(s(), r) to 9().
COaOLLARY 1. For z U we have

n(A(’), z) _< card {9(i’)z o D(’)}.

If z has no G-images in A(), n(A, z) 0 and the result is proved. Other-
z’) Wewise z Bz’ with B G, z’ A(), and then n(A(), z) n((’),

may thus assume z e (), so z D(). By Lemma 5,

n(A(), z) <_ n(D(), z) card {9()z o D()}.

LA 6. Let H be the group

H= (M,N’M= N= 1)

where M, N SL(2, R). Then H is conjugate over GL(2, R) to the group

for exactly one p > 1. Let K be an H-disk in H of radius r. Then for w e H,
p >_ 1 + m, we have

card {H w o K} < m.

Proof. The first statement is proved in [6, Th. 1]. Next, the elements of
H are seen to be

:i=
0 kZ.

p

--2kwLet w p and let h, k be the smallest and largest integers, respectively,
for which wa, w lie in K. Then

2-1d(w’, w) >_ d(i wa [, i lw l) log

Hence (k h) log p < 2r, or

0_< k-h_<2r/logp_<m.
It follows that

card woK < 1 + m-- m.

With a similar result for the transformations {(0, -- , 0)}, we get the
conclusion of the lemma.
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Let e II’. Consider D(s(), r) D(), as defined after Lemma 5. The
H-diameter of D() is 2r. When we map into H by the T of (2.1), D()
goes into a disk D* whose lowest point u0 q- ivo satisfies v0 < 3,. The euclidean
diameter of D* is therefore v0(e 1) < mh. Hence card (P)w D*} < m,
where (P) (G) and P is w --. w . Mapping back to U we get

card{(P)znD(’)} < m, II’, zU, (P) Gv.
Since this is true for all p,

(4.1) card {(V)z n D() < m, V parabolic, i" e II’, z e U.

Next, let i" e A’. We again assume > lo but now require

(4.2) lo >_ 2(1 + )e

in addition to the previous restrictions of (3.7); appears in (3.8). When we
map by the T of (3.1), D() goes into a disk D* that lies partly or wholly in
D (see (3.8)) Let w e The points w, E w lie on a circle about 0 and
subtend an arc of euclidean length 2. w I/l. If is the euclidean diameter of
D*,

card (E)w D*} _< m/2" w 1-.

We first show that 0 lies outside D*. In fact, the H-radius ofD is- log(2/ (1 + ))/(1 -t- fl)2

and this exceeds 2r because of (4.2). Next, let

max[wl y > 1 (1-t-)/l, weD*.minlw x > 0,
We have

which gives

l-f-y 1--x /4r
1--y 1A-x

1 x < 1 x 1 ye,
l-4-y 1A-x l-t-y

x > 1 (1 y)e > 1 e(l+B)/l>_ 1/2,
the last inequality by (4.2). Hence

y-- x < 1 (1 e’(1 A-[3)/1) m/l,
SO

card {(E}z n D()} card {<E)w n D*}
(4.3) < ml-X/2rxl-< m, zD(’).
This estimate holds for z e U, by standard reasoning.
On the other hand, if < !o we obviously have

card (E}z n D(’)} _< card (E)z n U} < lo m,
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This is (4.3), which is now true for all ; hence

(4.4) card {(V)z D(i’)} < m, V elliptic, i" h’, z U.

Let 9() be as defined above. We now make use of Marden’s Theorem A.
If () is an elliptic or parabolic cyclic group, (4.4) and (4.1) ve

card{9()znD()} m, eZ, zeU.

Suppose 9() is herbolic cyclic, say (L). The images of z under (L) lie on
a circle tough the fixed points of L. Map the figure into H by a Moebius
transformation W, carrying the fixed points to 0, i L becomes L w w.
Let w and aw be the extreme images lying in D* WD(). Then

2r d(w, w) d(i w ], i w ) 2-h log .
Because of the trace condition (1.2), > 1 m, so we find

h card {{L)w n D*} card (L)z n D()} m.

Ts shows that

(4.5) card {()z n D()} if is cyclic, e Z.

Finay, suppose 9() is a 2-generator group"

() (E,F’E=f 1).
Map U to H and then apply the first part of Lemma 6"9 is conjugate under
Te GL(2, C) to H for some p > 1. Now

[trEE[ {trAB] p + ’ > 2;

hence EF is hyperbolic and by the trace assumption (1.2), p + 2 + m,
or p 1 + m. We are now in the situation of the last part of Lemma 6 and
conclude that

(4.6) card{()znD()} card{HTznTD()} m, eZ, zU.

This estimate, therefore, holds in every case.
By Corollary 1,

(4.7) n(A(),z) , , zU.
Now

1 ffa f(w) du dr, w u T iv,

where a co(1 It [) is the Euclidean radius of 5(t), as explned in the
lines after Lemma 5. Since Co m, we get

)"
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It is easily seen that the sup

_
m; hence

(1  2)q if(r) <_ mff, n(h(’), w)(1 [w 12) q-2 If(w) dude,

and this with (4.7) gives

Now Lemmas 2 and 4, and (4.8) yield Theorem 1.

5. We have assumed q is an integer. If this is not the case, it is necessary
to introduce a multiplier system v(A) A e G, v 1} and modify the func-
tional equation for an automorphic form. However, multiplier systems for
an arbitrary group G and nonintegral q have not been shown to exist. In any
event, the treatment of arbitrary multiplier systems is routine, as has been
demonstrated in the literature, and can be carried out without difficulty if the
need should arise.
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