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The essential content of this paper is a potpourri of examples concerning the
splitting of certain suspensions into wedges. Our first example is an improve-
ment of Snaith’s [123 stable decomposition of "E"X, < n < . Here we
must work harder than Snaith, but we get a finer splitting (sometimes !). Our
second example is provided by the suspension of an H-space. An application is
made to the suspension of SF(2) which is in the same spirit as Snaith’s de-
composition. As a final example we show that a geometric analogue of the
classical algebraic transfer for finite covers may, in nice cases, be defined after a
single suspension. As an application of these results we use Flynn’s calculations
[5] to give relatively instant generalizations of Kamata’s calculations [8] in
[43.
The motivation for describing these three examples in the same paper is that

we use the same method throughout. This method, which is completely
elementary and often easy to apply, is undoubtedly well-known. However, we
know of no published account of the method with the exception of an example
due to Holzsager [6].
Throughout this paper all spaces are tacitly assumed to be connected, of

finite type, and of the homotopy type of a CW-complex of finite type. X(p)
denotes the localization of the space X at p and homology is taken with Zp-
coefficients forp prime unless otherwise stated. 2" denotes the n-fold suspension
functor (reduced).

O. A general observation about self-maps

Evidently E"X splits into a wedge of the form A V V Ak provided E"X
is equipped with self-maps which yield an orthogonal decomposition of/,E"X.
We make this precise"

DEFINITION 0.0. (,nX)(p) is said to be equipped with splitting maps
ft,...,f if the f are self-maps of (E"X)() such that if M f,/,E"X, then
f,(.Mj) 0 for j, f,(Mi) Mi (and f/," Mi --* M is an isomorphism),
and/,E"X

_
Mt 0)"" Mk.

PROPOSITION 0.1. (Z"X)(p) has the homotopy type of At V... V Ak where
,Ai - Mi, 1,..., k, ifand only if (E"X)() is equipped with splitting maps
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Proof To prove the least obvious part of the equivalence, we consider the
mapping telescope telf, (E"X)(p) defined to be the quotient of

(Z"X)(p) r2m, 2m 4- 13
disj, >_ 0

where (y, 2m + 1) is identified to (fi(Y), 2m + 2). Set A tell, (E"X)(p).
Let 0, denote the natural map of (E"X)(p) in A, given by x (x, 0) and define

to be the composite

O: (YflX)(v) "---> A1 V V Ak

(znX)(p)
pinch

(Z"X)(p) V"" V (Z"X)(p)
o,v.., vow,

Aa V’" V Ak.

To show that 0 is a homotopy equivalence, it suffices to show that 0 is a
mod-p homology isomorphism. This follows directly from 0.0 and the fact that
homology commutes with direct limits.

1. A remark on the stable decomposition of "nznxr < n < oo. Snaith [12] has shown that if X is connected and of the homotopy type of
a CW-complex, then D"Z"X splits stably into a wedge of spaces e[C.(j), Ej, X]
which are defined below. The results of this section, which should be regarded
as an addendum to Snaith’s work, show that the single suspensions of
and e[Cg,(j), Zj, X] split into wedges of nontrivial spaces provided /,X
consists entirely of odd torsion. Throughout Sections 1-3 we assume that
l<n<c.

Conceptually, our results state that Efl"Z"X and Ze[ff,(j), Ej, X] each split
into two pieces, one of which supports "half" of the "unstable" homology; the
other piece supports the remaining "half" of the "unstable" homology together
with the "stable" homology. Furthermore, this splitting is best possible in the
sense that 2"Z"X and e[C,(j), Zj, X] cannot be stably split into pieces which
segregate the "stable" and "unstable" parts of homology. Of course, we must
rigorously define the terms "stable" and "unstable," which we do after re-
viewing the requisite homological facts concerning
By the work of May [10], there is an approximation, C,X, of2"E"X together

with a weak equivalence ,: C,X "Z"X. The homologies of C,X and
fl"E"X have been described in l-2] and [-3] as a certain free functor of H,X called
W,_ 1H,X, which we include here for convenience.
For simplicity, we define W,_ 1H,X for those X which are connected and take

all homology with Zp-coefficients for p an odd prime. Here, the definition of
basic 2,_ 1-products is first required.

Let {x, [x e/,X} run over a totally ordered basis for/,X. We define the
x, to be the basic 2,_ 1-products of weight one. Assume that the basic
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products of weight j, j < k, have been defined and totally ordered amongst
themselves. We define a basic 2._ 1-product of weight k to be 2._ l(x, y) where

(1)
(2)
(3)

or
(4)

2,-1( ) is the Browder operation described in [2],
x and y are basic 2,_ 1-products with weight(x) + weight(y) k,
x < y and ify 2,_ l(z, w) for z and w basic 2,_ 1-products, then x < z,

x y where x is a basic 2,_ -product of weight one and n + degree(x)
is even.

If x is a basic 2,_ x-product of weight k, we write w(x) k.
To complete the definition of W,_ 1H,X, we consider sequences

J (, s,..., , s)

such that e 0 or and sy _> ey. Define b(J) el, and the excess of J, e(J),
by the formula

k

e(J) 2sl 1 (2sj(p- 1)- ej).
j=2

J is said to be admissible if ps ej >_ sj_ for 2 < j < k. We write QJ for
the sequence of iterated Dyer-Lashof operations given by
We define W,_ 1H,X (as an algebra) as the free commutative algebra on

{QJ2x 2 is a basic 2,_ 1-product, J is admissible,
e(J) + b(2x) > degree(2), and 2sk < n + degree(21).}

Remark. I/V,_ 1H,X is naturally equipped with additional structure which we
deliberately choose to ignore here. This additional structure is described in
I-2, Sections 1-2].

Let

(*) Q1’II *’’’*

be an arbitrary monomial in W,_ 1H,X.
Define S to be the vector subspace of W,_ 1H,X spanned by those monomials

of the form (*) where w(2s) 1, s 1,..., m. Let U denote the vector space
spanned by those monomials of the form (*) where w(2ts) > for some s.
Then by [3-], the homomorphism j,, induced by the inclusion

j,: "Z"X lim D"E"X QX

has kernel U and restricts to a monomorphism on S. To make the statements of
the second paragraph in this section precise, we define S as the stable part of
W._ 1H,X and U as the unstable part of W,,_ 1H,X.
We decompose U further. Let U (Uod) be the vector subspace of U spanned

by elements of the form (*) where w(At,) + + w(2.) is even (odd). Finally
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ifM is a graded vector space, we let sM denote the vector space given by raising
all elements of M one degree. With these preliminaries we have

THEOREM 1.1.
natural map

There exist simply-connected spaces A and B together with a

d?" Z"E"X - A V B

all of which dependfunctorially on X such that

(1)
(2)
(3)

dp, is a mod-p homology isomorphism for all odd primes p,
ck,(sS SUod) ffI,A, and
q,(sU,v) /,B.

Furthermore, if fix # 0 or P,x 0 for some x HqX where n / q is odd, then
there does not exist a stable map, , offYE"X into C V D such that k,(S)
ffl,C and b,(U) ID.
We have analogous results for e[Cg,(j), Ej, X_-[. To conveniently state them

we first recall from [3-1 that H,e[Cg,(j), Xj, X] Ej is spanned by elements
of the form (*) which satisfy

2 p".w(X,) j.

We define

Sj S I’- Ej, Uev,j Uev ( Ej, Uod,j Uod ( Ej, %--. U r Ej.

THEOREM 1.2. There exist simply-connected spaces Aj and Bj together with a
natural map

j Ee[Cg,(j), Ej, X] Aj V Bj

all of which dependfunctorially on X such that

1)
(2)
(3)

dpj, is a mod-p homology isomorphism for all odd primes p,
dpj,(sSj SUod,j) ffI,Aj, and
j,(SUev,j)

Furthermore if fix # 0 or P,x # 0 for some x e HqX, where n + q is odd, then
there does not exist a stable map, b’s of e[Cg,(j), Ej, X-I into Cj V Dj such that
,(S) Ftg,(Cj) and ,(U) FIg,(D).
The following corollary of 1.2 improves Snaith’s result at odd primes.

COROLLARY 1.3. IfffI,X consists entirely ofodd torsion then Ze[Cgn(j), Xj,
splits into a wedge of two spaces whose homologies are given by Theorem 1.2.

Proof.
see that

By the construction of W,_IH,X and the hypothesis on /,X, we

H.(e[Cg.(j), Zj, X]; Z)
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has no two-torsion [3, Section 4]. Consequently, bj, is an isomorphism on
integral homology. Since ,4j V B is simply connected, the result follows
directly from the Whitehead theorem.

Remark. If/,X has 2-torsion or a Z-summand, then it is easy to see that
H,e[Cg,(j), E, X] has 2-torsion. In this case the map j is only an equivalence
away from 2.

2. Geometry of these splittings

We assume that the reader is familiar with the space of j "little n-cubes,"
rg.(j) [10]. Let g" I" --+ I" be given on points by

9(t1,..., t,) (1 tl, t2,..., t,).

Observe that 9 is not contained in rg,(1) and that g has order 2 (under com-
position). Further define ’" rg,(j)_+ rg,(j) by setting 5(cl,..., e) equal to
the composite

j cubes
":--

I" w".vo I" o,,...,,o, i, w...w i, c,,...,,c, i, o I".

It is trivial to check that 5(c,..., cj) is indeed an element of cg,(j). Observe
that 3 has been studied in [3].
We recall from [10] that

j times

A A X
e[Cg,(j), Ej, X ] rg,(j) x

c.(j) x (basepoint)

where E is the symmetric group on j letters and

Xcg.(j) x X
C.X

where is a certain equivalence relation. We define

" cgn(j) X x’i-+ cgn(j) X Xj

by 5(d, x) (d, x). It is trivial to check that - induces a continuous self-map
of e[Cg.(j), g, X] and of C,X. By abuse of notation, we label all of these maps
by .
We require the following lemma whose proof is left to the reader.

LEMMA 2.1. The followin9 diagram gj-equivariantly commutes"

%0) x c.x _2 c.x
x, 1

cgn(j) x CnX j -- C,X.



SPLITTING CERTAIN SUSPENSIONS VIA SELF-MAPS 341

We next require a computation of the action of ’, in homology. Recall from
[1] that cg,(2) has the equivariant homotopy type of S x.
LEMMA 2.2. (1) ’,t --Z where is the fundamental class of cg,(2).
(2) ?, acts trivially on H,Cgoo(p)/Zp.

Proof. These follow immediately from the results in [3].

3. Proofs of 1.1 and 1.2

To be consistent with [2] and [3-[, we write , and c, Z where c is
the standard first coordinate inverse in O"X. The idea behind the proofs of 1.1
and 1.2 is that 1, + Z and 1, Z [or 1, + and ] yield an orthogonal
decomposition of H,"E"X [or H,e[Cg,(j), Zj, X]] and we may apply 0.1.
As an algebraic preliminary we compute the action of ;t and .
LEMMA 3.1. Let M W,_ 1H,X,

M QS’2z, ,..., QSk)zk and
k

s k + w(,,).
i=1

(1) zM (-1)SM.
(2) IfM is identified as an element ofH,e[qY,(j), Ej, X], then .M (- 1)’M.

Remark. It follows directly from the definitions of S, Uod, and Uev that

(2) (1, + z)(H,fl"Z"X)= S Uod, and
(3) (1,-z)(H,"Z"X)= Vv.

Furthermore, by 3.1(2) the analogous formulas hold if one replaces
by e[,(j), E, X], Z by , S by S, Uod by Uod,, and U,v by U,,.

Proof of 1.1 and 1.2. We consider the self maps of E"E"X given by

(1) A E(1) + Z(c), and
(2) A E(1) E(c).

Clearlyf and f2 satisfy 0.1 and hence Z"E"X splits as promised.
To check the second assertion of 1.1, it suffices to exhibit a non-zero Steenrod

operation defined on an element x S and which does not take values in S.
We do this in case Px O, x HX, q + n is odd. The case fix 0 is similar
and easier.
By the form of the unstable analogues of the Nishida relations [3, Theorem

1.3], we see that PQ("+q-a)/2x has a non-trivial summand of the form
adE (x)(Px). Clearly

a-(x)(P;x)
and we are done.
The proof of 1.2 goes through in an analogous fashion.
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Proof of 3.1. (1) By [2, Proposition 1.4] we have

(1) Z2,-x(Y, z) -2,-I(ZY, Zz), and
(2) 7.Qy Qg.y.

Further recall that z(a * b) (- 1)lal Iblz(b), z(a). Since the multiplication for
an n-fold loop space is homotopy commutative (if n > 1), we have the ad-
ditional formula

(3) z(Q"2,, *’"* Q’k2tk) z(Q"2,,) *’"*
Combining equations (1)-(3) with the definition of w(2,), we observe that
zM (- 1)SM. (The reader should observe that the reason we must add k to

’- w(2,,) is that each element of/,X is regarded as a 2,_ 1-product of weight
one.)

(2). Because we do not have a natural map of e[Cg,(j), Zj, X] into
which behaves appropriately in homology, we must modify the argument given
above.

Recall from [10] that C,X is filtered with filtration denoted by FjC,X.
Furthermore there are cofibrations

fj-1CnX -+ fjCnX - e]-.(j), Zj,

By the results in [-3, Section 4] the long exact sequence in homology for this
cofibration breaks up into short exact sequences

0--. I.F_xC,,X--+ I.FC.X--+/.e[-%(j), I2, X] + 0.

Identify/iel-%(j), , X] as FIiFjC,,X/FIiF_ 1C,,X and observe that it suffices
to show that ,M (- 1)*M in FI.FC.X.
By the definition of 2._ 1, Q*, and lemmas 2.1-2.2, we obtain similar formulas

to those in the proof of 3.1 (1);

(1) 2.(y, z) -2.(y, z),
(2) .QSy Q.y, and
(3) (Q"2x, ,’", Qtk2x) ;Q"2,, ,...,

The result follows.

Remark. The similarities between the proofs of 3.1(1) and 3.1(2) suggest
that we ought to be able to obtain a unified proof using a commutative diagram
relating ;t, ’, and ,. However because zroC,X is not a group for nonconnected
X while rr0f"E"X is a group, we see that this approach is unreasonable. We
see that this thought suggests the following.

Remark. Let fgE"X denote the component of the base point in
(We do not assume that X is connected here.) Then c restricts to a map
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Clearly the same methods as in the previous section will serve to split EflgE"X.
Of course the action of X is more complex, but it is obvious that

H,FtE"X (1 + Z,)fiI,X (1 Z,) ,tZ X,
with Z,-coefficients, p > 2. An easy calculation shows that each of these
summands is non-zero, and consequently EgtE"X splits non-trivially. We have
the following evident proposition.

PROPOSITION 3.2. ESF(2n) localized away from 2 splits as A V B where
HiA and HjB are nonzero for arbitrarily large andj.

It appears likely that one could find stable decompositions offE"Xanalogous
to Snaith’s. We intend to return to this question (with different methods) in case
X= S.

4. An application to H-spaces

Let X be a connected H-space which satisfies one of the following two
hypotheses:

(1) H*X is primitively generated and of finite type;
(2) H,X is primitively generated and of finite type.

In either case, we ambiguously let (u) run over algebra generators for one of
these two algebras. Define the length of a monomial in the u to be the number
of factors (not necessarily distinct) occurring in that monomial. With these
preliminaries we obtain the following where X is assumed to be homotopy
commutative and associative.

THEOREM 4.1. Let X be a connected H-space which satisfies (1) (or (2)).
Then (EX)(p) has the homotopy type ofA V V Ap_ where ffI,Ai is spanned
by monomials in H*X(or H,X) oflengthj raised one degree, wherej (p 1).

Observe that [11, Theorem 9.3] is a special case of 4.1. As a corollary we
obtain another result of [11 ] which has been found independently by Holzsager
[6] in the case n 1.

PROPOSITION 4.2. EK(Z,r, n) has the homotopy type of
We also have

PROPOSITION 4.3. If n > 2 and each element of Ft, Y is p-torsion and
primitive then Zfl"E"Y has the homotopy type of A1 V V Ap-1 where H,A
is 9iven by 4.1.
Along these same lines we obtain a splitting of ZSF(2) at p.

PROPOSITION 4.4. ESF(2)(,) has the homotopy type of
Furthermore H,A is nonzero in arbitrarily high dimensions.

Evidently one may use 3.2 and 4.1 to obtain a finer splitting of E2SF(2)
localized at p. We do not know if a similar result is true for ESF(n), n > 2.

Proof of 4.2. By [9], H*K(Z,r, n) is primitively generated.
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Remark. It seems likely that H*X is indecomposable over the Steenrod
algebra, but we have only checked this for the first few n.

Proof of 4.3. By [2], if n > 1, H,f"Z"Y is the free commutative algebra on
certain generators described in Section 1. The diagonal Cartan formula for these
operations is defined in terms of the coproduct for H, Y [2]. We deduce
immediately that f"Z"Y satisfies (ii) provided n > 2.

Proof of 4.4. By [2], it is easily seen that O,’,2S0 is primitively generated.
Since fE2S is homotopy commutative and fX;2S has the homotopy type
of SF(2) the result follows. We remark that H,fE"S, n > 2, is not primitively
generated, and so we do not know if an analogous splitting exists for SF(n),
n>2.

eroof of 4. .
composite

Let/ denote the multiplication for X and define Ok to be the

X A xk2 X

where A(x) (x,..., x) and

X(x,,..., x) u(x,,..., ,(x,,..., ,(x_, ,(x_,, x)).-. ).

We require the following lemma which is stated without proof.

LEMMA 4.4. If U1,..., Uj are primitive & H,X [in H*X], then

Ok,(UI Uj) ku u [0 (u u) ku us].
To continue with the proof of 4.1, we set v Eft) Ok, > 0, where k is a

fixed unit modp. We definef v 9 vp_t where 9 means that
v is deleted and means composition of maps.

In case X satisfies (1), let (u,l u,), denote the dual basis to the monomials

Ui I2Q.
Let <_ <_ p and Mt be the submodule of/,EX spanned by the

suspensions of the (ui,."ui), [or ui,’"ui if X satisfies (2)] where k =- t(p).
Let x e M. Obviously f/,x cx where c - 0 if and only if t. Evidently
Definition 0.0 is satisfied and we are done.

5. Some unstable analogues of the transfer

The results of this section, which are parenthetical to those of the previous
four sections, will be used in [4].

Let denote the p-Sylow subgroup of a finite group G. Suppose that X
supports a free G-action and that r denotes the natural projection X/ - X/G.
The transfer

T: H,X/G H,X/rt

enjoys the property that r, T is multiplication by the index of n in G. Most
applications of T usually seem only to require that r, T induces a mod-p
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homology isomorphism of H,X/G. In favorable cases, we construct a map
T’:EX/G ZX/rc such that (Er), T is a mod-p homology isomorphism of
H,EX/G. Our motivation for studying such a map T’ is related to the Kahn-
Priddy Theorem [7]. That is, we want to find unstable analogues of this theorem
and consequently need unstable analogues of the transfer. We hope to return
to this question later. That at least a single suspension is required to define T’
is evident due to the incompatibility of the cup product structures for H*BG
and H*Brc. A specific example is provided by letting G be the symmetric group
on p letters for p an odd prime.

THEOREM 5.1. If rC is normal in G, then there is a map T’: EX/G - EX/rc
such that Er T’ is a p-equivalence. Furthermore (,X/)(p) has the homotopy
type of (EX/G)(p) V Z (where Z will be specified in the proof).

THEOREM 5.2. If rC is abelian, then there is a map T’: ZBG ZBrc such that
Er T’ is ap-equivalence. Furthermore EBrc has the homotopy type of(EBG)(p) V
Z (where Z will be specified in the proof).

Remark. We do not know of any examples in which a map T’ does not
exist which satisfies the property that Er T’ is a p-equivalence. In relation to
this question, D. S. Kahn has pointed out that the Kahn-Priddy transfer cannot
be desuspended at all when n Z2 I Z2 and G

Proof of 5.1. Let g G. Conjugation by g induces an automorphism of n
and of X/7:, say Og. Let 0,: H,X/rt - H,X/G be given by .s Og, where
{grc}s runs over a complete set of left cosets for 7t in G. If T denotes the
classical (algebraic) transfer, then we observe that T r, 0,.
We geometrically mimic some standard homological facts.
By abuse of notation we let Og denote the self-map of EX/r which is given by

suspending the map Og defined above. Define a map N: EX/Tr--, EX/rc by
setting N ,s Og,. Define N for X/G in a similar fashion to obtain a com-
mutative diagram

ZX/n r,__ EX/G

ZX/Tr z___ ZX/G.

Form the telescope with respect to N and observe that we have an additional
commutative diagram

ZXl. ZXl

tels (ZX/u)(,) telE(r) tels (ZX/G)(I,).
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To verify 6.1, we let fl N and f2 k N where k IG/nl; we define

MI N.I,(.,X/lr)(p) and m2 (k N),ffI.(.,.e/lr)(p). Since k is relatively
prime to p, it suffices to show that

(i)
and

(EX/n)p) is of the homotopy type of telN (EX/n)p) V telk_N (ZX/n)U,),

(ii) teln (EX/n)(t,) is of the homotopy type of (EX]G)u,).
Part (i) follows immediately from 0.1. To verify part (ii), first observe that the

natural map EX/G teln (EX/G)tp) is a mod-p homology isomorphism and
consequently (EX/G)e,) has the homotopy type of tels (EX/G)tp). We next
observe that the natural map

teln Er: telN (EX/n)u,) telu (EX/G)u,)
is a mod-p homology isomorphism. This fact follows immediately from the
previous observation that T r, 0,.
Hence (EX/n)) has the homotopy type of (EX/G)u,) V telk_u (EX[n)U,). To

finish 6.1, we define T’ to be the composite

, (x/)<. Xl
where/ is the natural map, I the inclusion, y the homotopy "inverse" of the
equivalence derived above, and di is the homotopy "inverse" at p to the natural
map EX/n (EX/n)<p) (which exists by [13]).

Proof of 5.2. Let n be the p-Sylow subgroup of G and assume that n is
abelian. Consider the normalizer of n in G, denoted Nrc. It is an exercise in
homological algebra to show that the restriction map i," H,(BNn; Z,)
H,(BG; Z) is an isomorphism (with trivial n and G action on Zp). (See [14]
for example.) The result follows directly from Theorem 5.1.
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