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1. Introduction

We continue in this paper investigating the harmonic analysis for operators
introduced in [1]. In that paper, we associated to each bounded linear operator
T on a homogeneous Banach space B on the circle group T a formal Fourier
series,

(1.1) 7’ 5(n)

Each (n) is a bounded linear operator on B which satisfies the functional
equation

(n)Rt eintRt (n), e T,

where Rt is the translation operator defined on B by

(Rtf)(s) f(s t), s e T.

Equivalently, ’ (n) is an operator of the form M. U, where M. is the operation
of multiplication by e"
(1.2) (M,f)(t) e"tf(t), e T,

and U is an invariant operator, that is, one which commutes with translation,
so that UR RU, e T.

In [1] we established formal properties of the series (l.l) and showed that it is
C-l summable to T in the strong operator topology. In addition, we obtained
an extension to operators of the theorem of F. and M. Riesz which asserts that
a measure whose Fourier-Stieltjes transform vanishes on the negative integers
must be absolutely continuous.

In this paper we restrict ourselves to the case where B is L2(T), the space of
square integrable functions on the circle group. In Section 2 we state the formal
properties of the Fourier series relative to the adjoint operation and establish
an analogue for operators of the Parseval formula for functions. In Sections
3 and 4 we extend to operators the notions of support and anaiyticity. Finally,
in Section 5, we establish an analogue for operators of the second theorem of
F. and M. Riesz. This classical theorem asserts that a function having all its
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OPERATORS ON HILBERT SPACE 165

negative Fourier coefficients zero cannot vanish on a subset of T having positive
Lebesgue measure unless it is zero almost everywhere.

2. Operators on Hilbert space-Parseval formula

Throughout this paper we shall be concerned with the algebra La of bounded
linear operators on the Hilbert space L2(T) of square integrable functions on the
unit group T. We shall denote by ( ) the usual inner product on L2(T),

and by

(f, 9) f(t)9(t) dt, f, 9 L(T),

the usual norm on L2(T),

f (f, f)1/2, fe L2(T).
In this section we first summarize the main definitions and results from [1-1

which are needed in what follows. We then show how the adjoint operation of
.if’ is related to our Fourier series for operators in and finally establish a
formula for operators in which is an analogue of the Parseval formula for
functions.

Using the notation of [1], .o is the subspace of .L consisting of operators T
which are invariant, i.e., which commute with translation. It is well known (see
Chapter 16 of [2]) that the operators in o are precisely those which have the
exponentials {e"’" n Z} as eigenfunctions. They can also be characterized in
terms of the Fourier transform as follows. If the Fourier transform on L2(T)
is defined by so that

f(n) e-"f(t) dt, n e Z,

then an operator T in E’ is in o if and only if there is a bounded function b
on Z so that Tf(n) dp(n)f(n), n Z. (For this reason the operators in Lao
are usually called multipliers.) In particular, -ff’o is a commutative subalgebra
of
For each positive integer n, , is defined in [1] to be the closed linear sub-

space of ’ consisting of all operators T which satisfy the functional equation
TR eintRtT, t T.
For each positive integer n, the operator n in Ao is defined in I-1-1 in terms of

vector valued integrals"

1 I ’ intR TRtf dt, f L2(T)[rc,(T)](f)
J-

e- _,

If T .E’, its Fourier transform is defined in [1] to be the -valued function
defined on Z by

(2.1) (n) ,(T), n Z,
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and the formal series
+o

(2.2) (n)

is called the Fourier series of T.
The following summarizes the main facts concerning the Fourier transform

which we will need in what follows.

PROPOSITION 2.1. (i) For each n, r, is a projection of onto
(ii) An operator S in .’ is in .’, ifand only if it is of theform S M, U,

where U is in an invariant operator and M, is multiplication by the function e"’,
Equivalently, S is in .q’, ifand only if, for each m, S(e’’) is a constant multiple of
ei(n+m)".

(iii) If T .’, the Fourier series of T is C-1 summable to T in the strong
operator topology of .oq’; equivalently,./br each fe LZ(T), the series .+o ’(n)f
is C-1 summable tof in the norm topology of L2(T).

(iv) If S, T .q’, n Z, then the series =+ (n-m)(m) is C-1

summable to ST(n) in the strong operator topology of
Proof. (i), (ii), (iii), and (iv) follow immediately from Proposition 3.2,

Corollary 2.4, Proposition 3.8, and Proposition 4.2, respectively, of [1].
We next establish the simplest formal properties of Fourier series of operators

in with respect to the adjoint operation. We first show that the adjoint
operation preserves the graded structure we have introduced in , in particular,
that ,* _,.
LEMMA 2.2. /f T &o,, then T*

Proof. Let T L,,, T. Then

R ,T’R, R*tT*R* (R ,TR,)* (e"’T)* e-"’T *

Thus T* _,.
We next establish an analogue for operators of the fact that the nth Fourier

coefficient of the complex conjugate of a functionfis the complex conjugate of
the (-n)th coefficient off

PROPOSITION 2.3. Let T .oq’, n Z. Then n,(T*) r_,(T)*, i.e.,

TA*(n) [ n)]*.

Proof Let f, # L2(n). Then

([zn(T*)](f), ) e- _,T*]fas,

( fS e-’"[R’TR-’]*fds’
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Thus,

Sincefand g were arbitrary in L2(n), this shows that 7rn(T*) rr_n(T)*.
As a corollary we obtain the fact that an operator in is self-adjoint if and

only if its Fourier transform is "hermitian."

COROLLARY 2.4. Let T ’. Then T is self-adjoint ifand only if
(2.3) (- n) [ (n)-I* for all n e Z.

Proof. The necessity of (2.3) for self-adjointness follows from Proposition
2.3. Suppose now that (2.3) holds for an operator T in . Then, as a con-
sequence of Proposition 2.3, each C-1 sum of the Fourier series of T will be self-
adjoint. That T is self-adjoint now follows from (iii) of Proposition 2.1.
We next show how Proposition 2.3 leads to an analogue for operators of the

Parseval formula for functions.

THEOREM 2.5. Let T ,E’. Then
+oo

ro(T*T) [rc(T)]*rc,(T),

with convergence in the stron operator topolo#y ofq.

Proof. By (iv) of Proposition 2.1, the series

(2.4)

is C-1 summable to Zoo(T’T) in the strong operator topology. Because of
Proposition 2.3, the series (2.4) is the same as

(2.5)

If for each positive integer N we define S to be the Nth partial sum

-N
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of the series (2.5), we have

(2.6) $1 < $2 < $9 <"’,

where < is the usual partial ordering of (see Chapter VII of [4]). qhe se-
quence (2.6) is bounded from above in this ordering by no(T’T) since the
series (2.5) is C-1 summable to zo(T*T) in the strong operator topology. The
theorem on p. 263 on [4] asserts that a monotonic sequence of self-adjoint
operators bounded from above must converge in the strong operator topology.
This shows that the series (2.5) converges to some element V of in the strong
operator topology. But we know that it is C-1 summable in that topology to
no(T’T) and thus no(T’T) V. This completes the proof of Theorem 2.5.

3. Support and cosupport

In this section we define the two notions of support and cosupport for oper-
ators in 5e. These reduce to the usual notion of support when the operator is
multiplication by a function. We show that a set is a support for an operator T
if and only if it is a cosupport for its adjoint T*.

Let M be a measurable subset of T. We will denote by M its complement in
T and by L2(M) the subspace of L2(T) consisting of those functions "supported"
by M:

L2(M) {f: f L2(T), f 0 a.e. on Me}.

Let T .oq’. We would like to define the support of T to be the smallest
measurable subset K of T satisfying:

f 0 a.e. off K implies Tf 0 a.e. for all fe L2(T);

define the cosupport of T to be the smallest measurable subset K of T satisfying:

Tf 0 a.e. off K for all f L2(T).

Unfortunately, because of sets of measure 0, these definitions do not make sense,
so we must proceed indirectly.
We define a measurable subset K of T to be a supporting set for T if

T(L2(K))
_

{0}. Let/ be Lebesgue measure on T. We define the constant sr
by

sr inf {/(K): K a supporting set for T }.

PROPOSITION 3.1. Let T .+q’. Then there is a measurable subset K of T
satisfying the.following:

(i)
(ii)
(iii)

K is a supporting set for T.
IJ(K) st.
lfM is any supporting set for T,/{x: x K, x M} 0.
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Proof. Let K1, K2, Ka,... be a sequence of supporting sets for T with
/(K,) --, st. A routine exhaustion argument shows that the set K defined by
K 0-1 K,, satisfies (i), (ii), and (iii).

Proposition 3.1 shows that T has a minimal supporting set which is unique
up to a set of measure 0. Such a set will be called a support for T.
We proceed similarly to define cosupport. A measurable subset K of T is

called a cosupporting set for T if T(L2(T))
_

L2(K). We define the constant

csr by

csr inf {/(K): K a cosupporting set for T}.

PROPOSITION 3.2. Let T Z’. Then there is a measurable subset K of T
satisfying the following"

(i)
(ii)
(iii)

K is a co-supporting set for T.
la(K) csr.
IfM is any co-supporting set for T then

,u{x:xK, xqM} O.

Proof. Similar to the proof of Proposition 3.1. Proposition 3.2 shows that
T has a minimal cosupporting set which is unique up to a set of measure 0.
Such a set will be called a cosupport for T.

Simple examples show that a support for an operator need not be a cosupport
for that operator. For example, if T q’ is defined by

]Tf f(t) dt #, f L2(T),

where g(t) 1, all t T, then [0, 7r] is a support for T while T is a cosupport.
However, we have the following.

PROPOSITION 3.3.
are equivalent"

Let T L’, Ka measurable subset ofT. Then thefollowing

(i) K is a support for T.
(ii) K is a cosupport for T*.
This proposition is an immediate consequence of the following.

LEMMA 3.4.
equivalent"

Let T , K a measurable subset ofT. Then the following are

(i) K is a supporting set for T.
(ii) K is a cosupporting set for T*.

Proof. (i) implies (ii). Let g L2(T). We must show that T*g 0 a.e. off K.
If this were not so there would be some f L2(K0 with (T’g, f) O. But
(T*g,f) (g, Tf) 0 since Tf 0 forf L2(K0 because of (i).
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(ii) implies (i). Letf L2(KC). We must show that Tf 0 a.e. If this were
not as so there would be some g L2(T) with (Tf, g)# O. But (Tf, g)=
(f, T’g) 0 since T*g e L2(K) because of (ii).

Finally, let us point out that the notion of support and cosupport reduce to
the usual notion of support in the case of the operation of multiplication by a
function.

PROPOSITION 3.5. Let ck be a bounded measurable function on T and T the
element of. defined by

(Tf)(x) ck(x)f(x) a.e. for x T.

Then {x: x e T, b(x) # O} is both a support and cosupport for T.

Proof. Straightforward.

4. Analytic operators

An operator T in . will be called analytic if all of its negative Fourier co-
efficient vanish, i.e., (n) 0, all n < 0. We shall denote by ’ the set of
analytic operators in

In this section we establish several basic properties of analytic operators. In
particular, we show that ,f is the strongly closed subalgebra of generated by
-’o, the space ofinvariant operators, and the multiplication operator (Mlf)(t)
e"f(t), T.

Suppose that T e = is the operation of multiplication by a bounded measur-
able function :
(4.1) (Tf)(x) (x)f(x) a.e. for x T.

Our first result shows that analyticity of T is equivalent to giving the boundary
values of a function bounded and analytic in the unit disk. (Or what is equival-
ent, (n) 0 for n < 0; see p. 39 of [3].)

PROPOSITION 4.1. Suppose that T is defined by (4.1)for a bounded
measurable function on T. Then thefollowing are equivalent"

(i) T is analytic.
(ii) (n) Oifn < O.

Proof. This is immediate from Proposition 3.3 of [1], which states that
(n) (n)M, for all n Z, where M, is multiplication by the function ei"’,
i.e., (M.f)(t) e"tf(t), T.
The next few results establish that is a subalgebra of La closed in the strong

operator topology.

PROPOSITION 4.2. s/ is the subalgebra of
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Proofi That is a linear subspace of . follows from the linearity of the
Fourier transform. Let S, T aft. We will show that ST l. Let n < 0. It
suffices to show that ST(n)= 0. By (iv) of Proposition 2.1, the series
mm= +_o $(n m)(m) is C-1 summable in the strong operator topology to

ST (n). But each term of this series must be 0 since S and T are in and n < 0.
A

Thus ST(n) 0, so ST ,ft.

A lemma is needed before we are able to show that is closed in the strong
operator topology.

LEMMA 4.3. Let S . Then, for each r and m in Z,

(4.2) (Sem., ei(r+m)") ((r)eira’, ei(r+m)’).

Proofi By (iii) of Proposition 2.1, the series -+_ $(n)em" is C-1 sum-
mable to Seira" in the norm topology of L2(T). Taking inner products with
eit’+m)’, we see that the series

n=+oo

(4.3) (’(n)e’m’, ei(’+m)’)

is C-1 summable to (Seira’, ei(r+m)’). By (ii) of Proposition 2.1, each term of the
series (4.3) with n : r must be zero, which shows that equality (4.2) holds.

PROPOSITION 4.4. is closed in the strong operator topology of
Proof. Let Tj be a net in converging to T e in the strong operator

topology. Let r < 0. We must show that (r) 0. Let rn be an arbitrary
integer. Since linear combinations of exponentials are dense in L2(T), it suffices
to show that (r)em" 0. And since, by (ii) of Proposition 2.1, (r)em" is a
multiple of er+m)’, it suffices to show that

(4.4) ((r)eim’, ef(r+m)’) 0.

By Lemma 4.3 and the fact that T T in the strong operator topology we have

((r)eira’, ei(’+m)") (Teim., ei(’+m)")

lim (Tjeim, ei(r+m))
(4.5)

lim ((r)e

Since r < 0 and each T/e , each of the terms ((r)eim, ei(’+m)’) is zero.
Thus (4.4) is a consequence of (4.5). This concludes the proof of Proposition
4.4. (Note that the above actually proves that ’ is closed in the weak operator
topology of 0.)
The two results which follow show the extent to which is generated by

easily described operators.
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Recall that the multiplication operator M1 is defined on L2(T) by (Ml.f)(t)
e"f(t), e T. We shall denote by o the (algebraic) subalgebra of .La generated
by M1 and the operators in .eo, the invariant operators.

PROPOSITION 4.5. ’o - .Proof. Because is an algebra, it suffices to show that M e .1 and L’o
_

,d. Proposition 3.3 of Ill shows that l(n) 0 unless n 1, so M .
Let T .eo. Let n be an arbitrary nonzero integer,f L2(T). Then

[](n)](f) [r.(T)](f)

e-"[R_,rR,]fdt

e dt
2re

)e-i"t dt Tf

=0.

Thus (n) 0 for all n = 0 and as a consequence, T ,’.

PROPOSITION 4.6. o is dense in in the strong operator topology.

Proof. Let T e ,. By (iii) of Proposition 2.1, the C-1 sums of the Fourier
series of any operator in converge to that operator in the strong operator
topology. Thus, it suffices to show that each term (n) of the Fourier series of
T is contained in ,fro. If n < 0, (n) 0, and thus (n) ,. And ’(0) e o,
which is contained in ,o. Suppose now that n > 0. By (ii) of Proposition 2.1,
(n) is of the form Mn U, where U o and Mn is multiplication by the
function ei"’. Thus, ’(n) M, U is in ,0, since M, is the composite of MI
with itself n times.
Summarizing the main results established thus far, we have"

THEOREM 4.7. is the strongly closed subalgebra of Zz" generated by -q’o and
the multiplication operator Mt defined by (Mf)(t) eitf(t), T.

As the final result in this section, we give a characterization of analytic
operators in terms of invariant subspaces. Part of this result will be used in the
following section.
For each integer rn we denote by L2(T) the subspace of L2(T) consisting of all

functions fin L2(T) which satisfy f(n) 0 for n < m.

PROPOSITION 4.8. Let T e .oq’. Then thefollowing are equivalent"

(i) T is analytic.
(ii) T(LmE(T))

_
LInE(T)for all rn Z.
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Proof. (i) implies (ii). Let m Z. Then the inclusion

(4.6) T(L(T))
_

L2(T)

is clear if T M1 or if T 0o. Thus, (4.6) will hold for all T a’o since a’o
is generated by Mt and the operators in oWo. That (4.6) holds for an arbitrary
T in M’ now follows from Proposition 4.6.

(ii) implies (i). Let T a and assume that T satisfies (4.6) for all m Z.
Let r < 0. We must show that (r) 0. Let m be an arbitrary integer. Since
linear combinations of exponentials are dense in L2(T), it suffices to show that
(r)eira" 0. Since, by (ii) and (iii) of Proposition 2.1, (r)eim" is a multiple
of ei(’+m)’, it suffices to show that

(4.7) (r)em’, e+)’) O.

By Lemma 4.3,

(4.8) (Teim., ei(r+m)") ((r)eira’, ei(r+m)")

Since (ii) holds, Teim’ Lm2(T). Since r < 0, ei(r+m)" is orthogonal to Lm(T),
so the left side of equality (4.8) is zero. Thus (4.7) follows from (4.8).

5. The second F. and M. Riesz Theorem

In this section, we prove the following theorem, which is our extension to
operators in .W of a classical theorem of F. and M. Riesz.

THEOREM 5.1. Let T be an analytic operator in L’. If T # O, then T is both
a support and cosupport for T.

We need two lemmas before proceeding to the proof of Theorem 5.1. The
first is an immediate consequence of the classical theorem of F. and M. Riesz
(this is the second corollary on p. 52 of [3]).

LEMMA 5.2. Letf be an inteyrable function on T, m Z. Assume that either
f(n) 0 if n < m off(n) 0 (f n > m. Zhenfcannot vanish on a subset ofT
hav#ly positive Lebesyue measure unless it vanishes a.e. on T.

Proof The F. and M. Riesz Theorem asserts that the conclusion of Lemma
5.2 holds iff(n) 0 for n < 0. The other cases may be reduced to this case by
consideration of the functions e-m.f and em]

Recall that for K a measurable subset of T, L2(K) is

{f: f L2(T), f 0 a.e. off K},

and that for all m e Z, Lm(T) is

{f: f L(T), f(n) 0 if n < m}.
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LEMMA 5.3. Let K be a measurable subset ofT ofpositive Lebesyue measure
and m Z. Then:

(i) Lm2(T) c L2(Kc) {0).
(ii) Lm2(T) + L2(K) is dense in L2(T).

Proof. (i) is immediate from Lemma 5.2, since K has positive Lebesgue
measure. We prove (ii) by contradiction. Assume that Lm2(T) + L2(K) is not
dense in L2(T). Then there is a nonzero elementf of L2(T) orthogonal to both
Lm2(T) and L2(K). Since f is orthogonal to Lm2(T),
(5.1) f(n) 0 ifn > m.

Sincef is orthogonal to L2(K),

(5.2) .f(x) 0 a.e. on K.

Lemma 5.2 shows that (5.1) and (5.2) cannot both hold unless f is the zero
element of LE(T).
We can now proceed to the proof of Theorem 5.1. We show first that T is a

support for T. We argue by contradiction. If T were not a support for T, there
would be a set K of positive Lebesgue measure so that T(L2(K)) __q {0}. Then,
because of the analyticity of T and Proposition 4.8,

(5.3) T(Lm2(T) + L2(K))
_

L2(T) for all m Z.

By (5.3) and (ii) of Proposition 5.2,

(5.4) T(L2(T))
_

Lm2(T) for all m e Z.

Since 1 z L2(T) {0}, (5.4) shows that T must have been the zero operator.
This completes the proof that T is a support for T.
We show next that T is a cosupport for T. If T were not a cosupport, there

would be a subset K of T whose complement K has positive Lebesgue measure
and which satisfies

(5.5) T(L2(T)) L2(K).

By (5.5), the analyticity of T and Proposition (4.8),

(5.6) T(Lm2(T))
_

L2(K) c Lm2(T) for all m Z.

Part (i) of Lemma 5.3 shows that L2(K) c Lm2(T) {0}, since Kc has positive
Lebesgue measure, so (5.6) becomes

(5.7) T(L,2,(T)) {0} for all m Z.

Let P be the set of trigonometric polynomials on T. Since P 10+_o Lm2(T),
we have

(5.8) TCP) {0}
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as a consequence of (5.7). Since P is dense in L2(T), (5.8) shows that T must
have been the zero operator. This completes the proof that T is a cosupport
for T.

Finally, we point out that if T is the operation of multiplication by a bounded
measurable function , Theorem 5.1 reduces to the classical F. and M. Riesz
Theorem for . This is immediate from Proposition 3.5 and Proposition 4.1.
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