ON THE GE_n OF A RING

BY SUSAN C. GELLER¹

This paper is concerned with a subgroup of the general linear group, namely the one generated by diagonal and elementary matrices and called GE(n, R). A ring for which GL(n, R) = GE(n, R) is called a GE_n -ring. It will be proved (Theorem 1) that a large class of rings is not GE_2 .

Let R be an associative ring with unit and let GL(n, R) be the group of all invertible $n \times n$ matrices over R. Let E(n, R) be the subgroup of GL(n, R) generated by $E_{ij}(r)$ where $E_{ij}(r) = (a_{ij})$ such that $a_{ii} = 1$, $a_{ij} = r$, and $a_{kl} = 0$ otherwise. Let GE(n, R) be the subgroup of GL(n, R) generated by the group of invertible diagonal matrices and E(n, R). Cohn [1] introduced this group in order to simplify his study of GL(n, R). He called a ring for which GL(n, R) = GE(n, R) a GE_n -ring. He then restricted his attention to n = 2.

Determining whether or not a ring is GE_n , or even GE_2 , is a very difficult problem. Samuel suggested that the ring

$$\mathbf{R}[x, y]/(x^2 + y^2 + 1) = S$$

might be k-stage Euclidean. This would imply that S is GE_2 . Murthy also wondered if this ring were GE_2 as it would be an example of a non-Euclidean GE_2 -principal ideal domain. Note that S has an ascending filtration given by $S_n = \{ [g] : \text{a minimal degree representative for } [g] \text{ has degree } \leq n \}$. Hence it has an associated graded ring T where $T_n = S_n/S_{n-1}$.

Let R^* denote the group of units of a ring R. For k a field, Cohn [1, p. 21, p. 24] defines a k-ring with degree function to be a ring R such that k is a subring of R, $k^* = R^*$, and there exists a map $d: R \to \mathbb{Z}$ such that:

- (1) $d(a) = -\infty$ if and only if a = 0;
- (2) d(a) = 0 if and only if $a \in R^*$;
- (3) $d(a b) \le \max(d(a), d(b))$;
- (4) d(ab) = d(a) + d(b).

The total degree of a polynomial in $k[x_1, ..., x_n]$ is an example of such a degree function.

Theorem 1. Let S be a k-ring with an ascending filtration and let T be its associated graded ring such that T is an integral domain and $T_0 = k$. Then S has a degree function d. Moreover, if S is commutative and $\dim_k T_1 > 1$, then S is not a GE_2 -ring.

Received September 16, 1975.

¹ This work was contained in the author's Ph.D. dissertation at Cornell University.

Proof. Define d by $d(0) = -\infty$, and $d(a) = \min \{n: a \in S_n\}$ for $a \neq 0$. By Proposition 2.2 of [3, p. 71], this d is a degree function.

Cohn [1, p. 386] proved that if R is a k-ring with degree function which is also a GE_2 -ring, then of any two elements of the same degree which form a regular row (i.e., generate the unit ideal), each is R-dependent on the other. In this case R-dependence means that given p, $q \in S$ of the same degree which generate the unit ideal, then p is R-dependent on q if there exists $a \in S$ such that d(p-aq) < d(p) and $d(a) + d(q) \le d(p)$, (See [2, p. 333] for a general discussion of R-dependence.) Clearly this last condition implies $d(a) \le 0$, i.e., $a \in k$.

If $\dim_k T_1 > 1$, then there exists \bar{x} , $\bar{y} \in T_1$ which are linearly independent over k. Let x, y be lifts of \bar{x} , \bar{y} . Since S is commutative, $1 = (1 - xy)(1 + xy + (-x^2)y^2$, and hence 1 + xy, y^2 generate the unit ideal. Since T is a graded integral domain, $\bar{x}\bar{y}$, $\bar{y}^2 \in T_2$. Thus $d(xy) = d(y^2) = 2$. If 1 + xy were R-dependent on y^2 , there would exist $a \in k$ such that

$$d(1 + xy + ay^2) = d(1 + (x + ay)y) < 2.$$

But d(x + ay) = 1 for all a by the linear independence of x and y. Hence d(1 + (x + ay)y) = 2 for all a. Thus S is not GE_2 .

Note that all that was needed from the assumption that S is commutative is the existence of $x, y \in S$ with $\bar{x}, \bar{y} \in T_1$ linearly independent over k such that 1 + xy, y^2 generate the ring as an ideal. This can be shown in the case where T is commutative, k is central in S, and $\dim_k T_1 = 2$.

Let $R = k[x_1, \ldots, x_n]$, k a field, $n \ge 2$; let $f \in R$ be of degree $r \ge 2$ and let f_r be its r-th homogeneous part. Let S = R/(f) and $T = R/(f_r)$. Then S has an ascending filtration given by $S_i = \operatorname{im} R_i$, where R_i is the set of polynomials of degree $\le i$, i.e., $[h] \in S_i$ if and only if a minimal degree representative g of [h] has degree $\le i$.

PROPOSITION 2. T is the associated graded ring of S.

Proof. R is a graded ring with the usual grading given by the total degree. It is easily shown that there is a surjective homomorphism of graded rings θ from $R = \operatorname{gr}(R)$ to $\operatorname{gr}(S)$. If $h \in R$ is homogeneous of degree n, then $\theta(h) = [h] + S_{n-1}$ in S_n/S_{n-1} . Thus it suffices to show that $(f_r) = \ker \theta$. In S_r , $[f_r] = [-f_1]$ where $f = f_r + f_1$ and degree $f_1 < r$. Thus $\theta(f_r) = 0$. Suppose $\theta(h) = 0$, h homogeneous of degree n. Then $\theta(h) = 0$ implies that $[h] \in S_{n-1}$, i.e., there exists a $p \in k$ with degree p < n, such that h = p + gf, $g \in R$. Taking the nth homogeneous parts of each side gives $h = g_s f_r$ where s + r = n and g_s is homogeneous of degree s. Thus $h \in (f_r)$ and $\ker \theta = (f_r)$.

COROLLARY 3. Let R, f, f, be as in Proposition 2. If f, is irreducible, then R/(f) is not GE_2 . In particular, $R[x, y]/(x^2 + y^2 + 1)$ is not GE_2 .

Proof. Since f_r is irreducible, T is an integral domain. Note that R/(f) is commutative and the result follows from Theorem 1.

George Cooke (University of Maryland) observed another degree function for $S = k[x_1, \ldots, x_n]/(f)$ which can be written as

$$k[x_1,\ldots,x_{n-1}][\sqrt{a}],$$

where a is a polynomial in x_1, \ldots, x_{n-1} . He defined $d(p) = \deg N(p)$, where $p \in S$ and $N: S \to k[x_1, \ldots, x_{n-1}]$ is the norm. For a specific ring one must check that $S^* = k^*$ and that

$$d(p-q) \le \max(d(p), d(q)).$$

The other properties follow easily and the proof proceeds as in Theorem 1. This shows, for example, that $S = k[x, y, z]/(x^i + y^j + z^2)$, where i, j, 2 are pairwise relatively prime, is not GE_2 . This ring is not covered by Theorem 1. It is currently not known for what f this d is a degree function.

By [4, p. 33], $\mathbb{R}[x, y]/(y^3 - x^2)$ is not GE_2 . Since $k[x, y]/(y^3)$ is GE_2 , the implication " $R/(f_r)$ is GE_2 implies R/(f) is GE_2 " does not hold. However it seems likely to the author that the implication "R/(f) is GE_2 implies $R/(f_r)$ is GE_2 " holds.

PROPOSITION 4. If $R = A[x_1, ..., x_n]$, A a commutative ring, $n \ge 3$, $f \in (x_i)$ for some i, then R/(f) is not GE_2 .

Proof. Without loss of generality assume that i=3. Then $\bar{x}_1\bar{x}_2$ and \bar{x}_1^2 are nonzero elements of R/(f). Since there is a natural surjection $R/(f) \to R/(x_3)$, if

$$\begin{pmatrix} 1 + \overline{x}_1 \overline{x}_2 & \overline{x}_1^2 \\ -\overline{x}_2^2 & 1 - \overline{x}_1 \overline{x}_2 \end{pmatrix}$$

were elementary over R/(f), it would be over $R/(x_3) \cong A[x_1, x_2, x_4, \ldots, x_n]$ and hence over $k[x_1, x_2, x_4, \ldots, x_n]$ where k is a field which is a homomorphic image of A, contradiction [1, p. 386].

Note that a GE_2 -ring may be contained in a non- GE_2 ring (e.g., $Z \subseteq Z[\sqrt{-5}]$) and a non- GE_2 ring may be contained in a GE_2 ring (e.g., $\mathbb{R}[x, y]/(x^2 + y^2 + 1) \subseteq \mathbb{C}[x, y]/(x^2 + y^2 + 1)$).

Although many rings are not GE_2 , it is possible to construct new GE_n -rings from known ones.

DEFINITION. A row (a_1, \ldots, a_n) is called unimodular if its elements generate the ring as an ideal.

Note that for a commutative ring to be a GE_2 ring, it suffices to show that any unimodular row of length 2 can be reduced to (1, 0) by transvections (i.e., by elementary operations).

PROPOSITION 5. Let R be a commutative ring and let I be an ideal contained in J(R), the Jacobian radical. If $\phi: GL(n, R) \to GL(n, R/I)$ is the canonical map, then

$$\phi(GE(n, R)) = GE(n, R/I)$$
 and $\phi^{-1}(GE(n, R/I)) = GE(n, R)$.

In particular R is GE_n if and only if R/I is GE_n .

Proof. Clearly $\phi(E(n, R)) = E(n, R/I)$ and $\phi(GE(n, R)) \subseteq \phi(GE(n, R/I))$. Let $\bar{u} \in R/I^*$. Let u be a lift of \bar{u} and u' be a lift of \bar{u}^{-1} . Then uu' = 1 + v, $v \in I$. Since $I \subseteq J(R)$, $1 + v \in R^*$. Hence $u(u'(1 + v)^{-1}) = 1$ and $u \in R^*$. Thus if $\overline{D} = \text{diag } (\overline{u}_1, \dots, \overline{u}_n)$, then

diag
$$(u_1, \ldots, u_n) \in GL(n, R)$$
.

So $\phi(GE(n, R)) = GE(n, R/I)$. Suppose $\phi(A) \in GE(n, R/I)$. By the above, there exists $B \in GE(n, R)$ such that $\phi(A) = \phi(B)$. Thus $\phi(AB^{-1}) = 1$ and $AB^{-1} = (c_{ij})$ where $c_{ij} \in I$ for $i \neq j$ and $c_{ii} = 1 + u_{ii}$, $u_{ii} \in I$. But $c_{ii} \in R^*$ so

$$AB^{-1} = \text{diag } (c_{11}, \ldots, c_{nn})X, X \in E(n, R).$$

Thus $A = \text{diag } (c_{11}, \ldots, c_{nn})XB \in GE(n, R)$.

COROLLARY 6. (a) R/(f) is $GE_n \Leftrightarrow R/(f^r)$ is GE_n .

(b) R/(f) is GE_n implies inj $\lim R/(f^r)$ is GE_n .

Proof. Since $(f) \subseteq J(R/(f^r))$, (a) follows from Proposition 5. There is a homomorphism ϕ : inj $\lim R/(f^r) \to R/(f)$. Since

$$\ker (R/(f^r) \to R/(f)) \subseteq J(R/(f^r)), \quad r \ge 2,$$

 $\ker \phi \subseteq J$ (inj $\lim R/(f')$). Thus (b) follows from Proposition 5.

Acknowledgement. The author wishes to thank her thesis advisor, Stephen U. Chase, for many helpful discussions on the above work.

REFERENCES

- 1. P. M. COHN, On the structure of the GL_n of a ring, Inst. Hautes Études Sci. Publ. Math., vol. 30 (1966), pp. 365-413.
- Rings with a weak algorithm, Trans. Amer. Math. Soc., vol. 109 (1963), pp. 332-356.
 Free rings and their relations, Academic Press, New York, 1971.
- 4. M. KRUSEMEYER, Fundamental groups, algebraic K-theory and a problem of Abhyankar, Invent. Math., vol. 19 (1973), pp. 15-48.

PURDUE UNIVERSITY

WEST LAFAYETTE, INDIANA