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It is shown that if T is a hyponormal operator on a Hilbert space H, if di is a
closed subset of the plane, and if #: C\di H is a bounded function such that
(T 2)#(2) x for some x e H, then there exists a (unique) analytic function

f: C\di H such that (T 2)f(l) x (see Theorem 1). In case T is normal
(or subnormal), the result is due to Putnam [7]; and in case T is spectral (or
subspectral), the result is due to Fong and Radjabalipour I-5, Lemma 21.
Actually, Putnam assumes no boundedness on g, while Fong and Radjabalipour
show that the boundedness condition is necessary. (As in the case ofhyponormal
operators the necessity of the boundedness of g is an open question.) As an
application of the above result we will show that if T is a cohyponormal oper-
ator, if S is a hyponormal operator, if W is an operator with a finite-dimensional
null space, and if WT SW, then T is normal (see Theorem 3). This answers
a question raised by Stampfli and Wadhwa in [12, Remark to Theorem 3]; it is
also a generalization of some results due to Stampfli, Wadhwa [12-1, Fong and
Radjabalipour [5]. As byproducts we will also improve some results due to
Stampfli (see Propositions and 2).

From now on by an operator we mean a bounded linear transformation
defined on a fixed separable Hilbert space H. The separability restriction will
result in no loss of generality. The range and the null space of an operator T
will be denoted by R(T) and N(T) respectively.

Recall that if T is normal or if the interior of the point spectrum tr,(T) of T
is empty, then T has the single-valued extension property, i.e., there exists no
nonzero, analytic, H-valued function f such that (T 2)f(2) 0. In par-
ticular every hyponormal operator has the single-valued extension property.
Moreover if T has the single-valued extension property and if the manifold

Xr() {x e H: there exists an analytic function fx: C\6 H

such that (T- 2)f(2) x}

is closed for some closed set , then a(TI Xr(di)) i c tr(T) [3, Proposition
3.8, p. 23].
We first prove the following modest generalization of Theorem 2 of [11].

The result is known in case T has no residual spectrum.

PROPOSITION 1. If T is hyponormal, then Xr(3) is closedfor all closed sets
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Proof. As in I-11-I we may and shall assume without loss of generality that
T has no eigenvalue. Fix 2 e a(T) and define

ex" R(T- ) R(T )

such that Pxx is the unique element in R(T ) satisfying (T* )Pxx x.
(Note that in view of [-4, Theorem 1], R(T- 2)

_
R(T* ).) For y

R(T 2) we have

I(PaxlY)l I(x (T

I((T- )-xl(T* )(T- 2)-y)l
< II(T- )-ax. II(T- 2)(T- 2)-XYll
< II(T- )-Xxll tlYlI.

Since y is arbitrarily chosen from a dense subset of R(T- 2), Ilexxll <
IIT )-xll (compare !-11, Lemma 1-1). Now if x R([_T -[n) for all n
and if Ilxll 1, it follows from the latter inequality that

II(T- 2)-Xxll 2 (P.(T )-lx x) _< lifT )-2xll,

and, by induction on n, that

II(T- )-xll 2 _< II(T- )-(+X)xil II(T- )--X)xli.

Using Lemma 2 of [111 yields II(T )-Xxll _< II(T )-xll, (Compare
[11, Lemma 3].)
Next let fi be a closed set and let x Xr(fi). Let f: C\5 H be an analytic

function such that (T 2)f(;t) x. One can use induction and differentiation
to show that x R(ET -1n) and (T )+ lf((/) - n! x for all n. (Com-
pare [ 11, Lemma 1-1.)
The rest of the proof is the same as in the case aR(T) 0 given by Stampfli

in [11, Theorem 2-1. His proof is bhsed on Lemmas 3 and 4 of the same paper.
In the preceding two paragraphs we proved Lemma 3 of [11]; and it is easy to
see that Lemma 4 of [ll-I is true as long as ap(T) 0. The proof of the
proposition is complete.

THEOREM 1. Let T be a hyponormal operator and let 5 be a closed subset of
the plane. Let #" C\5 H be a bounded function such that (T )#() =- x
for some x H. Then x Xr(5).

Note. Since T has the single-valued extension property, there exists at most
one analytic function f such that (T )f(/) x.

Proof of Theorem 1. In view of ,1"7, Theorem 1] we assume without loss of
generality that T has no reducing normal part; therefore T will have no invari-
ant subspace M with area (a(TI M)) 0. (Use Putnam’s inequality 16_-! and
the fact that a normal part of a hyponormal operator is necessarily reducing.)



72 M. RADJABALIPOUR

Let D be a fixed Cauchy domain containing 6. Choose a strictly increasing
sequence (D} of Cauchy domains converging to D such that 6 D and
{IDI} is a bounded sequence. (Here IGI denotes the arc length of the boun-
dary of G.) Let F be an open disc containing a(T), and let (at least formally)

u (27ri)- ( g(2) d2,
(r o)

(2ri)- ( g(2) d2,l)

(D D.)

-x-u-v (n-- 1,2,...).
Since T hs no eigenvlue, #() is wekly continuous [8, proof of Theorem 1].
Thus in view of 11, Scholium] the above integrals are well-defined,
u X(C\D), v X(\D,), nd X() (n 1, 2,... ). Moreover
I!11 -< KL and I111 -< KL, where K is bound for and L is a number greater
than IOrl and all IODI, Since {v,} and {w,) are bounded, we can assume with
no loss of generality that (v,} and (w,} converge weakly to some vectors v and
w respectively. Since X(F) is closed for all closed sets F (Proposition 1), it
follows that w X() and v Xr(\D,)= Xy(t3D) (invoke the single-
valued extension property of T). Thus v 0 and hence x u + w.

Let G be an open neighborhood of C\D and let y R(T* /). We
show that (#(2) Y) is analytic in G. For fixed 2o G, we have

lim ((2- 2o)-[g(,)- g(2o)] y)
2-*o

lim ((2 20)- [(T 2)-x (T 20)- x] Y)
2-"20

lim ((T- 2o)-(T- 2)- xly)
2"-’20

lim ((T- 2)-xlz)

((T 2o)-x z),

where z is any vector satisfying y (T* o)Z. (Here again use [8, proof of
Theorem 1-1.) Therefore (#() Y) is analytic in G and thus (uly) 0. In
particular, since x (] R(T* ) and w, (]. R(T* ) [4, The-
orem 1], we have (ulx) 0 and (ulw) lim(ulw) 0. Hence u 0
and x w Xr(B). Since D is an arbitrary Cauchy domain containing
x Xr(6). The proof of the theorem is complete.
As a corollary of Theorem we have the following proposition.

PROPOSiTiON 2. Let T be a hyponormal operator and let be a closed subset
of the plane. Assume there exists a bounded function #" C\6 H such that
(T 2)#(2) xfor some nonzero x H. Then T has a nonzero hyperinvariant
subspace M with tr(T M)

_
t$. In particular if t$ is a proper subset of tr(T),

then M is a nontrivial invariant subspace of T. (Compare [11, Theorem 3].)
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Proof. In view of Theorem 1, Xr(6) # {0}. Therefore Xr(g) is a nonzero
hyperinvariant subspace of T and since T has the single-valued extension
property, a(T XT(6))

_
6. Tlie rest of the proposition is obvious.

The following theorem is a sharpening of Proposition 2.

THEOREM 2. For a hyponormal operator T the manifoM (c R(T 2) is
not dense in H. Moreover (c R(T 2)

_
N(T*T TT*).

Proof. Assume without loss of generality that ap(T) ap(T*) 0 and
that T is not normal. Let x sc R(T ), and let y be a nonzero vector
for which (T* )-ly is weakly continuous everywhere (see [-8, Theorem 1]).
For fixed 2o e C, we have

lim ((2 o)- a[((T 2)- ix (T o)-ax-] Y)
A-2o

lim ((T 2)- (T 2o)-’x lY)

lim ((T- 20)- lxl(T* )- ly)

((T &o)-Xxl(T * o)-ay).

Therefore ((T 2)-:x y) is analytic everywhere and thus (x Y) 0. Hence
Y - ;tc R(T ). Since such vectors y are dense in R(T*T TT*),

(x,c R(T- )
_
N(T*T TT*).

The theorem is proved.
In view of [7, Theorem 1] one may expect xc R(T 2) to be {0}. Actu-

ally more is expected" the following conjecture is the most desirable form of a
generalization of Theorem 1 of [7].

Conjecture. Let T be a hyponormal operator and let 6 be a closed set. Then
Xa(6) ,, R(T 2).

Remark 1. For convenience we admit the following definition of a de-
composable operator. An operator T is called decomposable if for every finite
open covering {Ga,..., G,} of a(T) the manifolds Xr(G1),..., Xar(G,) are
closed and H Xa(G1)+ ""+ Xr(G,) (see [-1, Proposition 1.4] and [9,
Remark 2]). The class of decomposable operators is a natural generalization
of the class of spectral operators. In [10] we showed that there exists a de-
composable, nonnormal, cosubnormal operator. Let T be such an operator.
There exists a nonzero vector x .H and a bounded function g" C o H such
that (T 2)g(2) =- x [8, Theorem 1]. This shows that Theorem of [7],
Lemma 2 of [5], and Theorem of the present paper cannot be generalized to
the class of decomposable operators.
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THEOREM 3.
ditions

Let T, S, W, and D be operators satisfying the following con-

(i) (T- 2)(T* J[) >_ D >_ O forall 2C;
(ii) S is hyponormal;
(iii) dim (N(W)) < oo
(iv) WT-- SW.

Then D O. In particular, if T is cohyponormal, then T is normal. (Compare
[12, Theorem 1-1.)

Proof. If D -: 0, by [8, Theorem 1] there exist a nonzero vector x and a
bounded function g: C -o H such that (T 2)g(2) x. It follows that
that W#: C H is a bounded function for which (S 2)W#(2) Wx. In
view of Theorem 1, Wx 0 and W#(2) 0 for 2 trp(S). Let Tt be the restric-
tion of T to N(W) which is obviously an invariant subspace of T. The operator
Tt is normal and (Tt 2)#(2) x for 2 ap(S). It is easy to see that g(2)
(T 2)-1x for 2 (a(T) w try(S)). Hence (T1 2)-tx is an analytic func-
tion with finitely many singularities which is bounded on a dense subset of the
plane. Therefore (T1 2)-1x has an analytic extension everywhere and so
x 0, a contradiction. The proof of the theorem is complete.

COROLLARY 1. Let T be a cohyponormal operator, let S be a hyponormal
operator, and let W be a one-to-one operator such that WT SW and N(W*)
{0}. Then T and S are two unitarily equivalent normal operators.

Remark 2. An operator T is said to be a quasiaffine transform of an oper-
ator S if there exists a one-to-one operator W such that WT SW and
N(W*) {0}. Corollary says that if a cohyponormal operator T is a quasi-
affine transform of a hyponormal operator S, then both T and S are normal. A
slightly different result is true if T is cosubspectral: by Theorem 2 of [5-1 T is
spectral and thus by Theorem 3(a) of the same paper S is a normal operator
similar to T. However the following argument due to Berger and Shaw [-2,
Theorem 2.1] shows that the converse is not true in general; more precisely,
given any cyclic operator T on an infinite-dimensional Hilbert space H, there
exists a nonnormal, subnormal operator S which is a quasiaffine transform of
T. The operfitor S is the multiplication by z in R2(G, dx dy) for some open
neighborhood G ofa(T) and the operator W satisfying TW WScan be chosen
to be a trace class operator with N(W) N(W*) {0}. For a different type
of example see [- 12, Example ].
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