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1. Introduction

For X a Banach space, let (X) denote the space of bounded linear operators
and re(X) the space of compact linear operators. The identity of a Banach
algebra is always an extreme point of its unit ball. See [1]. As a simple con-
sequence, any unitary element is also extreme. Kadison [4] has shown that for
X Hilbert space, the extreme points of the unit ball of (X) are precisely the
semiunitary operators (partial isometries such that either TT*= I or
T*T I).
For X an arbitrary infinite dimensional Banach space, there is no reason to

suspect that cO(X) has many, if indeed any, extreme points in its unit ball. In
the first place, (X) does not contain any unitary operators. Moreover, the
Krein-Millman theorem cannot be readily invoked to conjure up extreme points,
since there are no known examples where re(X) is a conjugate space, and many
examples where re(X) is known not to be a conjugate space. See [2]. Finally,
it is known that, for X either Hilbert space or Co, re(X) has no extreme points.
See ]-5] for Hilbert space.
We present two results in this paper. First, we show that the unit ball of

<(1p) is the norm closed convex hull of its extreme points for _< p < oo and
p - 2. We do so by constructing extreme points which, like unitary operators
use all the coordinates. For the bizarre James’ space we construct very different
extremal operators, not at all analogous to unitary operators.

2. P spaces

LEMMA 2.1. Let {e} be the standard basis for Ip with 2 < p < oo. Suppose
Tej .= aie, with each as 0 and IlTejll 1; and that Tek is nonzero

for some k j. Then IIT > 1.

Proof. Without loss of generality, we can assume that each a > 0, since
lit VT where Vet (sign a)ei. Suppose Tek , bier Note that
Iley + Aell p / IAl. We will show that for 2 sufficiently small, either_, la + 2bilp or lai Abel is greater than + IAI.
Suppose 0 < [Ab[ < a. By applying Taylor’s theorem to

f(),)--la + Ablp + la- Abl
we have

[a + 2bl’ + la- Abl’
>_. 2a’ + 221/2(p(p 1))b2[la + 02bl’- + la 0Abl’-2-1
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where 0 < 0 < 1. Therefore

la + 2bl + la 2bl _> 2ap + 221/2(p(p 1))ap-2[bl 2.
Clearly,

[a + 2blp q- la- 2blp >_ 2a if2b 00r[2bl > a > 0.
Thus,

] (la + 2b,Ip + [at- 2b,I p) > 2 + ,,2 1/2(p(p_ 1))a,-2b.
I,bil ai

As 2 - 0, the last sum (the coefficient of ,2) increases monotonically. Thus
can be chosen small enough so that

(lat + Rblp + la- Rblp) > 2(1 + IAl).

LEMMA 2.2. Let {et) be the standard basis for Ip with 2 < p < . Suppose
Tej , aie and Teg Y’. bet, where j k, andfor some both a and b are
nonzero. Then IIT > Tell.

Proof. The proof of Lemma 2.2 is similar to that of Lemma 2.1.

Dv.vIqITIOq. An operator S in rC(lP) is said to be concentrated on [el,...,
if range S

_
[el,. en] and kernel S

_
[-en+ 1,... ].

PROPOSIarION 2.3. For 2 < p < oo, the unit ball of (l) is the norm closed
convex hull of its extreme points.

Proof. For any positive integer n, let S be any operator in rC(lP) which is
concentrated on [el,..., en] and which is extremal in the unit ball of
([el,..., en]). We will show that for each such S there exists an operator
V + T such that both S + V / T and S V T are extremal in the unit
ball of rC(lP). Then, since the unit ball of ([el,..., e,]) is the closed convex
hull of its extreme points, and since the set of all operators which are con-
centrated on some [e,..., en] are dense in rg(lp), it follows that the unit ball of
rC(lP) is the norm closed convex hull of its extreme points.
For S as described above, we now give the construction of V. Consider

{W: Wen+l [el,..., en], Wet 0 for all other i, and IIS + Wll 1).

Let Vt be an operator of maximum norm from that set of W. Suppose V1,...,
Vk have been defined, where k < n. Consider

{W: Wen+k+ [el,..., en], Wet 0 for all other i,

and IlS + V1 +"" + Vk + W 1}.

Let VR+ be an operator of maximum norm from that set of W. This defines
V1,..., Vn. Let V V1 +’" + Vn.
Note that the V must map onto disjoint coordinates. That is, for ] < k, if

Vjen+ has nonzero ith coordinate, then Vken+k must have ith coordinate zero.
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Suppose the contrary. Then by Lemma 2.2, IIV + Vll > IIVll, and there
would exist an element z of unit norm such that II(V / )zll > 11. Then
W, defined by We,,+ (V + Vk)Z and We,,, 0 for all other m, would con-
tradict the maximality property of V.
We claim that S + V is extremal as an element of the unit ball of

(P’, [e,..., e,]).

Suppose S+ V + A and S + V- A both have norm one. Consider the
following three cases.
For <_ j <_ n, Ae O, since S was extremal in the unit ball of

([ex,..., en]).

For < j < n, Aen+y 0, by a simple induction argument using the fact
that p is strictly convex and the maximality property of each V.
For m > 2n, Aem 0. To see this, consider these two cases" If V, 0, then

Aem nonzero would contradict the maximality property of V,. If V1,..., V,
are all nonzero, and Aem O, then, for some and j, Aem and Ve,,+ would
both have nonzero th coordinate, and this too would contradict the maximality
of V.. Thus, we have finished the proof that S + V is extreme in the unit ball
of &(1 P, [e,..., en]).

Next, define the operator T by Te2.+ o=,+ ae, with each q, 4:0
and [[Te2, +111 1, and Te 0 all other./.
We claim that S + V + T is extremal in the unit ball of ff(l). Suppose that

S + V + T B both have norm 1. By the strict convexity of ’, Be2,,+ O.
For m 2n + 1, Bern cannot have nonzero ith coordinate for < < n, by
the extremality of S + V, and for > n, by Lemma 2.2 applied to T _+ B.
Thus, B 0, and S + V + T is extreme. Of course, S- V- T is also
extreme, and this concludes the proof of the proposition.
As we have already mentioned, the unit ball of cg(12) has no extreme points.

The previous proposition, however, can be extended to ff(l), for < p < 2,
by using the fact that if(1) is isometrically isomorphic to ff(lq), where lip +
l[q 2; also it can easily be proved directly for p 1. Thus we have"

THEOREM 2.4. For 1 < p < o and p 2, the unit ball of Cg(lP) is the norm
closed convex hull of its extreme points.

Remark. The extremal operators that we constructed in proving Proposition
2.3 are analogous to unitary operators in that they map onto all coordinates of
1. That is, the matrix for such an operator has at least one nonzero entry in
each row. The adjoint of such an operator, which would be extreme in (lP)*,
has at least one nonzero entry in each column. In the next section, we give
compact extremal operators which are not analogous to unitary operators in
this sense.
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PROPOSITION 2.5. Let T be an isometry from Ip to 1, for 2 < p < oo. Then
for each j, there exists at c N such that Tea i. 2iei and at c ak 0 when
k#j.

Proof. Tmustachieve its norm on each e, since Tis an isometry. By a proof
similar to that of Lemma 2.1, if for j k, Tej and Tek both had a nonzero
coefficient for some e, then the norm of T would be greater than one.

3. A space of James

Let X be the normed space of all those sequences x in R such that (1)
lim x(i) 0 and (2) Ilxll is finite where

Ilxll sup (x(p.) x(p))2 + (x(pi+ ) x(p))2

such that {p) is a finite increasing subset of the positive integers}.
James has shown [3] that X is a Banach space and the standard vectors {ei}
form a monotone, shrinking basis. The following three facts are easily verified"

(i) For each x e X and k o, Ilxll 2 _> 21x(k)l",
(ii) Any element in X with n consecutive ones (where t _> 1), and all other

coordinates zero, has norm x/.
(iii) Any x X with x(j) and x(k) negative, for somej and k, has norm

greater than x/.
PROPOSITION 3.1. Suppose E sends e to +_ ek and all other basis vectors to O.

Then E is extremal in the unit ball of 3.

Proof. We will give the proof for E which sends e to ek. Clearly, E has
norm 1. Suppose there exists an operator A such that both E + A and E A
have norm 1. Note that

(E + A)(e,) +A(e,) + ek ifp<j<q.

Then, if p < j < q we have IIEge, x/ and also +4(Xg e,) + ell > 4
for at least one choice of sign if A(g e3 # 0. Hence A(g e3 0 whenever
p < j < q. This implies that A 0 and thus E is extreme.

Question 1. For a Banach space X, what is a sufficient condition for the unit
ball of cO(X) to be the norm closed convex hull of its extreme points?

Question 2. Which is more typical with regard to extreme points, the be-
havior of C(Co) and c(/2), or C(lP) with p - 2?
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Question 3. Are there any X for which c(X) is a conjugate space? (It is a
theorem of Bessaga and Pelczynski that the unit ball of any separable conjugate
space is the norm closed convex hull of its extreme points.)
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