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In [3-] Atkinson conjectured that a nonsolvable doubly transitive but not
doubly primitive permutation group is either a normal extension of St(q) or an
automorphism group of a block design with 2 1.

Let G be a doubly transitive but not doubly primitive permutation group of
degree pq + 1, where q is a prime. In [2-1 Atkinson proved that ifp 2, 3, 4
then his conjecture [-3] is true. More evidence supporting this conjecture
appears in [13]. We will prove that the conjecture is true ifp and 1/2(p 1) are
primes, p < q.

THEOREM. Let G be a doubly transitive but not doubly primitive permutation
group of degree pq + 1, where p, q, r 1/2(p 1) are primes and p < q. Then
one of the following holds"

(a) pq + 1 2 for some integer x and G is sharply doubly transitive.
(b) pq + 1 2 and G is the Zassenhaus group of degree 2 and order

2(2 1)r which contains a regular normal subgroup.
(c) q 1 (p + 1) and G is an automorphism group of a block design with
2 landk =p + 1.

Our notation for the parameters of a block design is standard; see [14]. We
remark that groups in (a) and (b) are solvable and satisfy the assumptions of
the theorem. Examples for (a), (b) are groups of degrees 2 tl, 223, 283, 2TM, for
which2 +pqand2r + =p. (We thank Prof. P.T. Bateman for the
examples.)

The incidence equations of a nontrivial block design and the Fisher’s in-
equality implies that if 2 1 and v pq + 1 then k p + 1 and q 1
(mod p + 1). Therefore all we have to prove in (c) is that G is an automorphism
group of a nontrivial block design with 2 1. Since sharply doubly transitive
groups of degree pq + 1 are solvable all we have to prove in (a) is that G is
sharply doubly transitive (see [3, 2.4]).

Notations. Let G be a doubly transitive but not doubly primitive permuta-
tion group on a set t2. Let At, A2, A3,..., be a complete system of imprim-
itivity sets for the action of G, on Q- {}, for Q. We call each A a
G-block. Set Ao {A a, A2, A3,... }, and A Ao {Ax}. Let H be the
stabilizer of A1 in G, and K the kernel of G in its action on Ao. Let A be
the kernel of H on A t. Let Fix (T) be the set of fixed points of the subgroup
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T. Let A, and S, be the alternating and the symmetric group of degree n,
respectively.

Proof of the theorem. Let G be a counterexample to the theorem. Let 1)

be the set on which G acts. Let e and fl At. Then G 4:1 and G is not
an automorphism group of a nontrivial block design on fl with 2 1 because
of the remarks above. Let Q be a Sylow q-subgroup of G contained in G,. By
[1] we have ]Q] q. We now divide the proof into two parts according to the
size of Ao. We will use [17, 11.6, 11.7] without referring to them. We note
that G, H.

Casel. [Ao[ =p. Then [At[ q for _< i_<p. We use Atkinson’s
argument (beginning of case 3 of the proof of Theorem A of [-2]), replacing 4
by p, to obtain that K is transitive and faithful on each At, _< _< p, and that
AK=I.

(1) Assume that K is solvable. Again, we use an argument of Atkinson
(third paragraph of case 3 of the proof of Theorem A of ]-2]), replacing 4 by p,
to getK= QandK 1.

It follows that G,o is a subgroup of Sp_ 1, the symmetric group on p 1
points. Since Q- H and Q c A 1 we conclude that H/A is a Frobenius
group of degree q so that G,o]A is cyclic of order dividing q 1.

If G,/Q is solvable, it is a Frobenius group on Ao so that G is semiregular
on A. Thus G is cyclic and IGor[ divides 2r. Since A fixes at least q + 1
points we have A -Y: G (by Lemma 1 of [2]). Hence if A - 1, A is a normal
Sylow subgroup of G,g contradicting Lemma I of [2]. It follows that A 1
and G, is semiregular and faithful on both A {fl} and A. Hence G, 1
for , {, fl}. Hence G is a Zassenhaus group and since p -Y: q we use
[5], [4], [16] to conclude that G contains a regular normal subgroup. Also
1 +pq 2 where a [G,[ and aisa prime. Since 1 +pq q:4 we have
a r. This is a contradiction because G is a counterexample.

Therefore G,/Q is nonsolvable. We claim that [G,: A[ 2. We have G,
doubly transitive on Ao.
By [6] we get that either p _< 11 and G,/Q - PSL(2, p) or G,/Q is triply

transitive on Ao. Ifp 11 then H/Q - G,t - A5 and since A -Y: G, we have
A 1. This is impossible because G,t/A is cyclic. If p 7 then G, - $4
and since G,t/A is cyclic we conclude that [G," A[ 2. If p 5 then
G,t - A4 and A is a Sylow 2-subgroup of G. Since A fixes more than two
points, Lemma 1 of [2] gives a contradiction.

If G,/Q is triply transitive then H[Q - G,g is doubly transitive on A. It
follows that A 4:1 because otherwise G, would be regular on A. Since
A G, we get that A is transitive on A (see [-17, 9.9]). In particular r divides
[A[. LetgeG such that A

_
G,t. IfA fixes no point of- A {}

then Fix (Ao) At w {} because [Fix (A)[ [Fix (A)[. Thus A A and
A is weakly closed in G,#, contradicting Lemma 1 of [2]. Thus, there is a

0 (fl At {}) c Fix (A).
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Let be such that 0 Ai and let Hi {h Hi Aih Ai}. It follows that A
fixes Ai. Hence A

_
Hi so r [Hi[. Since H is transitive on A we have

[H: Hi[ 2r so that r2 [G= Q[. Now [1] implies that G=/Q contains Ap so
that G=a contains Ap_ 1. If p 5 then either Ga is A4 or S, and we finish as
above. If p > 5 then [Ga" A[ < 2 and since A 4: G=a we conclude that the
index is 2.

Since G=a does not fix a third point [2, Lemma 1] we conclude that the

G-orbits on A1 {fl} are of size 2. Let {at, fli}, 1 < < 1/2(q 1), be these
orbits. Since Fix (Ga) {, fl} we have that Na(Ga) Gt,a. But Ga c

Gt,,, for all so that [G,,," G[ 2 and so G,,, N(G) G,
for all i. This implies that A {fl} is Gt,a-invariant contradicting Lemma 2
of [2]. This contradiction implies that K is nonsolvable.

(2) We can assume that K is nonsolvable. Since A c K 1 we get

K AK/A
_
H/A

so that H/A is nonsolvable and consequently H is doubly transitive on
Thus F1 A (fl} is a Ga-orbit. Now F is not Gt.a-invariant by Lemma
2 of [2-1 so that there is another Ga-orbit, F2, of size q- 1 which is not
Gt,a-invariant. Lemma 3 of I-2] yields yet another Ga-orbit Fa, of size
q 1 which is Gt,-invariant. It follows that r’ # F2, I" -76 I3, F2 # r’a.
By an argument appearing in the second paragraph of case 3 of [2-1, we get that
Fa and F2 cannot intersect the same Ai and that none of them is contained in a

G-block..Also Ka has at most two orbits on any Ai such that Fj c Ai # 0,
j= 2,3.

Let be the number of Ai’s such that At c F2 -7/: 0. Then 4: 1, 4: p 1.
The set of these Ai’s is a Ga-orbit on A and since H KGa, the set is an
H-orbit on A. As # p 1, H/K is not transitive on A and therefore G/K
is a solvable Frobenius group on Ao. Thus H/K

_
Ga/Ka is semiregular on

A, its order is and 2r. It follows that 2, r.
Let i {Aj Aj l"i -7/: 0} for 2, 3. Then ’i is a G,a-orbit on A of

size t. Let A i for some i. Since both A c F and A F are Ka-invariant,
they have to be the two Ka-orbits on A (Ka cannot be transitive on A as

IKalq 1). Since Ka < Ga, F is a union of Ka-orbits of equal sizes. From
F a, (h c F) we conclude that [A c Fi[ (q 1)It. Thus Ka has
two orbits of sizes m and q m on A e sCi, where m (q 1)It.
By [11, B1], we get [Fix (Ka)[ 2 so that N,(Ktj) G,a (Ka 4:1 as K is

doubly transitive on each Ai). Since G,/K is solvable, IG," K[ tp and we
can choose begs-K such that [hK[ =p. Let Cx (h) and let C
{hi[ 1 _< < p}. Using the bar notation in t G,/K we have that I’ ’.
Also is a regular normal subgroup of t, and therefore ’ c/7/ 1. Since
N,(Ko)

_
Hwe get C c N,(Ka) 1. It follows that the set I ((Ka)" a s C }

contains exactly p different subgroups of index q in K. Assume that a, b e C
and (Ka)" and (Ka)b are conjugate in K. Then Kaa, Ka for some hi e K
and since conjugates of Ka in G, have exactly one fixed point, each, in f (e}
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we conclude that ahx b. Since h K, {fla, fib} Ai for some 1 < < p
and therefore Aaa Axb. Since C is regular on Ao, this implies that a b.
Hence no element of I is conjugate in K to another element of L A lemma of

Ito I-7, Lemma 1] implies that for each pair (E, F), {E, F}
_
L there is a

symmetric block design on the cosets of E in K. In this design k IE: E c FI
and v q.

Let ax, az belong to C, a -: az, such that

fla Ai, fla2 Ai and {Ai,, A,.}
_
3 w d22

This is possible because C is transitive and regular on Ao and ld23 IO ,5’2[
2t > 4. Let ki, 2i be the parameters of the mentioned design for (Ka, (Ka)"’),
for 1, 2 and let ka, 23 be the parameters for ((Ka)a’, (Ka)a). Since Ka has
two orbits of sizes m and q m on A, j 1, 2, we get

k IKa: Ka, a,,l I(/az)g"l either m or q m.

The equations of a symmetric design with v q implies that

2 m(m- 1)/(q- 1)or (q- m)(q- rn- 1)/(q- 1), respectively.

It follows that kz- 2 m(q- m)/(q- 1) for i= 1,2. In particular
kx 2 k2 22. Another lemma of Ito [-7, equation (12)] implies that for
some natural number a,

(k 1)(k2 22)(k3 /3) a2.
This implies that k3 23 is a square, contradicting Lemma 5 of [7]. This
completes the proof of Case I.

Case II. IAol q. Then IAI p for 1 < < q. We break the proof into
two parts.

(1) Assume that G/K is not solvable. Then H is transitive on A. If all

Ga-orbits on A are of size more thanp 1, then all Ga-orbits on f {a} A
are of size bigger than p 1. Thus all the orbits of Ga of size at most p 1
are in A w {}. Since Fix (G) {, fl } by Lemma 1 of [2-1, we conclude
that Ax {fl } is Gt,,a-invariant. This is impossible because of Lemma 2 of
[2]. Hence there is at least one Ga-orbit on A of size less or equal to p 1.
In particular G,a is not transitive on A. Since H is transitive on Aa, IH: G,al p.
If K 1 we get H G,aK and since H is transitive on A, so is Ga. Since this
is impossible we get K 1.

Let P be a Sylow-p-subgroup of G contained in H. It follows that H PG,a.
If P fixes some A A then (A)n (A)-a =, A, contradicting the transitivity
of H on A. Thus P fixes no point of A and consequently P lq 1. Since
IH: G=al p, all G,a-orbits on A are of size at least (q 1)/p. By the remark
at the beginning of this case we have that (q 1)/p < p 1. Let q 1 pm,
then m < 2r.

If G, - A or S in its action on Ao then it is 3-transitive on A0 so that H
is doubly transitive on A. Since A

_
G,a, A is not transitive on A so that
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A 1 (see 9.9, [17]). But 1/2(q 1)! divides IHI and IHI divides p!. This is
impossible. Thus Go‘ Aq or Sq on Ao.

Suppose (m, r) # 1. Since m is even and 1 < rn _< 2r we have that either
rn r 2orrn 2r. Ifrn r 2thenp 5andq 11. Since Go‘ is a
nonsolvable transitive permutation group of degree 11 and G A 11 or $11,
we get that either Go, PSL(2, 11) or Mll (see [9]). If Go, PSL(2, 11) then
H

_
As so that A 1 and Go‘p -,44 Now [18] gives a contradiction. If

Go‘ - M11 then H is triply transitive on A. As A -< H, A is either 1 or transitive
on A. Since A Go‘p and Go‘a is not transitive on A we have A 1. Hence
H is a transitive permutation group of degree 5 and order 8.9.10. This is
impossible. We conclude that rn 2r and q 1 p(p 1). Since p 3,
r 3, or r 2(3). But r 2(3) implies q 0(3) which is impossible.
Thus r 3, p 7, and q 43. By [9, Section 5], Go‘’-" A or S on Ao
which is impossible. Hence (m, r) 1.

Let R be a Sylow r-subgroup of H. If H[A is nonsolvable, R fixes one point
on A and has two orbits of size r on the rest of the points. This is also the case
when HI,4 is solvable unless IH: ,41 P or 2p. In this case IGo‘a: AI < 2. This
is impossible because Lemma 1 of [2] implies that IGo‘a: ‘41 2 and we can
get a contradiction as in the end of (1) of Case I. We conclude that every
Sylow r-subgroup of H has three orbits on A1, their sizes are" 1, r, r. Since

IGo‘a" A[ < 2 is impossible we also get 1 : IGo‘plr ]H]r so that Go‘a is either
transitive or has two orbits of size r on A1 (fl }. Let g Gto‘,a Go‘a.
Since A1 {fl } is not Gto‘, a-invariant (by Lemma 2 of 1-23), there is a Gp-orbit,
Fo, on A1 {fl} such that Fog A1. Let F Fog, then IFI r or 2r.

Let Hi {hHIAih Ai}, 2 < i< q- 1. Since IH:Hil q- 1
pm and (m, r) 1 we get IHI, Inl for 2 < < q 1. If no Hi fixes a
point of A1 then each Hi must have two orbits of sizes r and r + 1 on A1. Thus,
for/> 1,

IA"I IGa" Ga c nl IGa" (n)al Hi" (Hi)a IH: nl Ore,
H: Ga

where 0 r or r + 1. If rn > 2 then all Ga-orbits on A are of size more than
2r which is impossible. Hence rn 2. By a theorem of Neumann 1-10-1,
Go‘ - A or S on A unless q 23, 11. Since Go‘ Aq or S we conclude that
q 23, 11 and by [9, Section 5], we have G - M23 onAo or G PSL(2, 11).
If G - M23 then H is 3-transitive on A so that A is either 1 or transitive on A.
Since A

___
Gp we have A 1. But q 23 implies p 11 and since IHI

27. 32. 5.7.11, [91 gives a contradiction. If q 11, p 5, and H = ,45.
Thus ,4 1 and Ga - A4. A contradiction follows from [18].

Therefore at least one H fixes a point of A1. Since all H’s are conjugate in
H, each H has a fixed point on A1 and is either transitive or has two orbits of
size r on the rest of the points in A1. Thus for > 2,

IA?’a IGa" (a)al Om,
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where 0 1, r, 2r. As above m > 2 so that all Ga-orbits on A which have
size at mostp 1, are of size m < 2r. Let {A A A c F :/: 0}. Then

is a Ga-orbit on A. But is also a complete system of imprimitivity sets
for the action of Ga on F. Thus I1 divides F. Hence I1 1, 2, r, 2r. In
partic,lalar I’1 < p- 1 so that I1 m. But m 1, 2, r, 2r. This is a
contradiction.

(2) We assume now that G/K is solvable. It follows that Ga/Ka is a semi-
regular group on A, as H/K is a Frobenius complement on it. Since H is
transitive on A1 and K < H, K is 1/2-transitive on A1. If K fixes A1 pointwise
it fixes all f so that K 1. If K is transitive on A1, it is transitive on each At.
Hence, either K 1 or K is transitive on each At. As in (1), IGa: AI > 2 so
that IGor: A[, -: 1 and we can define F and as in (1). Since G/K is semi-
regular and is a Ga-orbit on A we get that I1 Iaa: gal. Let I1,
then [G: KI tq and t[ 2r.

If Ka then Ga is semiregular and faithful on A and Gal 1, 2, r, 2r. It
follows that Ga 1 for yef- A1 {}. Since A< Ga and A # Ga
(by Lemma 1 of [2]) we have that either A 1 or A is a Sylow subgroup of

Ga. By Lemma 1 of [2-1, A 1. Then IHI tp so that H is solvable. Thus
Ga is also semiregular on A. Hence Ga 1 for y f {,/ } and G is a
Zassenhaus group. By the characterization of these groups we have that
1 +pq 2rand tisaprime. Since 1 +pq :/:4wegett r. Also Gcon-
tains a regular normal subgroup. This contradicts the fact that G is a
counterexample.
Hence Ka :/: 1. By [11, B1], we get Fix (Ka) {, fl }. Also K is transitive

on eachA. IfKactsnonfaithfullyontheA’sthen:PSL(n, s) < G PFL(n, s)
(see either [13A(a)-] or [12, Proposition 4-1 and [11]). Then G is an automor-
phism group of a block design with 2 1 (see [11]). Hence K is faithful on
each Av If K is solvable, there is exactly one class of subgroups of index p in
K so that Ka fixes one point in each At contradicting IFix (Ka)l 2.

Therefore K is nonsolvable. Since IFix (Kr)l 2 for y At, > 1, Kr fixes
no point of A so that Ka is not conjugate to Kv in K. By a paper of Ito [8-],
K is not triply transitive on A and by another paper of Ito [6], p < 11 and
K
_

PSL(2, p). Let g G such that Q (g). Then g K, Igl q > p,
and g normalizes K. Since PSL(2, p) does not admit an automorphism of order
q > p if p 5, 7, 11 we conclude that g and therefore Q centralizes K. Now
G HQ GtjKQ GaQK. Let heG be such that flh v At, > 1.
Then h hh2h3 where hi Ga, h2 e Q, and h3 K. Then (Ka)h K. But
Ka < Ga and Q centralizes Ka. Thus (Ka)h3 Kr. This is a contradiction
because Ka and Kr are not conjugate in K, as IFix (Kr)l 2. This contradiction
completes the proof of the theorem.
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