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1. Introduction

Let A be a discrete commutative ring with identity. If X is a space then

has a group structure given by restricting the cohomology cup-product in
H*(X; A). Also

can be made into a group by the same device. F(X; A) and F(X; A) are
representable as groups by H-space structures on

(1.1) K(A) 1-I K(A; q) and K(A) l-I K(A; 2q)
q>l ql

respectively.
G. B. Segal has proved the following"

1.2. THEOREM [8]. There are connected cohomology theories F*(X; A) and
F*(X; A) such that F(X; A) F(X; A) and F(X; A) Fe(X; A).
The total Stiefel-Whitney and Chern classes, w and c, respectively, are well-

known natural homomorphisms. Details are to be found in [4, p. 229].

(1.3) w" gO(X) --. F(X; Z/2), c" gU(X) --. Fe(X; Z).

Both/O(X) and/U(X) extend to well-known connected cohomology theories
bo*(X) and bu*(X), respectively. Details of connected K-theory may be found
in[1].

In [8, Section 4] Segal asks" Does either w or c extend to a stable natural
transformation between cohomology theories?

(1.4) w" bo*(X) --. F*(X; Z/2), c" bu*(X) --. F*(X; Z).

The representing spaces for bo(g-l), bu([--1), F(E];Z]2), and Fe(I--1;Z) are
infinite loopspaces. Segal’s question may be equivalently rephrased" Does either
w or c extend to a map of infinite loopspaces ?
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This note proves:

1.5. THEOREM. It/ (1.3) neither w nor c extends as in (1.4) to a stable natural
transformation from connective K-theory to the cohomology theories constructed
by Settal in [8-].

Sketch ofproof. A connective cohomology theory admits a transfer homo-
morphism for finite covering maps. Details will be given as they are needed. A
stable operation must commute with these transfers. We show that w and c fail
this test for the covering BZ/2 --. BZ/4.

In Section 2 the ingredients of Segal’s proof are recalled. In Section 3 these
ingredients are related to the transfer operation in Segal’s cohomology theories.
There we obtain the fundamental dimension restrictions on this exotic transfer.
In Section 4 we prove Theorem 1.5.

2. The infinite Ioopspaces K(A) and K,(A)
Let A be a discrete commutative ring. I will now briefly describe the manner

in which Segal constructs infinite loopspace structures on the H-spaces K(A)
or K(A) (where the multiplication is induced by cup-product) which give the
connected cohomology theories of Theorem 1.2.

I will describe the proof in terms of the operads of J. P. May [6]. It is re-
marked in I-8, Section 3-1 that this approach is equivalent to Segal’s. However
the operad approach makes the transfer more easily accessible for our purposes.
I should remark that I know of no proof in the literature which shows that,
when supplied the same data, the methods of [6] and [9-] give rise to equivalent
infinite loopspaces. However it is easy to verify that they give rise to the same
transfer operations, which is all we shall use.

Let K be a graded topological group. Set cg(0) (point) and if j > 1 set
off(j) equal to the topological space of continuous, graded multilinear maps from
K to K. Then {c(j)}>_o is an operad. Further details may be found in [6, p. 1].
The structure maps

V. Cg(k) >< (jl)>< ...>< c(jk) cg(j) (j= = j)
are induced by composition of maps in the following manner.

K’>< >< K --. K ><... >< K Kk _.. K.

Permutation of the factors of Kj makes cg(j) into a right Zj-space.
The operad {(J)}l acts naturally on K by means of the Z-equivariant

evaluation maps if(j) >< K K. Operad actions are defined in [6, p. 3].
If K K(A) or K Ke(A) let M(j) c (j) be those maps which induce the

iterated cup-product on homotopy groups. Segal shows that M(j) is contrac-
tible. In operad parlance {M(j)}>_o is a locally contractible operad. However
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if K is an//-space upon which a locally contractible operad acts then K is an
infinite loopspace [6, Theorem 1.3 and Proposition 3.10(ii)]. In terms of cate-
gories this result is proved in ]-9, Section 2]. This proves Theorem 1.2. Observe
that Ke(A) is a subinfinite-loopspace of K(A).
We will need the following observation"

2.1. LEMMA. In the situation described above the operad action maps send

i=1 <q<at

into H g(A; q) were a.

Proof. M(j) consists of graded multilinear maps. Such maps preserve total
degree.

This simple observation restricts the dimension of the transfer of a Stiefel-
Whitney or Chern class (see Lemma 3.2) in Segal’s cohomology theories. This
fact is used in Section 4 to show that w and c do not commute with transfers.

3. Transfers

Now let us recall the transfer operations associated with Segal’s infinite loop-
spaces K(A). Further details concerning the transfer may be found in [5].

Let Y--. Y/(Z/n)= X be an n-fold cyclic covering. There is a map

" X --, M(n) >< y. Y" [5, Section 3]. Let f: Y --, K be a homotopy class then
the transfer, try(f), is represented by the composition

p X rm fn dn
Y" ’M(n) >< K" K.(3.1) X M(n) ><,

Here d, is the Dyer-Lashof map which is induced by one of the structure maps
of the action of {M(j)}io on K.

In the above situation we have the following result"

3.2. LEMMA. Letf 1-I1 qa Hq(Y; A). Then

trr(f) I] Hq(X A).
<q <an

Proof In (3.1) the map 1 x:.f" maps into M(n) xy. (Iqa K(A; q))"
which, by Lemma 2.1, maps into I-I_<q, K(A; q).

4. Proof of Theorem 1.5

Suppose that w" BO I-Iez K(Z/2; q) K is an infinite loop map. From
[3; 6] we know that the following diagram is E.-homotopy commutative

EY BO - BO
(4.1) ltw.

M(n) x K" K
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In (4.1), # is an equivariant map and d,//, are the appropriate Dyer-Lashof
maps, i.e., the operad action maps.

Let Y - Y/(Z/n) X be an n-fold cyclic covering. Then (4.1) immediately
implies

(4.2) w(trbo(f)) trr(w(f)) I-I H(X; Z/2).
qzO

Here trbo is the K-theory transfer which is defined by the procedure of Section 3
with BO and//, replacing K and d,. In [7, Chapter VIII, Section 1] it is shown
that this transfer agrees with that defined by means of the direct image con-
struction [2].
For the covering BZ/2 BZ/4, (4.2) does not hold. Consider - 1

KO(BZ/2) where is the Hopf line bundle. Then

H*(BZ/2; Z/2)= P(w()) and w(- 1)= 1 + w().

Therefore, by Lemma 3.2,

(4.3) trr(w( 1)) l--I Hq(BZ/4 Z/2).
1<q<2

Let v be the 2,plane bundle over BZ/4 associated to the Z/4-representation in
which the generator rotates the plane through re/2. Let ’ be the pullback of
via the nontrivial map BZ/4 - BZ/2. Then

H*(BZ/4; Z/2) E(wx(’)) (R) P(w2(v)).
From the transfer in representation rings we easily see that

trbo( 1) (v 2) (’- 1)
whence

w(trbo(- 1))= + w2(v) + wx(’)+ w2(v)+ w(’)w2(v).
+ w(’)

This does not lie in I-Iaqs2 H(BZ/4; Z/2) which contradicts (4.2) and (4.3).
A similar calculation shows that

trr,(c(O 1)) #- c(tro,(O 1)) I-I H2(BZ/4; Z)
q>l

where 0 is the complexification of KO(BZ/2).

4.4. Remark. One can make sense of the total Stiefel-Whitney and Chern
class for other coefficient rings. For example one might reduce modulo n or
localise the Chern class. In these cases, too, these total classes will fail to
commute with transfer. The expressions trr(w(F- n)) and trr(c(F- n)) will
always have low dimensions comparable with the dimension of the vector
bundle, F. However,

w(trbo(F- n)) w(trb(F)) c(trb(F))
w(trbo(n))

and c(trb(f n))= c(tru(n))
can be arranged to have high dimensional nonzero components.
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