THE TOTAL CHERN AND STIEFEL-WHITNEY
CLASSES ARE NOT INFINITE LOOP MAPS

BY
VICTOR SNAITH

1. Introduction

Let A be a discrete commutative ring with identity. If X is a space then

F(X; A) ={xel + 11 H“(X;A)}

q21

has a group structure given by restricting the cohomology cup-product in
H*(X; A). Also

F(X; A = {xe 1 + qu(X;A)}

qz1
can be made into a group by the same device. F(X; A) and F,(X; A) are
representable as groups by H-space structures on

(L.1) KW = [1 KA q) and K8 = [T K(A: 2)

qz1 qz1
respectively.
G. B. Segal has proved the following:

1.2. THEOREM [8]. There are connected cohomology theories F*(X; A) and
FX(X; A) such that FO(X; A) = F(X; A) and FO(X; A) = F(X; A).

The total Stiefel-Whitney and Chern classes, w and ¢, respectively, are well-
known natural homomorphisms. Details are to be found in [4, p. 229].

(1.3) w:RO(X) » F(X; Z/2), ¢:RUX) —» F(X; Z).

Both KO(X) and KU(X) extend to well-known connected cohomology theories
bo*(X) and bu*(X), respectively. Details of connected K-theory may be found
in [1].

In [8, Section 4] Segal asks: Does either w or ¢ extend to a stable natural
transformation between cohomology theories?

(1.4) w: bo*(X) — F¥(X; Z[2),  c: bu*(X) » F*(X; Z).

The representing spaces for bo°([1), bu®(01), F([I; Z/2), and F,((J; Z) are
infinite loopspaces. Segal’s question may be equivalently rephrased: Does either
w or ¢ extend to a map of infinite loopspaces?
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This note proves:

1.5. THEOREM. In (1.3) neither w nor c extends as in (1.4) to a stable natural
transformation from connective K-theory to the cohomology theories constructed
by Segal in [8].

Sketch of proof. A connective cohomology theory admits a transfer homo-
morphism for finite covering maps. Details will be given as they are needed. A
stable operation must commute with these transfers. We show that w and c fail
this test for the covering BZ/2 — BZ/4.

In Section 2 the ingredients of Segal’s proof are recalled. In Section 3 these
ingredients are related to the transfer operation in Segal’s cohomology theories.
There we obtain the fundamental dimension restrictions on this exotic transfer.
In Section 4 we prove Theorem 1.5.

2. The infinite loopspaces K(A) and K,(A)

Let A be a discrete commutative ring. I will now briefly describe the manner
in which Segal constructs infinite loopspace structures on the H-spaces K(A)
or K, (A) (where the multiplication is induced by cup-product) which give the
connected cohomology theories of Theorem 1.2.

I will describe the proof in terms of the operads of J. P. May [6]. It is re-
marked in [8, Section 3] that this approach is equivalent to Segal’s. However
the operad approach makes the transfer more easily accessible for our purposes.
I should remark that I know of no proof in the literature which shows that,
when supplied the same data, the methods of [6] and [9] give rise to equivalent
infinite loopspaces. However it is easy to verify that they give rise to the same
transfer operations, which is all we shall use.

Let K be a graded topological group. Set ¥(0) = (point) and if j > 1 set
%(j) equal to the topological space of continuous, graded multilinear maps from

K’ to K. Then {%(j)};5 0 is an operad. Further details may be found in [6, p. 1].
The structure maps

k
v 6(k) >< 6(j)) >< -+ >< 6(j) — 6() (j -% js)

are induced by composition of maps in the following manner.
Kjl>< ...><ka__,K>< cee< K = Kk_,K.

Permutation of the factors of K/ makes %(j) into a right = ;-space.

The operad {%(j)};. acts naturally on K by means of the Z;-equivariant
evaluation maps %(j) >< K/ - K. Operad actions are defined in [6, p. 3].

If K = K(A) or K = K,(A) let M(j) = %(j) be those maps which induce the
iterated cup-product on homotopy groups. Segal shows that M (j) is contrac-
tible. In operad parlance {M(j)};, is a locally contractible operad. However
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if K is an H-space upon which a locally contractible operad acts then X is an
infinite loopspace [6, Theorem 1.3 and Proposition 3.10(ii)]. In terms of cate-
gories this result is proved in [9, Section 2]. This proves Theorem 1.2. Observe
that K(A) is a subinfinite-loopspace of K(A).

We will need the following observation:

2.1. LEMMA. In the situation described above the operad action maps send

M(j) >< H( 1| K(A;q))

=1 \1=<g=<ag

into [1y<g<a K(A; q) where a = Yi_; a;.

Proof. M(j) consists of graded multilinear maps. Such maps preserve total
degree.

This simple observation restricts the dimension of the transfer of a Stiefel-
Whitney or Chern class (see Lemma 3.2) in Segal’s cohomology theories. This
fact is used in Section 4 to show that w and ¢ do not commute with transfers.

3. Transfers

Now let us recall the transfer operations associated with Segal’s infinite loop-
spaces K(A). Further details concerning the transfer may be found in [5].

Let Y —» Y/(Z/n) = X be an n-fold cyclic covering. There is a map
¢: X - M(n)><y, Y"[5, Section 3]. Let f: Y » K be a homotopy class then
the transfer, trg(f), is represented by the composition
1><gnf" dn

M(n)><_ K" K.

Here d, is the Dyer-Lashof map which is induced by one of the structure maps
of the action of {M(j)};,0 on K.
In the above situation we have the following result:

31 X

M(n)><_ Y"

32. LemMA. Let feli<4<o HY(Y; A). Then
(e [I HUAX; A).
1<g<an

Proof. In (3.1) the map 1 xy f" maps into M(n) xg, (ITi<4<a K(A; @))"
which, by Lemma 2.1, maps into [T, c,<. K(A; ).

4. Proof of Theorem 1.5

Suppose that w: BO — [1,,; K(Z/2; q) = Kis an infinite loop map. From
[3; 6] we know that the following diagram is X,-homotopy commutative

EZ, x BO" - BoO
(4'1) luxw" lw
M(n) x K" —, K
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In (4.1), u is an equivariant map and d,, d, are the appropriate Dyer-Lashof
maps, i.e., the operad action maps.

Let Y —» Y/(Z/n) = X be an n-fold cyclic covering. Then (4.1) immediately
implies

“4.2) w(try(f)) = trek(w(f)) € l;[0 HY(X; Z/2).

Here tr,, is the K-theory transfer which is defined by the procedure of Section 3
with BO and d, replacing K and d,. In [7, Chapter VIIL, Section 1] it is shown
that this transfer agrees with that defined by means of the direct image con-
struction [2].

For the covering BZ/2 — BZ/4, (4.2) does not hold. Consider ¢ — 1€
KO(BZ/2) where ¢ is the Hopf line bundle. Then

H*(BZ|2; Z|2) = P(wy(§)) and w({ — 1) =1 + w,(&).
Therefore, by Lemma 3.2,
4.3) trwé — 1) e [l HYBZ/4; Z)|2).
1 2

<gq=<

Let v be the 2-plane bundle over BZ/4 associated to the Z/4-representation in
which the generator rotates the plane through n/2. Let & be the pullback of &
via the nontrivial map BZ/4 — BZ/2. Then

H*(BZ[4; Z|2) = E(W,(£")) ® P(w,(v)).
From the transfer in representation rings we easily see that

e, —-—1D=0-2)-¢ -1

whence
_ _ 1+ w
w(try(& — 1)) T+ wi@)

This does not lie in [T, <,<, HY(BZ/4; Z/2) which contradicts (4.2) and (4.3).
A similar calculation shows that

trile(@ — 1)) # c(try, (0 — 1)) e ]:[1 H*(BZ/4; Z)

=1+ wi(&) + wa(v) + wi(E)w, (V).

where 6 is the complexification of ¢ € KO(BZ/2).

4.4. Remark. One can make sense of the total Stiefel-Whitney and Chern
class for other coefficient rings. For example one might reduce modulo n or
localise the Chern class. In these cases, too, these total classes will fail to
commute with transfer. The expressions trg(w(F — n)) and trg(c(F — n)) will
always have low dimensions comparable with the dimension of the vector
bundle, F. However,

w(try(F — n)) = %—((t%’:((%; and c(try,(F — n)) = cc((ttrrb:“((l;;;

can be arranged to have high dimensional nonzero components.
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