LOCAL-BELONGING SETS AND MULTIPLIER-INDUCED IDEALS IN GROUP ALGEBRAS

ΒY

STEPHEN H. FRIEDBERG AND LAWRENCE E. SPENCE

1. Introduction

Let G be a locally compact abelian group (lcag) with dual group Γ . The group and measure algebras of G will be denoted by $L^1(G)$ and M(G), respectively, and $A(\Gamma)$ and $B(\Gamma)$ will denote the corresponding transform algebras, in which the norms are those induced by $L^1(G)$ and M(G). The notation will generally follow that of Rudin [5].

Let f be a complex-valued function on Γ , and let I be an ideal of $A(\Gamma)$. If f agrees with a function in I on some neighborhood of $\gamma \in \Gamma$, then f is said to belong locally to I at γ . The concept of local-belonging is of great value in determining whether or not a given function belongs to an ideal of $A(\Gamma)$. (See, for example, [2] and [6].) In [1] Edwards proves that if Γ is nondiscrete, then there exists a continuous function on Γ which does not belong locally to $A(\Gamma)$ at some point of Γ . If, for $f \in C(\Gamma)$, we define the local-belonging set of f, denoted by L(f), to be the set of those elements of Γ at which f belongs locally to $A(\Gamma)$, then Edwards' result may be restated: If Γ is nondiscrete, then there exists a function $f \in C(\Gamma)$ for which L(f) is a proper subset of Γ . The question naturally arises as to the characterization of those (necessarily open) subsets of Γ which are of the form L(f) for some $f \in C(\Gamma)$. In part 2 we will characterize such sets. We would like to thank Walter Rudin for many valuable suggestions concerning this result.

For a function f in $C(\Gamma)$ define $I(f) = \{g \in A(\Gamma): fg \in A(\Gamma)\}$. Clearly I(f) is an ideal of $A(\Gamma)$, and f may be regarded as a multiplier of I(f) in the sense of Meyer [4]. We shall refer to an ideal of the form I(f) as a multiplier-induced ideal, induced by f. In Section 3 we will characterize (Theorem 5') those closed, multiplier-induced ideals of $A(\Gamma)$ induced by elements of $C(\Gamma)$. The result which links Sections 2 and 3 is that the spectrum of I(f) coincides with L(f).

2. A characterization of local-belonging sets

Recall that for $f \in C(\Gamma)$, L(f) denotes the set of all $\gamma \in \Gamma$ at which f belongs locally to $A(\Gamma)$. Our principal result is:

THEOREM 1. Let Γ be a nondiscrete lcag, and let U be an open subset of Γ . Then U = L(f) for some $f \in C(\Gamma)$ if and only if ∂U , the boundary of U, is a G_{δ} subset of Γ . Furthermore, the function f may be chosen to be uniformly continuous

Received December 10, 1975.

and bounded on Γ and equal to zero on U. If, in addition, Γ is σ -compact, then f may be chosen to be an element of $C_0(\Gamma)$.

If Γ is assumed also to be metric, then we have an immediate corollary:

COROLLARY. If Γ is a nondiscrete metric lcag, then every open subset of Γ is of the form L(f) for some bounded, uniformly continuous function f on Γ .

The proof of Theorem 1 depends upon the following four lemmas.

LEMMA 1. Let Γ be a lcag, and let $f \in C_u(\Gamma)$, where $C_u(\Gamma)$ denotes the collection of uniformly continuous functions on Γ . There exists a compact subgroup N of Γ such that Γ/N is metric and f is constant on the cosets of N.

Proof. Since f is uniformly continuous, a sequence $\{U_n : n = 1, 2, ...\}$ of neighborhoods of the identity in Γ can be chosen to satisfy the following conditions:

- (i) $\overline{U_1}$ is compact.
- (ii) $U_{n+1} + U_{n+1} \subseteq U_n$ for each *n*.
- (iii) $\overline{U_{n+1}} \subseteq U_n$ for each *n*.
- (iv) If α , $\beta \in \Gamma$ and $(\alpha \beta) \in U_n$, then $|f(\alpha) f(\beta)| < 1/n$.

Define $N = \bigcap_{1}^{\infty} U_{n}$; then N is a compact subgroup of Γ . Moreover,

$$\{\pi(U_n): n = 1, 2, \ldots\}$$

is a countable neighborhood base of the identity in Γ/N , where $\pi: \Gamma \to \Gamma/N$ is the quotient mapping, and so Γ/N is metric. Finally, if α and β lie in the same coset of N, then $(\alpha - \beta) \in N$. Hence $|f(\alpha) - f(\beta)| < 1/n$ for each n, and thus $f(\alpha) = f(\beta)$.

A function \tilde{g} on Γ/N induces a function $g = \tilde{g} \circ \pi$ on Γ , where $\pi: \Gamma \to \Gamma/N$ is the quotient map. This notation will be used throughout the remainder of Section 2.

LEMMA 2. Let Γ be a lcag, let N be a closed subgroup of Γ , and let \tilde{g} and \tilde{h} be functions on Γ/N .

(a) If $\tilde{g} \in B(\Gamma/N)$, then $g \in B(\Gamma)$.

(b) If $\tilde{h} \in C(\Gamma/N)$ and $L(\tilde{h}) = \emptyset$, then $h \in C(\Gamma)$ and $L(h) = \emptyset$. Furthermore, if \tilde{h} is uniformly continuous (bounded), then h is uniformly continuous (bounded).

Proof. (a) Let $\gamma_1, \ldots, \gamma_n \in \Gamma$, and let

$$\tilde{f}(x) = \sum_{i=1}^{n} c_i(x, \gamma_i + N);$$

then $f(x) = \sum_{i=1}^{n} c_i(x, \gamma_i)$ is a trigonometric polynomial on G. Since $\tilde{g} \in B(\Gamma/N)$, we may apply Eberlein's Theorem (see [5, p. 32]) to obtain

$$\left|\sum_{1}^{n} c_{i} g(\gamma_{i})\right| = \left|\sum_{1}^{n} c_{i} \tilde{g}(\gamma_{i} + N)\right| \leq \|\tilde{g}\| \|\tilde{f}\|_{\infty} \leq \|g\| \|f\|_{\infty}$$

Hence, using Eberlein's Theorem again, we have that $g \in B(\Gamma)$.

(b) Let $\tilde{h} \in C(\Gamma/N)$. We shall prove that if $L(h) \neq \emptyset$, then $L(\tilde{h}) \neq \emptyset$. Because $B(\Gamma)$ is closed under translation, it follows that L(h) is a union of cosets of N. Let W_1 and W_2 be nonempty open subsets of Γ with compact closures such that $\overline{W_1} \subset W_2 \subset \overline{W_2} \subset L(h)$, and let $\tilde{g} \in B(\Gamma/N)$ be such that $\tilde{g} = 1$ on $\pi(\overline{W_1})$ and $\tilde{g} = 0$ off $\pi(W_2)$. Since $\overline{W_2}$ is a compact subset of L(h), there exists a function $f \in B(\Gamma)$ such that h = f on $\overline{W_2}$. Now $g \in B(\Gamma)$ by (a) above, and g = 1 on W_1 and g = 0 on the complement of W_2 . Defining $f_0 = gf$, we have that $f_0 \in B(\Gamma)$. Moreover, $f_0 = gh$, and hence f_0 is constant on the cosets of N (since both g and h are). By [5, p. 53] there exists $\tilde{f}_0 \in B(\Gamma/N)$ such that $f_0 = \tilde{f}_0 \circ \pi$. Furthermore, $\tilde{f}_0 = (\tilde{gh}) = \tilde{h}$ on $\pi(W_1)$, and therefore $L(\tilde{h}) \neq \emptyset$.

The remainder of the lemma is obvious.

LEMMA 3. Let Γ be a nondiscrete lcag. There exists $h \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ such that $L(h) = \emptyset$.

Proof. (a) Assume first that Γ is also separable and metric, and let $\{\beta_p : p = 1, 2, ...\}$ be a countable dense subset of Γ . For $\beta \in \Gamma$ and r > 0 let $N(\beta, r)$ denote the ball of radius r centered at β . For positive integers k, m, and p define

$$F(k, m, p) = \left\{ f \in C_0(\Gamma) \colon \left| \sum_{i=1}^n a_i f(\gamma_i) \right| \le m \left\| \sum_{i=1}^n a_i \gamma_i \right\|_{\alpha} \right\}$$

for all $\gamma_1, \ldots, \gamma_n \in N(\beta_p, 1/k)$ and all complex numbers a_1, \ldots, a_n .

Clearly F(k, m, p) is closed in $C_0(\Gamma)$. It is also nowhere dense, for if U is any open subset of $C_0(\Gamma)$, we may choose $f \in A(\Gamma) \cap U$ and then use Edwards' result [1] to find $f_2 \in C_0(\Gamma)$ such that $\beta_p \notin L(f_2)$ and $(f_1 + f_2) \in U$. It then follows from [3, p. 215] that $(f_1 + f_2) \notin F(k, m, p)$. Hence the Baire Category Theorem implies the existence of a function $h \in C_0(\Gamma)$ which does not belong to any F(k, m, p).

We will show that $L(h) = \emptyset$. Let $\gamma \in \Gamma$, and let V be an open neighborhood of γ . If h = g on V for some $g \in A(\Gamma)$, then h = g on $N(\beta_p, 1/k)$ for some positive integers p and k. But by taking m = ||g||, we are led to the contradiction that $h \in F(k, m, p)$.

(b) Now assume only that Γ is a nondiscrete, σ -compact lcag. By Lemma 1 there exists a compact subgroup N of Γ such that Γ/N is metric. Since Γ/N is

also σ -compact, it is separable. Thus by (a) above there exists $\tilde{h} \in C_0(\Gamma/N)$ such that $L(\tilde{h}) = \emptyset$. By Lemma 2,

$$h = \tilde{h} \circ \pi \in C_{\mu}(\Gamma) \cap L^{\infty}(\Gamma)$$
 and $L(h) = \emptyset$.

(c) Finally, let Γ be any nondiscrete lcag. Let U_1 by a symmetric neighborhood of the identity having compact closure. For $n = 2, 3, \ldots$ define $U_n = U_{n-1} + U_{n-1}$, and let $H = \bigcup_{1}^{\infty} U_n$. Then H is an open σ -compact subgroup of Γ , and so by (b) above there exists

$$h_0 \in C_u(H) \cap L^\infty(H)$$

such that $L(h_0) = \emptyset$. Now Γ is a disjoint union of cosets $\gamma_{\alpha} + H$, where α belongs to some indexing set. For $\gamma \in \Gamma$ find an index α and an element β in H such that $\gamma = \gamma_{\alpha} + \beta$. By defining $h(\gamma) = h_0(\beta)$, we have $h \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ and $L(h) = \emptyset$.

The final lemma, contained in [7], is proved here for completeness.

LEMMA 4. Let Γ be a σ -compact leag, and let F be a closed, nonempty G_{δ} subset of Γ . There exists $g \in A(\Gamma)$ such that g equals zero precisely on F.

Proof. Let $F = \bigcap_{1}^{\infty} U_n$, where U_n is open; then $F' = \bigcup_{1}^{\infty} U'_n$, where ' denotes complementation. Since F is σ -compact, each U'_n is a countable union of compact sets, and hence F' is also a countable union of compact sets $\{K_m: m = 1, 2, \ldots\}$. Choose $f_m \in A(\Gamma)$ such that $f_m > 0$ on K_m , $||f_m|| < 2^{-m}$, and $f_m = 0$ on F. Then $g = \sum_m f_m$ is the desired function.

Proof of Theorem 1. Suppose first that U = L(f) for some function f which is uniformly continuous on Γ . If $U = \emptyset$, then ∂U is a G_{δ} subset of Γ ; so assume that $U \neq \emptyset$. Choose a compact subgroup N for f as in Lemma 1. As we have observed previously, U (and hence ∂U) is a union of cosets of N. Since Γ/N is metric, $\pi(\partial U)$ is a G_{δ} subset of Γ/N , and hence there exist open sets V_n (n = 1, 2, ...) in Γ/N such that $\pi(\partial U) = \bigcap_{1}^{\infty} V_n$. Thus

$$\partial U = \pi^{-1}(\pi(\partial U)) = \bigcap_{1}^{\infty} \pi^{-1}(V_n),$$

so that ∂U is a G_{δ} subset of Γ .

Now suppose that U = L(f) for some continuous real-valued function f on Γ . As in the proof of Lemma 3, let H be a σ -compact open subgroup of Γ , and write Γ as a disjoint union of cosets $\bigcup_{\alpha} (\gamma_{\alpha} + H)$. Use the construction of Lemma 4 to find $g_0 \in C_0(H)$ with $g_0 > 0$ and $L(g_0) = H$, and define $g \in C(\Gamma)$ by the rule $g(\gamma_{\alpha} + \gamma) = g_0(\gamma)$ for each $\gamma \in H$. Letting $h = ge^{if}$, we have $h \in C_u(\Gamma)$ since $g_0 \in C_0(H)$ and e^{if} is bounded on Γ . Moreover, $L(h) = L(e^{if}) = L(f)$ because g > 0 on Γ and $L(g) = \Gamma$. Hence the preceding paragraph shows that $\partial L(f) = \partial L(h)$ is a G_{δ} subset of Γ .

Finally, suppose that U = L(f) for an arbitrary continuous function f on Γ . Write $f = f_1 + if_2$, where f_1 and f_2 are continuous real-valued functions on Γ . Since the boundaries of $L(f_1)$ and $L(f_2)$ are G_{δ} subsets of Γ by the preceding paragraph, there exist bounded, uniformly continuous, real-valued functions g_1 and g_2 on Γ such that $L(g_1) = L(f_1)$ and $L(g_2) = L(f_2)$. Let $g = g_1 + ig_2$; then

$$L(g) = L(g_1) \cap L(g_2) = L(f_1) \cap L(f_2) = L(f) = U.$$

But since g is a bounded, uniformly continuous function of Γ , the first paragraph of the proof shows that ∂U is a G_{δ} subset of Γ .

To prove the converse, assume first that Γ is σ -compact. Lemma 3 proves the desired result if $U = \emptyset$; so suppose that $U \neq \emptyset$. If ∂U is a G_{δ} subset of Γ , then so is \overline{U} . Hence by Lemma 4 there exists $g \in A(\Gamma)$ such that g = 0 precisely on \overline{U} . Use Lemma 3 to select $h \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ such that $L(h) = \emptyset$. Define f = gh; then $f \in C_0(\Gamma)$, f = 0 on U, and L(f) = U.

Now assume only that Γ is a nondiscrete lcag and that U is a G_{δ} subset of Γ , where $\partial U = \bigcap_{1}^{\infty} U_n$ for open sets U_n . Construct an open σ -compact subgroup H of Γ as in the proof of Lemma 3. Since U and H are open, we have

$$\partial_H(U \cap H) = (\partial U) \cap H = \left(\bigcap_{1}^{\infty} U_n\right) \cap H = \bigcap_{1}^{\infty} (U_n \cap H)$$

where ∂_H denotes the boundary relative to H. Thus $U \cap H$ has a G_{δ} boundary in H, and so the preceding paragraph guarantees the existence of $f_0 \in C_0(H)$ such that $f_0 = 0$ on $U \cap H$ and $L(f_0) = U \cap H$. Write Γ as a disjoint union of cosets of H, say $\Gamma = \bigcup_{\alpha} (\gamma_{\alpha} + H)$. Given $\gamma \in \Gamma$, find an index α and an element $\beta \in H$ such that $\gamma = \gamma_{\alpha} + \beta$. Defining $f(\gamma) = f_0(\beta)$ (as in Lemma 3) gives a function $f \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ with the desired properties.

3. A characterization of closed multiplier-induced ideals in $A(\Gamma)$

We seek to classify those closed ideals of $A(\Gamma)$ which are of the form $I(f) = \{g \in A(\Gamma): fg \in A(\Gamma)\}$ for some $f \in C(\Gamma)$.

First, however, observe that I(f) need not be closed even for $f \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$. For example, we need only select such an f with $L(f) = \Gamma$ and $f \notin B(\Gamma)$. Then I(f) is dense in $A(\Gamma)$ since Theorem 2 below implies that the spectrum of I(f) equals Γ , but $I(f) \neq A(\Gamma)$ lest Theorem 3.8.1 of [5] imply that $f \in B(\Gamma)$. For noncompact Γ a function f satisfying these conditions can be defined by letting $f = 1/\phi$, where ϕ is a function having the properties in Theorem 5.3.4 of [5].

Our characterization (Theorem 5') of closed ideals of $A(\Gamma)$ having the form I(f) utilizes Theorem 1 and a result of Meyer [4] which asserts that the multipliers of an ideal depend only on the spectrum of the ideal. Our next result determines the spectrum of I(f).

THEOREM 2. Let Γ be a lcag, and let $f \in C(\Gamma)$. Then L(f) = sp(I(f)), the spectrum of I(f).

Proof. Let $\gamma \in sp(I(f))$. Then there exists $g \in I(f)$ such that $g(\gamma) \neq 0$. Choose a neighborhood U of γ and a function h in $A(\Gamma)$ such that gh = 1 on U. Since $gh \in I(f)$, we have $fgh \in A(\Gamma)$ and f = fgh on U. Thus $\gamma \in L(f)$.

Now suppose that $\gamma \in L(f)$. Then there exists a neighborhood U of γ and a function h in $A(\Gamma)$ such that f = h on U. Choose $g \in A(\Gamma)$ such that $g(\gamma) = 1$ and g = 0 on U'. Then $fg = hg \in A(\Gamma)$, and hence $g \in I(f)$. Thus $\gamma \in sp(I(f))$. For a closed subset E of Γ we define $I_E = \{f \in A(\Gamma): f = 0 \text{ on } E\}$.

THEOREM 3. Let Γ be a lcag, and let $f \in C(\Gamma)$. If I(f) is closed, then $I(f) = I_E$, where E = (L(f))'.

Proof. Since f is a multiplier of I(f), it follows from Meyer [4] and Theorem 2 that f is also a multiplier of I_E . That is, $I(f) = I_E$.

The question of when I(f) is closed may be reformulated as in the following result.

THEOREM 4. Let Γ be a nondiscrete lcag, and let $f \in C(\Gamma)$. Then I(f) is closed if and only if I(f) = I(g) for some $g \in C(\Gamma)$ such that g is the restriction of a Fourier-Stieltjes transform on L(f).

Proof. Assume first that I(f) = I(g), where g is the restriction of a Fourier-Stieltjes transform g_0 on L(f). We shall prove that $I(g) = I_E$, where E = (L(f))'. Let $h \in I_E$; then $hg = hg_0$ since h = 0 on E. But $h \in A(\Gamma)$ and $g_0 \in B(\Gamma)$, and hence $hg \in A(\Gamma)$. Thus $h \in I(g)$. So $I(f) = I(g) = I_E$.

Conversely, assume that I(f) is closed, and let U = L(f). Since ∂U is a G_{δ} subset of Γ , Theorem 1 implies that there exists $g \in C(\Gamma)$ such that g = 0 on U and L(g) = U. Thus g is the restriction of 0 on L(f), and $I(g) = I_E = I(f)$, where E = U', by the preceding paragraph and Theorem 3.

Theorem 4 cannot be strengthened to conclude that if I(f) is closed, then f is actually the restriction of a Fourier-Stieltjes transform. In fact, there exists $f \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ which is not the restriction of a Fourier-Stieltjes transform on L(f), and yet I(f) is closed. Applying the technique of Meyer [4] to $\Gamma = R$ and E = (0, 1)', we can construct a continuous function f on [0, 1] such that f(0) = f(1) = 0 and f is a multiplier of I_E . The desired function is obtained by extending f to $C_0(R)$ via Lemma 3 in such a way that L(f) = (0, 1).

THEOREM 5. Let Γ be a nondiscrete lcag, and let E be a closed subset of Γ having a G_{δ} boundary. Then there exists $f \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ such that $I_E = I(f)$.

Proof. By Theorem 1 we may select $f \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ such that f = 0 on E' and L(f) = E'. By Theorem 4, I(f) is closed and $I(f) = I_E$.

We may combine Theorem 3 and Theorem 5 into a more compact form:

THEOREM 5'. Let Γ be a nondiscrete lcag, and let I be a closed ideal of $A(\Gamma)$ with cospectrum E. Then I = I(f) for some $f \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ if and only if $I = I_E$ and ∂E is a G_{δ} subset of Γ . COROLLARY. Let Γ be a nondiscrete metric lcag, and let I be a closed ideal of $A(\Gamma)$ having cospectrum E. Then I = I(f) for some $f \in C_u(\Gamma) \cap L^{\infty}(\Gamma)$ if and only if $I = I_E$.

We will conclude with an example of an ideal which is not of the form I(f) for any $f \in C(\Gamma)$. From the last theorem it follows that if Γ were an uncountable product of circles and I were the ideal of all functions vanishing at the origin, then I would not be of the form I(f) for any $f \in C(\Gamma)$ since $\{0\}$ is not a G_{δ} subset of Γ .

REFERENCES

- 1. R. E. EDWARDS, On functions which are Fourier transforms, Proc. Amer. Math. Soc., vol. 5 (1954), pp. 71–78.
- 2. S. FRIEDBERG, The derived algebra of a group algebra, Ark. Mat., vol. 23 (1972), Fasc. 5, p. 520.
- 3. C. S. HERZ, The spectral theory of bounded functions, Trans. Amer. Math. Soc., vol. 94 (1960), pp. 181-232.
- Y. MEYER, Endomorphisms des idéaux fermés de L¹(G), classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4), vol. 1 (1968), pp. 499-580.
- 5. W. RUDIN, *Fourier analysis on groups*, Interscience Tracts in Pure and Applied Mathematics, no. 12, Interscience, New York, 1962.
- 6. S. SAEKI, An elementary proof of a theorem of Henry Helson, Tôhoku Math. J., vol. 20 (1968), pp. 244–247.
- 7. C. R. WARNER, Closed ideals in the group algebra $L^1(G) \cap L^2(G)$, Trans. Amer. Math. Soc., vol. 121 (1966), pp. 408–423.

Illinois State University Normal, Illinois