LOCAL-BELONGING SETS AND MULTIPLIER-
INDUCED IDEALS IN GROUP ALGEBRAS

BY
STEPHEN H. FRIEDBERG AND LAWRENCE E. SPENCE

1. Introduction

Let G be a locally compact abelian group (Icag) with dual group . The
group and measure algebras of G will be denoted by L'(G) and M (G), respec-
tively, and A(I') and B(I') will denote the corresponding transform algebras,
in which the norms are those induced by L'(G) and M (G). The notation will
generally follow that of Rudin [5].

Let f be a complex-valued function on I', and let / be an ideal of A(I"). If f
agrees with a function in I on some neighborhood of y € I', then f is said to
belong locally to I at y. The concept of local-belonging is of great value in
determining whether or not a given function belongs to an ideal of A(I'). (See,
for example, [2] and [6].) In [1] Edwards proves that if I' is nondiscrete, then
there exists a continuous function on I' which does not belong locally to A(I')
at some point of I'. If, for fe C(I'), we define the local-belonging set of f,
denoted by L(f), to be the set of those elements of I" at which f belongs locally
to A(T"), then Edwards’ result may be restated: If I' is nondiscrete, then there
exists a function f e C(I") for which L(f) is a proper subset of I'. The question
naturally arises as to the characterization of those (necessarily open) subsets of
I" which are of the form L(f) for some fe C(I'). In part 2 we will characterize
such sets. We would like to thank Walter Rudin for many valuable suggestions
concerning this result.

For a function fin C(') define I(f) = {g € A("): fg € A(I)}. Clearly I(f)
is an ideal of A(I'), and f'may be regarded as a multiplier of /(f) in the sense of
Meyer [4]. We shall refer to an ideal of the form I(f) as a multiplier-induced
ideal, induced by f. In Section 3 we will characterize (Theorem 5’) those closed,
multiplier-induced ideals of A(I") induced by elements of C(I'). The result which
links Sections 2 and 3 is that the spectrum of I(f) coincides with L(f).

2. A characterization of local-belonging sets

Recall that for f'e C(I'), L(f) denotes the set of all y € " at which f belongs
locally to A(T"). Our principal result is:

THEOREM 1. Let T be a nondiscrete Icag, and let U be an open subset of T.
Then U = L(f) for some f e C(I) if and only if 0U, the boundary of U, is a G;
subset of T'. Furthermore, the function f may be chosen to be uniformly continuous
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and bounded on T and equal to zero on U. If, in addition, I is a-compact, then
f may be chosen to be an element of Cy(I').

If T is assumed also to be metric, then we have an immediate corollary:

CoRrOLLARY. If I is a nondiscrete metric Icag, then every open subset of T is
of the form L(f) for some bounded, uniformly continuous function f on T

The proof of Theorem 1 depends upon the following four lemmas.

LEmMMA 1. LetI' be alcag, and let f € C,(I'), where C,(I') denotes the collection
of uniformly continuous functions on I'. There exists a compact subgroup N of T
such that T')N is metric and f is constant on the cosets of N.

Proof. Since f is uniformly continuous, a sequence {U,:n = 1,2,...} of
neighborhoods of the identity in I' can be chosen to satisfy the following
conditions:

(i) U, is compact.
i) U,y + U,., € U, for each n.
(i) U,,, < U, for each n.
(iv) Ifea, peI and (0 — p) € U,, then | f(a) — f(B)| < 1/n.

Define N = ﬂ}” U,; then N is a compact subgroup of I'. Moreover,
{mn(U):n=1,2,...}

is a countable neighborhood base of the identity in I'/N, where n: ' - /N is
the quotient mapping, and so I'/N is metric. Finally, if « and f lie in the same
coset of N, then (x — ) € N. Hence |f(«) — f(B)] < 1/n for each n, and thus
S@ = fB).

A function § on I'/N induces a functiong = §on on I', where n: T —» ['/N

is the quotient map. This notation will be used throughout the remainder of
Section 2.

LEMMA 2. Let T be a lcag, let N be a closed subgroup of T, and let § and h
be functions on T'|N.

(@) Ifg e B('/N), then g € B(I).

(b) Ifh e C(T/N) and L(h) = 0, then h € C(T') and L(h) = Q. Furthermore,
if h is uniformly continuous (bounded), then h is uniformly continuous (bounded).

Proof. (a) Lety,,...,7,€T, and let

n

Fe) =¥ elx, y + N);

1
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then f(x) = X7 ¢i(x, ;) is a trigonometric polynomial on G. Since § € B(I'/N),
we may apply Eberlein’s Theorem (see [5, p. 32]) to obtain

n

3 s + N)] < 161 171 < gl If].

1

2:: c;g(v:)

Hence, using Eberlein’s Theorem again, we have that g € B(I').

(b) Let he C(I'/N). We shall prove that if L(h) # 0, then L(h) # 0.
Because B(I') is closed under translation, it follows that L(4) is a union of
cosets of N. Let W, and W, be nonempty open subsets of I" with compact
closures such that W, ¢ W, = W, < L(h), and let § € B(I'/N) be such that
g = 1 on n(W,) and § = 0 off n(W,). Since W, is a compact subset of L(h),
there exists a function f'e€ B(I') such that & = fon W,. Now g e B(I') by (a)
above,andg = 1 on W, andg = 0 on the complement of W,. Defining f, = gf,
we have that f, € B(I'). Moreover, f, = gh, and hence f; is constant on the
cosets of N (since both g and 4 are). By [5, p. 53] there exists f, € B(I'/N)
such that f, = f, o n. Furthermore, f, = (gh) = i on n(W,), and therefore
L(h) # 0.

The remainder of the lemma is obvious.

LeMMA 3. Let T be a nondiscrete Icag. There exists h € C(I') n L*(I') such
that L(h) = 0.

Proof. (a) Assume first that I' is also separable and metric, and let {#,: p =

1, 2,...} be a countable dense subset of I'. For eI and r > 0 let N(8, r)
denote the ball of radius r centered at 8. For positive integers k, m, and p define

‘12, ay;

for all y,,....y, € N(B,, 1/k) and all complex numbers a,, ..., a,,} .

F(k, m, p) = :fe Co(D):

iaif(yi)’ =m

o

Clearly F(k, m, p) is closed in Cyo(I'). It is also nowhere dense, for if U is any
open subset of Cy(I'), we may choose fe A(') » U and then use Edwards’
result [1] to find f, € Co(T') such that 8, ¢ L(f;) and (f; + f) € U. It then
follows from [3, p. 215] that (f; + f>) ¢ F(k, m, p). Hence the Baire Category
Theorem implies the existence of a function 4 € Cy(I") which does not belong to
any F(k, m, p).

We will show that L(h) = Q. Lety eI, and let V be an open neighborhood
of y. If h = g on V for some g € A(I'), then & = g on N(B,, 1/k) for some
positive integers p and k. But by takingm = | g||, we are led to the contradiction
that h € F(k, m, p).

(b) Now assume only that I' is a nondiscrete, 6-compact Icag. By Lemma 1
there exists a compact subgroup N of I" such that I'/N is metric. Since I'/N is
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also o-compact, it is separable. Thus by (a) above there exists i € Co(T'/N)
such that L(h) = 0. By Lemma 2,

h=honeC)n L) and L(h) = 0.

(c) Finally, let I" be any nondiscrete Icag. Let U, by a symmetric neighbor-
hood of the identity having compact closure. For n = 2, 3,... define U, =
U,y + U,_,and let H = U‘f’ U,. Then H is an open g-compact subgroup
of T, and so by (b) above there exists

he € C(H)n L°(H)

such that L(#y) = 0. Now I' is a disjoint union of cosets y, + H, where o
belongs to some indexing set. For y € I find an index « and an element f in H
such that y = y, + . By defining A(y) = hy(B), we have he C(I") n L®()
and L(h) = 0.

The final lemma, contained in [7], is proved here for completeness.

LEMMA 4. Let I' be a o-compact Icag, and let F be a closed, nonempty G
subset of T'. There exists g € A(I') such that g equals zero precisely on F.

Proof. Let F = (¥ U,, where U, is open; then F' = {JT U,, where ' de-
notes complementation. Since F is o-compact, each U, is a countable union of
compact sets, and hence F’ is also a countable union of compact sets {K,,:
m=1,2,...}. Choose f,, € A(I') such that f,, > 0 on K,,, ||/l < 27™, and
fw =0o0n F. Theng = Y., f,is the desired function.

Proof of Theorem 1. Suppose first that U = L(f) for some function f
which is uniformly continuous on I'. If U = 0, then U is a G; subset of T';
so assume that U # (. Choose a compact subgroup N for f as in Lemma 1.
As we have observed previously, U (and hence dU) is a union of cosets of N.
Since I'/N is metric, n(0U) is a G subset of I'/N, and hence there exist open sets
V,(m = 1,2,...)in I'/N such that n(0U) = (\? V,. Thus

oU = n~Y(n(dV)) = 6 = (V)

so that 0U is a G, subset of T".

Now suppose that U = L(f) for some continuous real-valued function f on
I'. Asin the proof of Lemma 3, let H be a o-compact open subgroup of I', and
write I" as a disjoint union of cosets (J, (y, + H). Use the construction of
Lemma 4 to find g, € Co(H) with g > 0 and L(g,) = H, and define g e C(I)
by the rule g(y, + ) = go(y) foreach y € H. Letting h = ge', we have h e C,(I")
since g, € Co(H) and e is bounded on I. Moreover, L(h) = L(e') = L(f)
because g > 0 on I" and L(g) = I'. Hence the preceding paragraph shows that
OL(f) = OL(h) is a G5 subset of I

Finally, suppose that U = L(f) for an arbitrary continuous function fon T,
Write f = f, + if;, where f; and f, are continuous real-valued functions on I".
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Since the boundaries of L(f;) and L(f,) are G, subsets of I" by the preceding
paragraph, there exist bounded, uniformly continuous, real-valued functions

g, and g, on I" such that L(g,) = L(f;) and L(g,) = L(f3). Letg = g, + ig,;
then

L(g) = L(g1) » L(g2) = L(f) n L(f2) = L(f) = U.

But since g is a bounded, uniformly continuous function of T, the first paragraph
of the proof shows that dU is a G; subset of T'.

To prove the converse, assume first that I" is -compact. Lemma 3 proves the
desired result if U = 0; so suppose that U # 0. If 0U is a G, subset of ', then
so is U. Hence by Lemma 4 there exists g € A(I') such that g = 0 precisely on
U. Use Lemma 3 to select he C,(I') n L®(T) such that L(h) = 0. Define
f = gh;then fe Co(I), f = Oon U, and L(f) = U.

Now assume only that I' is a nondiscrete Icag and that U is a G subset of T,
where U = ﬂ‘f’ U, for open sets U,. Construct an open g-compact subgroup
H of T as in the proof of Lemma 3. Since U and H are open, we have

aH(UnH)=(aU)mH=(ﬁU”)mH=ﬁ(U,,mH),

where dy denotes the boundary relative to H. Thus U n H has a G; boundary
in H, and so the preceding paragraph guarantees the existence of f, € Co(H)
such that f; = O on U n H and L(f,) = U n H. Write I as a disjoint union
of cosets of H, say I' = | ), (y, + H). Given y €T, find an index o and an

element f§ € H such that y = y, + . Defining f(y) = f,(f) (as in Lemma 3)
gives a function fe C(I') n L*(I") with the desired properties.

3. A characterization of closed multiplier-induced ideals in A(T")

We seek to classify those closed ideals of A(I") which are of the form I(f) =
{ge A(): fg € A(")} for some fe C(I).

First, however, observe that I(f) need not be closed even for fe C,(I') n
L*(I'). For example, we need only select such an f with L(f) = I' and
f¢ B(I'). Then I(f) is dense in A(T") since Theorem 2 below implies that the
spectrum of I(f) equals [, but I(f) # A(T) lest Theorem 3.8.1 of [5] imply
that fe B(I'). For noncompact I" a function f satisfying these conditions can
be defined by letting f = 1/¢, where ¢ is a function having the properties in
Theorem 5.3.4 of [5].

Our characterization (Theorem 5') of closed ideals of A(I') having the form
I(f) utilizes Theorem 1 and a result of Meyer [4] which asserts that the
multipliers of an ideal depend only on the spectrum of the ideal. Our next
result determines the spectrum of I(f).

THEOREM 2. Let T be a Ilcag, and let fe C(I'). Then L(f) = sp(I(f)), the
spectrum of I(f).
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Proof. Let y e sp(I(f)). Then there exists g € I(f) such that g(y) # O.
Choose a neighborhood U of y and a function 4 in A(T") such that gk = 1 on U.
Since gh € I(f), we have fgh € A(') and f = fgh on U. Thus y € L(f).

Now suppose that y € L(f). Then there exists a neighborhood U of y and a
function /1 in A(I") such that f = 4 on U. Choose g € A(I') such that g(y) = 1
andg = Oon U’. Then fg = hg € A(I'), and hence g € I(f). Thus y € sp(I())).

For a closed subset E of I' we define Iy = {fe A('): f = O on E}.

THEOREM 3. Let T bealcag, andlet f e C(I'). IfI(f)is closed, then I(f) = I,
where E = (L(f)) .

Proof. Since f'is a multiplier of I(f), it follows from Meyer [4] and Theorem
2 that f'is also a multiplier of I;. That is, I(f) = I.

The question of when I(f) is closed may be reformulated as in the following
result.

THEOREM 4. Let I' be a nondiscrete Icag, and let fe C(I'). Then I(f) is

closed if and only if 1(f) = I(g) for some g € C(I') such that g is the restriction
of a Fourier-Stieltjes transform on L(f).

Proof. Assume first that I(f) = I(g), where g is the restriction of a Fourier-
Stieltjes transform g, on L(f). We shall prove that I(g) = I;, where E =
(L(f)). Let helg; then hg = hg, since h = 0 on E. But he A(I') and
do € B(I"), and hence hg € A(T"). Thus h € I(g). So I(f) = I(g) = Ij.

Conversely, assume that I(f) is closed, and let U = L(f). Since 0U is a G,
subset of T', Theorem 1 implies that there exists g € C(I') such that g = 0 on
Uand L(g) = U. Thus g is the restriction of 0 on L(f), and I(g) = Iz = I(f),
where E = U’, by the preceding paragraph and Theorem 3.

Theorem 4 cannot be strengthened to conclude that if I(f) is closed, then f'is
actually the restriction of a Fourier-Stieltjes transform. In fact, there exists
fe C ()~ L*() which is not the restriction of a Fourier-Stieltjes transform
on L(f), and yet I(f) is closed. Applying the technique of Meyer [4]toI" = R
and E = (0, 1)’, we can construct a continuous function f on [0, 1] such that
f(0) = f(1) = 0 and f'is a multiplier of /5. The desired function is obtained by
extending f'to Cy(R) via Lemma 3 in such a way that L(f) = (0, 1).

THEOREM 5. Let T be a nondiscrete Icag, and let E be a closed subset of T
having a Gz boundary. Then there exists f € C(I') n L*(I') such that Iy = I(f).

Proof. By Theorem 1 we may select fe C(I') n L*(I') such that f = 0 on
E’ and L(f) = E’. By Theorem 4, I(f) is closed and I(f) = I.
We may combine Theorem 3 and Theorem 5 into a more compact form:

THEOREM 5’. Let I be a nondiscrete Icag, and let I be a closed ideal of A(I")

with cospectrum E. Then I = I(f) for some fe C,(I') n L*(T") if and only if
I = I; and OF is a G subset of T'.
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CoROLLARY. Let I' be a nondiscrete metric Icag, and let I be a closed ideal
of A(T') having cospectrum E. Then I = I(f) for some f € C(I') n L*(I) if and
only if I = Ig.

We will conclude with an example of an ideal which is not of the form I(f)
for any f € C(I'). From the last theorem it follows that if I were an uncountable
product of circles and I were the ideal of all functions vanishing at the origin,

then 7 would not be of the form I(f) for any fe C(I') since {0} is not a Gj
subset of T'.
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