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1. Introduction

Let G be a locally compact abelian group (lcag) with dual group F. The
group and measure algebras of G will be denoted by L(G) and M(G), respec-
tively, and A(F) and B(F) will denote the corresponding transform algebras,
in which the norms are those induced by L1(G) and M(G). The notation will
generally follow that of Rudin [5].

Let f be a complex-valued function on F, and let I be an ideal of A(F). Iff
agrees with a function in I on some neighborhood of , F, then f is said to
belong locally to I at y. The concept of local-belonging is of great value in
determining whether or not a given function belongs to an ideal of A(F). (See,
for example, [2] and [6].) In [1] Edwards proves that if F is nondiscrete, then
there exists a continuous function on F which does not belong locally to A(F)
at some point of F. If, for f C(F), we define the local-belonging set off,
denoted by L(f), to be the set of those elements of F at whichf belongs locally
to A(F), then Edwards’ result may be restated: If F is nondiscrete, then there
exists a function f C(F) for which L(f) is a proper subset of F. The question
naturally arises as to the characterization of those (necessarily open) subsets of
F which are of the form L(f) for somef C(F). In part 2 we will characterize
such sets. We would like to thank Walter Rudin for many valuable suggestions
concerning this result.

For a function f in C(F) define l(f) {g A(F): fg A(F)}. Clearly I(f)
is an ideal of A(F), andfmay be regarded as a multiplier of l(f) in the sense of
Meyer [4]. We shall refer to an ideal of the form l(f) as a multiplier-induced
ideal, induced byf. In Section 3 we will characterize (Theorem 5’) those closed,
multiplier-induced ideals of A(F) induced by elements of C(F). The result which
links Sections 2 and 3 is that the spectrum of I(f) coincides with L(f).

2. A characterization of local-belonging sets

Recall that for f e C(F), L(f) denotes the set of all y F at which./" belongs
locally to A(F). Our principal result is:

THEOREM I. Let F be a nondiscrete 1a9, and let U be an open subset of F.
Then U L(f) for somef C(F)/f and only if 3U, the boundary of U, is a Ga
subset ofF. Furthermore, thefunctionfmay be chosen to be uniformly continuous
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and bounded on F and equal to zero on U. lf, in addition, F is a-compact, then
fmay be chosen to be an element of Co(F)..

If F is assumed also to be metric, then we have an immediate corollary"

COROLLARY. /f F is a nondiscrete metric lcay, then every open subset of F is

of the form L(f) for some bounded, uniformly continuous function f on F.

The proof of Theorem depends upon the following four lemmas.

LEMMA 1. Let F be a lca#, and letf e Cu(F), where Cu(F) denotes the collection
of uniformly continuousfunctions on F. There exists a compact subgroup N of F
such that FIN is metric andf is constant on the cosets of N.

Proof Since f is uniformly continuous, a sequence {U,’n 1, 2,...} of
neighborhoods of the identity in F can be chosen to satisfy the following
conditions"

(i) U1 is compact.
(ii) U,+ + Un+ Un for each n.

(iii) U,+I U, for each n.
(iv) If ,/3 e F and ( -/3) U,, then If(s) -f@l < /n.

Define N U,; then N is a compact subgroup of F. Moreover,

{n(U,)’n 1, 2,...}

is a countable neighborhood base of the identity in F/N, where n" F F/N is
the quotient mapping, and so FIN is metric. Finally, if and fl lie in the same
coset of N, then ( /3) e N. Hence If(s) f(fl)] < l/n for each n, and thus
f() f(fl).
A function 7 on FIN induces a function g n on F, where n" F -- FIN

is the quotient map. This notation will be used throughout the remainder of
Section 2.

LEMMA 2. Let F be a lcag, let N be a closed subgroup of F, and let t and
be functions on FIN.

(a) If B(F/N), then g B(F).
(b) If C(F/N) and L() O, then h C(F) and L(h) O. Furthermore,

if h is uniformly continuous (bounded), then h is uniformly continuous (bounded).

Proof. (a) Let y l,.. y. F, and let

f(x) c(x, + N
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then f(x) ’ ci(x, ) is a trigonometric polynomial on G. Since B(F/N),
we may apply Eberlein’s Theorem (see [5, p. 32-]) to obtain

(’;ig(i) _< I1 II) -< g II.fll

Hence, using Eberlein’s Theorem again, we have that g B(F).
(b) Let / C(F/N). We shall prove that if L(h) # 0, then L(/) # 0.

Because B(F) is closed under translation, it follows that L(h) is a union of
cosets of N. Let W1 and W2 be nonempty open subsets of F with compact
closures such that W1 c W2 c2 W2 cx L(h), and let B(F/N) be such that

on n(Wt) and 0 off n(W2). Since W2 is a compact subset of L(h),
there exists a function fe B(F) such that h f on W2. Now g B’(F) by (a)
above, and g on Wt and g 0 on the complement of W2. Definingfo #f,
we have that fo B(F). Moreover, fo #h, and hence fo is constant on the
cosets of N (since both and h are). By [5, p. 53-] there exists fo B(F/N)
such that fo fo n. Furthermore, fo () / on n(W), and therefore
L(h) O.
The remainder of the lemma is obvious.

LEMMA 3. Let F be a nondiscrete lcag. There exists h Cu(F) L(F) such
that L(h) O.

Proof (a) Assume first that F is also separable and metric, and let {tip: p
1, 2,... } be a countable dense subset of F. For fl F and r > 0 let N(fl, r)
denote the ball of radius r centered at ft. For positive integers k, m, and p define

for all 71,. 7, e N(p, l/k) and all complex numbers al,. a,

Clearly F(k, m, p) is closed in Co(F). It is also nowhere dense, for if U is any
open subset of Co(F), we may choose f A(F)c U and then use Edwards’
result Ill to find f2 e Co(F) such that tip 6 L(f2) and (f + f2) U. It then
follows from [3, p. 215-] that (fj + f2) 6 F(k, m, p). Hence the Baire Category
Theorem implies the existence of a function h Co(F) which does not belong to
any F(k, m, p).
We will show that L(h) 0. Let e F, and let V be an open neighborhood

of 7. If h g on V for some g A(F), then h g on N(flp, l/k) for some
positive integersp and k. But by taking rn Ilgll, we are led to the contradiction
that h F(k, m, p).

(b) Now assume only that F is a nondiscrete, a-compact lcag. By Lemma 1
there exists a compact subgroup N of F such that F/N is metric. Since F/N is
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also tr-compact, it is separable. Thus by (a) above there exists / e Co(F/N)
such that L(/) 0. By Lemma 2,

h hor6Cu(F) c L(F) and L(h) O.

(c) Finally, let F be any nondiscrete lcag. Let U1 by a symmetric neighbor-
hood of the identity having compact closure. For n 2, 3,... define U,
U,_ 4- U,_ 1, and let H }o U. Then H is an open it-compact subgroup
of F, and so by (b) above there exists

o C.(H)c ()

such that L(ho) 0. Now F is a disjoint union of cosets y, + H, where 0

belongs to some indexing set. For y F find an index and an element/3 in H
such that y y + ft. By defining h(y) ho(fl), we have h C,(F) r L(F)
and L(h) O.
The final lemma, contained in [7], is proved here for completeness.

LEMA 4. Let F be a a-compact lea#, and let F be a closed, nonempty Gn
subset of F. There exists 9 A(F) such that tt equals zero precisely on F.

Proof. Let F ]o U,, where U, is open; then F’ o U,, where de-
notes complementation. Since F is a-compact, each U, is a countable union of
compact sets, and hence F’ is also a countable union of compact sets {K:
m 1, 2,...}. Choose fm A(F) such that fm > 0 on Kin, [If, < 2-", and
fm 0 on F. Then # Zm fm is the desired function.

Proof of Theorem 1. Suppose first that U L(f) for some function f
which is uniformly continuous on F. If U 0, then (3U is a Go subset of F;
so assume that U - 0. Choose a compact subgroup N for f as in Lemma 1.
As we have observed previously, U (and hence 0U) is a union of cosets of N.
Since FIN is metric, 7t(O U) is a Go subset of F/N, and hence there exist open sets
V, (n 1, 2,...) in F/N such that z(OU) (] V,. Thus

v -’((v)) -’(v.),

so that 0U is a Go subset of F.
Now suppose that U L(f) for some continuous real-valued function f on

F. As in the proof of Lemma 3, let H be a a-compact open subgroup of F, and
write F as a disjoint union of cosets , (, + H). Use the construction of
Lemma 4 to find go Co(H) with go > 0 and L(go) H, and define g e C(F)
by the rule g(7 + 7) go(7) for each H. Letting h ge’, we have h C,(F)
since go Co(H) and ey is bounded on F. Moreover, L(h) L(e0") L(f)
because g > 0 on F and L(g) F. Hence the preceding paragraph shows that
OL(f) OL(h) is a Ga subset of F.

Finally, suppose that U L(f) for an arbitrary continuous functionfon F.
Writef fl + if2, wheref andf2 are continuous real-valued functions on F.
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Since the boundaries of L(f,) and L(f2) are Ga subsets of F by the preceding
paragraph, there exist bounded, uniformly continuous, real-valued functions
gx and g2 Oil F such that L(#,) L(f) and L(#2) L(f2). Let + ig2;
then

L(g) L(g) L(g2) L(f) c L(f2) L(f) U.

But since is a bounded, uniformly continuous function of F, the first paragraph
of the proof shows that t3U is a G subset of F.
To prove the converse, assume first that F is a-compact. Lemma 3 proves the

desired result if U 0; so suppose that U - 0. If c3U is a G subset of F, then
so is U. Hence by Lemma 4 there exists # A(F) such that q 0 precisely on
U. Use Lemma 3 to select h C,(F) L(F) such that L(h)= 0. Define

f #h; then f Co(F), f 0 on U, and L(f) U.
Now assume only that F is a nondiscrete lcag and that U is a G subset of F,

where t3U 0 U, for open sets U,,. Construct an open a-compact subgroup
H of F as in the proof of Lemma 3. Since U and H are open, we have

(3n(U c H) ((3U) H (, U,) H= (U. mH),

where cn denotes the boundary relative to H. Thus U H has a G boundary
in H, and so the preceding paragraph guarantees the existence of fo Co(H)
such that fo 0 on U c H and L(fo) U c H. Write F as a disjoint union
of cosets of H, say F 1.) ( + H). Given F, find an index a and an
element fl e H such that + ft. Defining f() fo(fl) (as in Lemma 3)
gives a functionf C,(F) c L(F) with the desired properties.

3. A characterization of closed multiplier-induced ideals in A(F)

We seek to classify those closed ideals of A(F) which are of the form I(f)
{g e A(F): fg e A(F)} for somefe C(F).

First, however, observe that I(f) need not be closed even for f e C,(F) c
L(F). For example, we need only select such an f with L(f)= F and
f B(F). Then I(f) is dense in A(F) since Theorem 2 below implies that the
spectrum of l(f)equals F, but I(f) A(F) lest Theorem 3.8.1 of [5] imply
that f e B(F). For noncompact F a function f satisfying these conditions can
be defined by letting f lfik, where q is a function having the properties in
Theorem 5.3.4 of [5].
Our characterization (Theorem 5’) of closed ideals of A(F) having the form

I(f) utilizes Theorem 1 and a result of Meyer [4] which asserts that the
multipliers of an ideal depend only on the spectrum of the ideal. Our next
result determines the spectrum of I(f).

THEOREM 2. Let F be a lcag, and let fe C(F).
spectrum ofI(f).

Then L(f) sp(I(f)), the
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Proof Let V e sp(I(f)). Then there exists g l(f) such that g(y) #- 0.
Choose a neighborhood U of V and a function h in A(F) such that gh 1 on U.
Since gh l(f), we have fgh A(F) and f fgh on U. Thus y L(f).
Now suppose that y L(f). Then there exists a neighborhood U of y and a

function h in A(F) such thatf h on U. Choose g A(F) such that 9(Y) 1
and g 0 on U’. Thenfg h9 A(F), and hence g l(f). Thus ? sp(I(f)).

For a dosed subset E of F we define IE {f A(F):f 0 on E}.

THEOREM 3. Let F be a lcag, and letf e C(F). lfl(f) is closed, then I(f) I,
where E (L(f))’.

Proof Sincefis a multiplier of I(f), it follows from Meyer [4] and Theorem
2 that f is also a multiplier of le. That is, I(f) I.
The question of when I(.f) is closed may be reformulated as in the following

result.

THEOREM 4. Let F be a nondiscrete lcag, and let fe C(F). Then I(f) is
closed if and only if l(f) I(9)for some g C(F) such that g is the restriction

of a Fourier-Stieltjes transform on L(f).

Proof. Assume first that I(f) I(g), where g is the restriction of a Fourier-
Stieltjes transform go on L(f). We shall prove that 1(9) I, where E
(L(f))’. Let hIz; then hg hgo since h 0 on E. But hA(F) and
g0 B(F), and hence hg A(F). Thus h I(g). So I(f) I(g) le.

Conversely, assume that I(f) is closed, and let U L(f). Since OU is a G
subset of F, Theorem 1 implies that there exists g C(F) such that g 0 on
U and L(g) U. Thus g is the restriction of 0 on L(f), and 1(9) Ie l(f),
where E U’, by the preceding paragraph and Theorem 3.
Theorem 4 cannot be strengthened to conclude that if l(f) is closed, then fis

actually the restriction of a Fourier-Stieltjes transform. In fact, there exists

f Cu(F) L(F) which is not the restriction of a Fourier-Stieltjes transform
on L(f), and yet l(f) is closed. Applying the technique of Meyer [4] to F R
and E (0, 1)’, we can construct a continuous function f on [0, 1] such that
f(0) f(l) 0 andfis a multiplier of I. The desired function is obtained by
extendingf to Co(R) via Lemma 3 in such a way that L(f) (0, 1).

THEOREM 5. Let F be a nondiscrete lcag, and let E be a closed subset of F
having a G boundary. Then there existsf e Cu(F) L(F) such that I I(f).

Proof By Theorem 1 we may select fe C,(F) c L(F) such that f 0 on
E’ and L(f) E’. By Theorem 4, I(f) is closed and I(f) Ie.
We may combine Theorem 3 and Theorem 5 into a more compact form"

THEOREM 5’. Let F be a nondiscrete lcag, and let I be a closed ideal of A(F)
with cospectrum E. Then I I(f) for some f C,,(F) L(F) /f and only if
I Iv. and dE is a Ga subset of F.
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COROLLARY. Let F be a nondiscrete metric lcay, and let I be a closed ideal
ofA(F) having cospectrum E. Then I I(f)for somefe Cu(F) L(F) ifand
only if I

We will conclude with an example of an ideal which is not of the form I(f)
for anyf s C(F). From the last theorem it follows that if F were an uncountable
product of circles and I were the ideal of all functions vanishing at the origin,
then I would not be of the form I(f) for anyf C(F) since {0} is not a G
subset of F.
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