A NOTE ON IMMERSIONS UP TO COBORDISM

BY

RICHARD L. W. BROWN¹

In Section 4 of the reference Liulevicius proved that if M^n is cobordant to RP^n for $n = 2^r - 2$, $r \ge 4$, then M^n cannot be immersed in R^{n+1} . Of course if r = 1, 2, or 3 then such immersions of RP^n itself are well known. We use these results to observe that if M^n immerses in R^{n+1} then the cobordism class $[M^n]$ must be zero except for the three cases just mentioned. More precisely we have the following result.

THEOREM. If M^n immerses in R^{n+1} (or embeds in R^{n+2}) then M^n is a boundary or is cobordant to RP^0 , RP^2 , or RP^6 .

Proof. Let M^n immerse in \mathbb{R}^{n+1} (or embed in \mathbb{R}^{n+2}). Then the total dual Stiefel-Whitney class of M^n reduces to $\overline{w} = 1 + \overline{w}_1$, and the only possibly nonzero Stiefel-Whitney number corresponds to \overline{w}_1^n . Assume M^n is not a boundary, so $\overline{w}_1^n \neq 0$, and, for convenience, denote \overline{w}_1 by α . The total Stiefel-Whitney class of M^n is $w = (1 + \alpha)^{-1}$ and hence the total Wu class is

$$v = Sq^{-1}w = Sq^{-1}(1 + \alpha)^{-1} = 1 + \alpha + \alpha^{3} + \alpha^{7} + \alpha^{15} + \cdots$$

The last line can be seen as follows:

$$Sq\left(\sum_{i=0}^{\infty} \alpha^{2^{i}-1}\right) = \sum_{i=0}^{\infty} (Sq\alpha)^{2^{i}-1}$$
$$= \sum_{i=0}^{\infty} (\alpha + \alpha^{2})^{2^{i}-1}$$
$$= \sum_{i=0}^{\infty} \alpha^{2^{i}-1}(1+\alpha)^{2^{i}}(1+\alpha)^{-1}$$
$$= (1+\alpha)^{-1} \sum_{i=0}^{\infty} (\alpha^{2^{i}-1} + \alpha^{2^{i+1}-1})$$
$$= (1+\alpha)^{-1}.$$

About the Wu classes we know that for any *n*-manifold, $v_i = 0$ for i > n/2. In our case this cannot hold unless $n = 2^r - 2$ so that the highest nonzero v_i has $i = 2^{r-1} - 1$. Furthermore M^n then has the same Stiefel-Whitney numbers as RP^n , so M^n is cobordant to RP^n . Now the result of Liulevicius shows that n = 0, 2, or 6.

Received September 24, 1975.

¹ Partially supported by a grant from the National Research Council of Canada.

COROLLARY. In the notation of Liulevicius we have

$${}^{alg}F_1\pi_n(MO) = \begin{cases} Z_2 & if \ n = 2^r - 2, \ r \ge 1, \\ 0 & otherwise; \end{cases}$$

$${}^{geo}F_1\pi_n(MO) = \begin{cases} Z_2 & if \ n = 0, 2, \ or \ 6, \\ 0 & otherwise. \end{cases}$$

Reference

A. LIULEVICIUS, Immersions up to cobordism, Illinois J. Math., vol. 19 (1975), pp. 149-164.

York University Downsview, Ontario, Canada