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Introduction

In a series of papers, Kuo Tsai Chen has introduced his "iterated integrals";
and in particular in [1] he has related them to the homology of the loop-space
of a "differential space." Here, the notion of a "differential space" is very
weak-C-manifolds being a special case. For a differential space X there still
is a deRham complex A*X and a Stokes map p" A*X - C*X but one cannot,
in general, assert that p is a homology isomorphism. The path space PsX and
the loop space flsX--slightly restricted to "smooth paths"--are again differen-
tial spaces; and the "iterated integrals" can be regarded as a morphism

I: B*(A*X) --* A*PsX
where B* is the "bar construction." Suppose now that ,4* c A*X is a sub
DGA-algebra. Then denote the image of

,*(A*) ,*(A’X) A*PX A*nX
where h is the restriction, by A*. A* turns out to be a sub DG,4-algebra of
A*sX and "Chen’s theorem" is roughly (for a precise statement see [1, 4.7.1]
or. 2.3 below) that if p lA*: A* C*X is a homology isomorphism, then
H*( ,4*) , H*(X). Chen proves this by a pairing of A* with the cobar
construction, using the methods of [3]. This. is fairly complicated and, at least
without considerable modification, restricted to simply connected spaces.
The present paper is intended to clarify the significance of the integration

map L Also, in Chapter 2, we give a simpler proof of Chen’s theorem, avoiding
the use of the Adams construction, and arriving at our form of the theorem,
namely (roughly again): Chen’s theorem is true whenever the Adams-Eilenberg-
Moore theorem H*(X) H*(B*(C*X)) is true; it is known that this is so in
certain nonsimply connected cases. In some recent papers, e.g., [2], Chen has
tackled these cases by a different method. The main idea of our paper is to
relate iterated integrals to the category DASH of "strongly homotopy multi-
plicative maps," cf. [4].
We observe that, using the proof in [5], the Stokes map p can be extended to

a map of DASH:

P: Z*(A*X) - *(C*X).
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Our form of Chen’s theorem then follows immediately from the fact that the
integration map induces a homology isomorphism B*(A*) A*, where A*
means the same as above; this last result is (essentially) contained in [-1].

In Chapter 3 we explain that the Adams construction--not used in Chapter 2
--leads to a second map of DASH,

P: B*(A*X) -+ B*(C*X),

which is homotopic (in DASH) to Pn Chen’s proof can be approximately
described in our terms by saying that he uses P instead of Pn.

In constructing the homotopy between P and P we use the method of
acyclic models. This forces us to prove the main results of Chapter 3 without
choosing base-points or "collapsing" C*X in any way; in particular, we are in
no way restricted to simply connected X. The interest of the map P lies in the
fact that it is given much more explicitly in terms of the underlying geometric
structure than P (see 4.2 below). From the form of the map P it appears that
one should be able to factorize it through the cubical singular cohcain-complex
CU*(sX) and the map introduced by Adams; this requiresas did, of course,
the work of Adamsthe use of an associative multiplication on /X and the
complex CX based on the use of the singular complex with collapsed 1-
simplexes.
Once one has such a factorization it follows easily that the isomorphism of

2.3 is an isomorphism of algebras if X is simply connected. There are, however,
some technical difficulties in this program, and we have not carried out the
details.

1. Review of Chen’s theory

A differentiable space is a Hausdorff space X together with a certain family of
continuous maps " U X called plots, where U is a convex subset of some
Euclidean space, the family being maximal subject to the conditions that with, $ is a plot if $: U’ - U is a C-map between such convex regions; and
every map {point} X is a plot. A C-manifold is a differentiable space in an
obvious way; so is a subspace of a differentiable space. If X is a differentiable
space we define the path-space PsX as the subspace of the usual path space con-
sisting of those paths I X which are piecewise plots; PsX is a differentiable
space: We define : U PsX to be a plot if the adjoint map #: U x I --, X
has the property that, for some partition 0 to < < < t, of the
unit interval I, # U x Its, ti+ 1] is a plot ofX for 0,..., p 1.
A differentiable p-form w on a differentiable space X is the assignment to each

plot : U --* X of a differentiable p-form w, on U, this assignment to satisfy
*w w, if 4: U’ U is C. We define

(w + w’), w, + w, (w / w’), w, ^ w’,, (dw), dw,.

The differentiable forms thus can be regarded as a graded differentiable algebra
A*X with unit. A map f: X Y is a map of differentiable spaces if f :
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U --, Y is a plot of Y whenever " U X is a plot of X. Such a map induces a
map of differentiable algebrasf*" A* Y A*X. Note that ifX is a C-manifold
(with the evident structure of a differentiable space), then A*X is the classical
deRham theory.

A" will denote the standard r-simplex which we shall regard as the subset

{(tl,..., t) ti >_ O, tl +"" + t, < 1}

of Euclidean r-space R’. We shall regard the coordinates as maps i: A" !
(1 <_ _< r).
Now, let w AP’X be a pcform on X and : U --, PsX a plot with adjoint

#" U x I X. Then wi# is a pcform which is piecewise defined on U x I
and

(U x t3*w#

say is a pcform on U x A’. We define

(1.0) (w w,) f, v ^ ^ ,
which is a (p +...+ p,- r)-form on U, the integration being over the
"volume element" dt ^ ^ dt,. The coherency condition is easily verified
and thus w w, is ap + + pC r form on PsX. Note that we have
not assumed thatp > 0; it is clear, however, that wl w 0 ifp 0 for
any i, so that, in particular, although p + + p r may be negative, in
that case w...w 0. It is also convenient to introduce the convention
that w...w AX if r 0. Our definition agrees with that of Chen,
as can be seen easily by evaluating (1.0) as an iterated integral.

If " U --, PsX is a plot and U a bounded convex set, we define

ffwl""w,= fu (fwl""w,f) ifpl +...+p- r=dimU

0 otherwise.

Also, we take w...w, if r 0 and n dim U. Notice that
w # w for r 1. We now give a summary of some properties of these

"iterated integrals"; for proofs see I-l].
Let o: U- PsX, ’: U’ --. PsX be plots such that there is a point x X

with (u)(1) ’(u’)(O) x for all u U, u’ e U’. Then we define the com-
position plot

z x z’:Ux U’-PsX
by

(z X tx’)(u, u’)(t)= z(u)(2t) forO<t<_1/2

’(u’)(2t- 1) for1/2 < < 1.
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1.1. LEMMA If CZ X ’ is defined on a bounded closed convex set, then

f w, w, (f, fw, w,)(f,, fw,+ w,) [1,1.6.2]

To state further properties it is convenient to introduce the bar-construction
B*(A*) of a graded differential algebra A* with a differential of grading + 1.
This is not the "bar construction" of [4] for instance because A* is, at the mo-
ment, not augmented; indeed, it need not even have a unit. We can introduce
the augmentation if there is one, as will be seen.

If M is a graded module, s" M sM will be the "suspension," i.e., sM is the
module M with grading increased by 1; if M is a differential module, so is sM
with differential given by d(sm) -s(dm);similarly for s-a.
As a graded module B*(A*) is po B(A*) where B(A*) is the p-fold tensor

product (R)P (s- aA*) ifp > and B(A*) R, the underlying ring (i.e., the reals
in our case). The differential is d d(R) + do where d(R) is the tensor product
differential and d0" B Bp*_ is defined as 0 for p < and as

p--1

Y (1 (R)"’(R) s-dp(s (R) s)(R)’"(R) 1)
i=1

for p > in the formula the term with b is in the th position and denotes the
product A* (R) A* A*. The "Koszul convention" for tensor products
automatically introduces the usual complicated signs. Note that in [1], the
differential is taken as d(R) d+; we use d(R) + d in order to be consistent with
the formalism of [4]. As usual, we denote s- ax (R) (R) s-a by [a,..., a,],
and observe that B*(A*) has the coproduct ff given by

[a,..., a,] [a,,..., a,] (R) [a,+,
i=0

Iff, 9: B*(A*) C* are maps into an algebra C* with product , we define
the "cup-product"f w g qb(f (R) g).

Let X be a differentiable space. We define the morphism of grading 0,
I: B*(A*X) --. A*PX, by I[ ] and

l[w,...,w,] (-1)"fw...w, fort > 0.

By FIo, I-I:PX X we denote the two "end-point maps"; they induce
FI’, I-I’’A*X A*PsX. It is convenient to introduce the morphisms
Zo, : B*(A*X) A*PX, of grading + 1, namely 0 on B*(A*X) if r #: and
"C0[W1] 1-Iw1, "Cl[W1] I"Iw1. Then Dzo Zo w Zo, Dzx zx w zx, c.f.,
[4] where, as usual, Dz d z + z d. Similarly we have the differential
DI= doI-Iod.

1.2 LEMMA. DI Zo I- I z1.

For a proof, see 4.1.2 in [1]. The term with Zo is missing in Chen’s formula;
this is because he calculates in P(X; Xo, *), the paths with a fixed initial point
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Xo; a slight difference in the signs arises from our different choice of the differen-
tial on B*(A*).

It is interesting to remark, cf., 3.2.1, in I-4] that according to 1.2, I is a
homotopy in DASH between 1-I and I7.
Now choose a base-point X; then we have the augmentation e i*"

A*X A*(,) R and we write A*X ker e. Now we have the usual bar
construction, as in [4-1 for instance"

B*(A*X) B*(*X) c B*(A*X).

By fsX c PsX we denote the subspace of loops at and observe that the
compositions

A*X A*PsX A*fsX (t 0, 1)

factor through the augmentation. Hence, if Io" B*(A*X) A*fsX denotes the
composition

B*(A*X) B*(A*X) A*PsX A*fsX
then 1.2 gives"

1.21 COROLLARY. DIo O. In other words, Io is a chain map.
If A* is commutative (i.e., "skew commutative") then the "shuffle homo-

morphism" induces a product structure in B*(A*) with [ ] as unit, as is well
known.

1.3 LEMMA. I: B*(A*X) A*PsX is a morphism of algebras.
This is 4.1.1 of [1], and is proved in [6].

1.31 COROLLARY. I0 B*(A*X) A*sX is a morphism of DGA-alyebras.
Let A* c A*X be a sub DGA-algebra such that dA A c dAX. The

image Io(B*(A*)), i.e., the submodule of A*DX generated by integrals
wl""wr where wi A*, is a sub DGA-algebra by 1.21 and 1.31. We shall

denote it by A*.

1.4 PROPOSITION. If the differentiable space X is plotwise connected (i.e. by
paths which are pieeewise plots), then Io" B*(A*) A* is a homology-
isomorphism.

Proof We filter B*(A*) by j p B](A*) and o A* by the/o-image of this
filtration. By ,* we denote A* c .*X, and we define * s- x(,,/,o + d,O).
It is easily seen that ,o + d,O is acyclic and hence ,* --* ,7.,+ is a homology
isomorphism. In the spectral sequence of the filtration,

(R); (R);

Now, in [1, 4.3.2] it is shown, by a geometric argument, that Io induces an
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isomorphism (R)P H(*) Elp( A*). (Note that our , .I A* are denoted by
$, A in [1].) Hence Ep(Io) is an isomorphism, and our result follows from the
completeness of the filtrations.

2. The Stokes map

Let X be a differentiable space; by C.X we define the subcomplex of the usual
singular complex generated by those singular simplexes v: A" - X which are
plots; in [1] these are called the "smooth" simplexes. The corresponding
cochain-complex HomR (C.X, R) is denoted by C’X; the pairing is denoted by
( ). We shall adhere strictly to the "Koszul convention" for signs; in par-
ticular a cochain x CP(X) will be regarded as a map of grading -p so that
the differential is given by

(dx, v) (- 1)p+ X(x,

We define the "Stokes map" p p(X):A*X C*X by

(- 1)+ )/<pw, Wv

if w APX. We shall also write (w, v) for (pw, v). We easily verify that dp
pd, i.e., Dp 0, using Stoke’s theorem. We cannot, of course, assume that p
is a homology isomorphism; it is, classically, if X is a differentiable manifold.

2.1 PROPOSITION. There is a morphism P: B(A*X) C*+ XX ofgradint +
such that P[ ] O, P[w] pw ifw A*X and DP P w P.

In the language of [4]at least after we change to the augmented casethis
means that p can be extended to a map P of DASH; in the notation of [5],

P[W1,..., We] pc(w1 ( (

so that p, has grading -r / 1.
The proof of 2.1 in [5] by the method of acyclic models applies, even though

A*X is neither of the deRham complexes considered in that paper. This is so

because the proof depends only on three facts:

(i) p is multiplicative when restricted to AX.
(ii) A* is acyclic on simplexes.
(iii) C* is "corepresentable."

(i) is evident; (ii) follows because on simplexes, A* is the classical theory; and
(iii) follows because the identity map A" A" is a plot.
P can be regarded as a morphism Pn: B(A*X) B(C*X) which, in the

augmented case restricts to B(A*X) B(C*X), as is easily seen. This is

explained in [4]. From the usual spectral sequence argument we obtain:



ON CHEN’S ITERATED INTEGRALS 709

2.2 PROPOSITION. Let A* c A*X be a sub DGA-alyebra such that p IA*:
A* C* is a homoloyy isomorphism. Then Pn B(A*): B*(A*) B*(C*X)
is a homoloyy isomorphism.

Recalling 1.4 we thus obtain the following version of the theorem of Chen
[1,4.7.1]:

2.3 THEOREM. Let X be a plotwise connected (cf. 1.4) differentiable space and
let A* A*X be a sub DGA-algebra such that dA A c dAX. Suppose
also that:

(i) P A*: A* C*X is a homoloyy isomorphism.
(ii) C*X is homology isomorphic to the usual (continuous) eoehain complex so

that HC*X H(X, R).
(iii) The Adams-Eilenbery-Moore theorem, namely H*(B*(C*X)), H*(X)

applies, where )X is the (continuous) loop-space.
Then H*(aX, R) , H*( A*) as R-modules.

3. The Adams construction

Let us denote by I" the n-dimensional unit cube, by 2. the face operators in
the cubical singular complex, by P(X, Xo, xl) the paths (which are piecewise
plots) from Xo to xl, by v the th vertex of the standard simplex, by O the face
operators of the simplicial singular complex, by

f." A -, A", 17" A A"

the standard injections for the first and last + vertices, and by e: A"-t _, A"
the adjoint of tgi. Adams and Chen have constructed maps 0.: i,-t

_
P(A", Vo, v,) such that OtI is the identity path on A and

On = e(,i)On-1, On = P(fin)oi x P(l-i)On-i (n > 1)

where x denotes the composition product of plots introduced earlier, and
means equality up to a reparametrization.

Chen’s modification was needed to make sure that all the maps are piecewise
C. In [1] the roles of 2, 2 are exchanged" We return to the formulas as
originally given by [3].
Suppose X is a differentiable space and v: A"+ X a plot. We define the

plot c(v): I" PsX as the composition

I" 0,+,, p(An+ t, /)0, /)n+ 1) P(v) P(X, l)(Vo) l)(Vn+ 1))

and verify that
c(v)l v regarded as a path in X if n 0,

(3.0) 2c(v) c(v), 2?c(v) c(vA"+’) x c(vl"+ -3
(1 <i<_n).
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We shall regard c as a morphism c: C,X CU,_X where CU denotes the
(smooth) cubical complex, and where we put c CoX 0. Now we introduce
the morphism of grading 1, tr: A*PsX C* / (X), by

(--l)n(w, cv) (-1)n(n+3)/2v) w
where W A"PsX and v: A"+ X is a plot.
Next we define morphisms

1: B*(A*X) A*PX and e: B*(A*X) --, C*+(X)
as follows"

1[ ] APX, 11 B*p(A*X) 0

e[w] pw if w 6 AX (cf. Chapter 2)

0 otherwise;

elBa(X) 0 ifp 4: 1.

Next, we define

i" B*(A*X) A*PsX and
by

i I- 1 (of. Chapter 1),

ifp > O;

P" B*(A*X) + C*+’(X)

P’=ai+e.

3.1 PROPOSITION. DP’ P’ P’.

Proof. A straightforward calculation using 3.0 shows that

((Otr)(W, v)) (W, C(OoV)) 4- (-1)"+Z(W,
n+l

4- (- 1)’< W, c(vh"+z) c(vl n+n+
i=1

where W A"PsX, v" An+ z X is a plot and n > 0.
In this formula we substitute W wx w, where w APeX and p +

+ p, r n, r 1. From 1.1 and making due allowance for the signs we
have introduced, we get

(--l’in+n+i+l
j=0 (f <f

Now, for j 0 we get 60. -( wx w,, c(vl _)) which is nonzero only
if 1. Then v(l_) OoV and we get

(fw...w,, C(OoV))
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and this cancels with the term (w, C(OoV)) in the formula. Similarly, the term
for j r cancels with (w, C(On+ 2v)) and we have

((oa)fw,...w,,v
(-- Wa Wj, c(vf+2) W1+1"’" We, C(vln+2n+2-f)

i=1 j=l

The same formula is obviously true if w ...w is replaced by I[w,..., w,],
etc. For the moment, let us denote ai by , so that P’ P + e. We compute
PP.

j=0

where the termsj 0 andj r are zero because P [ ] 0. Thus

<(P P)[w, w,], v>
r-1 n+2

E E (-- l),n+n+ I<[WI Wj], (19fin+2)><.[Wj+l’’" Wr] c(vl’++_,)>
j=l i=0

which we obtain by evaluating the w-product by the standard Whitney formula.
The terms with 0 and n + 2 are zero. Hence, comparing our formulas

(3.11) (Oa)i P u P

where we need merely add that both sides are zero on [ ]. Next, we prove the
formulas

(3.12) e w P -a(Zo i),

(3.13) P

where Zo, z are as in 1.2. To prove 3.12, note that both sides are 0 on [ ].
Now, let wiA’X (i= 1,...,r,r >_ 1). Both sides of 3.12 are zero on
[w,..., w] ifr 1. Thus, let r > 1.

(e w P)[w,,..., w,] U(e (R) P)([w,] (R) [w2,..., w,])
(-1)"-’e[w,] w P[w2""w,],

0"(0 k.) .)[WI,... Wr] O" k.) (’0 I .)([WI] i) [W2,... Wr]

^ w,]}.
Now, if v" An+2 X where n p + + p, r is a plot, then

<r{’Co[W1] A i[’W2"’’W,]}, V> <rlw A l[w2,... wr] cv>(--1)n+l.

Now, (llwa)o (w),,oc and rCoeV is the constant plot at V(Vo). Hence we get
0 unless Pa 0, as required by our identity. Thus, let Pa 0. Then

<o-{Zo[W,] ^ i[w2,... w,]}, v> w,(v(vo))<I[w2,..., w,], c(v)>(-1)n+.
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Also, in this case

<(e w P)[w,,..., wr],v> --<pw, a_[w2,...,w,],

-Wl(V(Vo))<l[Wz,..., W,], C(V)>(- 1)"+l

and our proof is complete. The proof of 3.13 is similar. From 1.2 and D1 0
we easily deduce

(3.14) Di T0 k_) i i k..) " -- "0 " 1"

We now calculate

DP D(ai)

(Da)i aOi

P w P a(’ro w i i w +’Co-
by 3.11 and 3.14. Hence

DP’ DP + De P w P a(Zo w i i w Z -" "/SO T1) -- De

and

P’P’ =(P + e) w(P + e)= PwP + ewP + Pwe + ewe

and by 3.12, 3.13 it remains to prove that

(3.15) -a(’co "cl) + De e w e.

Now, both sides of 3.15 are clearly zero on [wl wr] unless r or 2.
For r 1, note (aZo[Wl], v) (- 1)P’(I-Iwl, cv) which is zero unless Pl 0,
as before. Similarly for aT1, and thus 3.15 is true for r unless P 0; and
in that case

<I-lwl, cv> <I-lwl, cv> wa(c(vo)) Wl(V(vl)) -<de[w,], v>
as required. Finally, we prove that de e w e on [wl, w2], which is easy.
This completes the proof of 3.1.
Comparison of 2.1 and 3.1 suggests some relationship between P and P’.

Suppose wicAv’Xso thatP[wl,..., wr]eC"Xwheren =pl +"" +P-
r+l.

3.2. LEMMA

(i)

(ii)

(iii)

Suppose r > 1.

P[wl,. w] 0 ifp > nfor any i.

P[wl,..., w] 0 ifpl +"" + p < r.

Ifp pr 1, then

<P[wl,...,w,],v> =(-1)’ (f
\3

W1 Wr)
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where v" A X is a plot.

The proof of this follows easily from the inductive construction of P in [5].
The iterated integration in (iii) arises from the use of the chain homotopy S
derived from the standard contraction of A to v0. We omit these details. It
was the discovery of the relationship (iii) which led to the present paper; it is
interesting to observe that the case pl Pr is the only one arising in
Chen’s theory of the fundamental group.

3.21 COROLLA,Y. P Bm(A-X) P’ B"(A*X)/fm < 0.

Proof. With the notation of thelemma, m =pl +"" +Pr- r n- 1.
Consider P, P’IB"(A*X). For r 0, the result is immediate from the defini-
tions. Now, let r so that m Pl 1. Forp 0, P P’ by definitions;
thus let P 1, m 0, and let v" A X be a plot.

<! c(v)>

--(fW1,

-f v*w sincec(v)l v

<e v>
as required.
Now let r > 1. If m < 0, P is zero by 3.2(ii) and P’ is zero because p 0

for at least one i. If m 0 either p Pr 1, in which case the result
is 3.2(iii), or some Pi is > and some pj 0; and then, both P and P’ are zero,
by 3.2(i).

This completes the proof.

3.3 PrtOI’OSITION. There is a natural morphism U: B(A*X) C*(X) such
that U[ ] and DU P U- U P’.

Apart from the fact that we are in the unaugmented theory, this means that
P and P’ a homotopic in the category DASH of [4]. Due to 3.21 we can define
U B’(A*X) 0 for m < 0 and r > 0.
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We continue the construction by induction on r, and for each r by induction
on m. The method is exactly that of [5]; once again, we use the fact that A*
is acyclic on models, and C* corepresentable, cf., the proof of 2.1 above. We
omit the details.

4. Augmentation and loop-spaces

We now return to the case of a differential space X with base-point already
considered in Chapter 2. Again, fsX c PsX denotes the subspace of piecewise
smooth loops at ,; we use the notations preceding 1.21. By C,o(X) c C,X
we denote the singular complex generated by those smooth simplexes having all
vertices at ,; C’(X) Hom (C,oX, R) is the corresponding cochain-complex
and

Co(X) ker {e" C’(X) C(,)}
the kernel of the augmentation;j: C*(X) C(X) is the restriction. We define
the morphisms

by
Po, P: B*(A*X) + C*+ Uo: B*(A*X) + C*(X)

Po jPi (cf., 2.1)

P jP’ (cf., 3.1)

Uo jUi (cf., 3.3)
and obtain from 3.3 that

(4.1) DUo Po Uo Uo w P.
It is also easily verified that the images of Po, P, and Uo are in C" + I(X); since
B*(A*X) contains negative-dimensional elements this is not entirely trivial. It
follows that Uo is a homotopy in DASH between Po and P, so that the maps
PB, P: B*(A*X) B*(C*X) are chain-homotopic; cf., 2.2 above and 3.2 in
[4]. It follows that the proof of 2.3 can be based on P’ instead of P: This is,
essentially, Chen’s proof. Now let h: A*PsX A*fsX be the restriction and
suppose W A"PsX is such that hW 0. That means W 0 if : U PsX
is a plot such that (u)(0) (u)(1) for all u U. Now let v: A"+ x
have allvertices ,; then c(v):I" PX satisfies c(v)(u)(O) e(v)(u)(1) for
all u I" and hence Wco) 0. Hence

<jaW, v> +__<W, cv> +__ 1" Wc<v) O.

Thus hW 0 implies jaw 0 and we can insert ao in the commutative
diagram

A*PsX C* + I(X)

A*nsX --- c +’(x).
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Now, P’ ai + e, cf., 3.1, and if w eX then w(,) 0, whence jei O.
Hence

P( j(ai + e)i jaii aohii aoio
in the notation of 1.21.

Returning to the original notation we thus have"

4.2 PROVOSITION. TheformulasP[ ] =0,

where wi AP’X, n Pl + + P, r and v: A"+1 - X is a plot with all
vertices at ,, define a map

P" B*(A*X) ---) C + l(x)

of DASH homotopic to that of 2.1 above; hence this map induces a homology
isomorphism B*(A*) ---) B*(C(X)) in the situation of 2.2 above.
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