# FINITE GROUPS HAVING AN INVOLUTION CENTRALIZER WITH A 2-COMPONENT OF DIHEDRAL TYPE, $\mathbf{I}^{1}$ 

BY<br>Morton E. Harris and Ronald Solomon

1. Introduction and statement of results

All groups considered in this paper are finite.
In current standard terminology, a group $L$ such that $L=L^{\prime}$ and $L / O(L)$ is quasisimple is said to be 2-quasisimple. Also any subnormal 2-quasisimple subgroup of a group $G$ is called a 2 -component of $G$.

Recently, a great deal of progress has been made on the fundamental problem of classifying all finite groups $G$ such that $O(G)=1$ and such that $G$ contains an involution $t$ such that $H=C_{G}(t)$ has a 2-component $L$ (cf., [2, Theorem 1], [3], [4], and [18]). These results suggest the importance of investigating such groups $G$ in which $C_{H}(L / O(L))$ has 2-rank 1. Of particular interest is the case where $L$ is of dihedral type.

We shall now state the first main result of this paper.
Theorem 1. Let $G$ be a finite group with $O(G)=1$. Suppose the involution $t \in G-Z(G)$ is such that $H=C_{G}(t)$ contains a 2-component $L$ such that a Sylow 2-subgroup of $L$ is dihedral, $m_{2}\left(C_{H}(L / O(L))\right)=1$ and such that $N_{H}(L) /$ $\left(L C_{H}(L / O(L))\right)$ is cyclic. Let $S \in \operatorname{Syl}_{2}\left(N_{G}(L)\right)$ be such that $t \in S$ and let $D=$ $S \cap L$. Then the following conditions hold:
(i) $L / O(L)$ is isomorphic to $\mathscr{A}_{7}$ or to $\operatorname{PSL}(2, q)$ for some odd prime power $q$ with $q>3, N_{G}(L)=O\left(N_{G}(L)\right) H$ and $S \in S y l_{2}(H)$.
(ii) $O_{2}(G)=F(G)=C_{G}(E(G))=1$ and $F^{*}(G)=E(G)$.
(iii) If $F^{*}(G)$ is not simple, then $F^{*}(G)=R \times R^{t}$ where $R$ is simple and $L=\left\langle r r^{t} \mid r \in R\right\rangle \cong R$.
(iv) If $F^{*}(G)$ is simple and $r_{2}\left(F^{*}(G)\right) \leq 4$, then the possibilities for $F^{*}(G)$ and $G$ can be obtained from [7, Main Theorem].
(v) If $F^{*}(G)$ is simple and $r_{2}\left(F^{*}(G)\right)>4$, then

$$
\langle t\rangle \in \operatorname{Sy}_{2}\left(C_{G}(L / O(L))\right.
$$

and $H=C_{G}(t)$ contains a normal subgroup $K$ such that $H=\langle t\rangle \times K, K^{(\infty)}=$ $H^{(\infty)}=L, C_{K}(L / O(L))=O(H)=O(K), K / O(K)$ is isomorphic to a subgroup of Aut $(L / O(L))$ containing $\operatorname{Inn}(L / O(L))$ properly with $(L O(K)) / O(K)$ corresponding to $\operatorname{Inn}(L / O(L))$ and such that $K /(L O(K))$ is cyclic. Also if $L / O(L) \cong \mathscr{A}_{7}$,

[^0]then $K / O(K) \cong \Sigma_{7}$ and if $L / O(L) \cong P S L(2, q)$ for some odd prime power $q$ with $q>3$, then $q$ is a square and $K / O(K)$ contains an involution that acts as a "field automorphism" of order 2 on $(L O(K)) / O(K)$.

The second main result of this paper treats the open case of Theorem $1(v)$ in which $|D|$ is minimal.

Theorem 2. Let $G, t, H, L, S$, and $D$ be as in Theorem 1. Assume that $F^{*}(G)$ is simple, $r_{2}\left(F^{*}(G)\right)>4$ and $|D|=2^{3}$. Then $\left|F^{*}(G)\right|_{2} \leq 2^{10}$ and exactly one of the following two conclusions holds:
(i) $L / O(L) \cong \mathscr{A}_{7}$ and $G$ is isomorphic to Aut $(\mathscr{H} e)$;
(ii) $L / O(L) \cong \mathscr{A}_{6} \cong \operatorname{PSL}(2,9)$ and $G$ is isomorphic to Aut $(\operatorname{Sp}(4,4))$, Aut (SL(5, 2)), or Aut (PSU(5, 2)).

Before presenting a corollary of our results and its proof, we give some definitions.

A subgroup $K$ of $G$ is tightly embedded in $G$ if $|K|$ is even and $K$ intersects its distinct conjugates in a subgroup of odd order. A standard subgroup of $G$ is a quasisimple subgroup $A$ of $G$ such that $K=C_{G}(A)$ is tightly embedded in $G$, $N_{G}(A)=N_{G}(K)$ and $A$ commutes with none of its conjugates. (The importance of these concepts for the classification of simple groups is described in [2, Section 1].)

Corollary. Let $G$ be a finite group with $O(G)=1$ and assume that $A$ is a standard subgroup of $G$ such that $|Z(A)|$ is odd and $A \mid Z(A) \cong \mathscr{A}_{7}$. Set $X=$ $\left\langle A^{G}\right\rangle$. Then exactly one of the following holds:
(1) $X=A$ and $Z(A)=1$;
(2) $X \cong \mathscr{A}_{11}$ and $Z(A)=1$;
(3) $X \cong \mathscr{A}_{7} \times \mathscr{A}_{7}$ and $Z(A)=1$;
(4) $G \cong \Sigma_{9}, X=G^{\prime}$, and $Z(A)=1$;
(5) $\quad G \cong$ Aut $(\mathscr{H} e), X=G^{\prime}$ and $|Z(A)|=3$.

Proof. Assume that (1) does not hold and set $K=C_{G}(A)$. If $m_{2}(K) \geq 2$, then [4, Theorem] yields (2). Suppose that $m_{2}(K)=1$ and let $t \in I(K)$. Then $H=C_{G}(t) \leq N_{G}(K)=N_{G}(A)$ and hence $A \triangleleft H$. Thus $H \neq G, t \notin Z(G)$, and $m_{2}\left(C_{H}(A / O(A))\right)=1$. Applying Theorem 1 , we conclude that $F^{*}(G)=$ $E(G)$ and $O_{2}(G)=1$. Also if $F^{*}(G)$ is not simple, then clearly (3) holds. Suppose that $F^{*}(G)$ is simple. If $r_{2}(G) \leq 4$, then [7, Main Theorem] implies that (4) holds. Finally suppose that $r_{2}(G)>4$. Then Theorem 2 yields (5). This completes the proof of the corollary.

Actually the same argument can be applied to any finite group $G$ with $O(G)=$ 1 and such that $G$ contains a standard subgroup $A$ of type $D_{8}$ such that $N_{G}(A) / A C_{G}(A)$ is cyclic.

The outline of the paper is as follows. Section 2 contains a collection of 2group lemmas which are utilized at various points in the later sections. In Section 3, we prove Theorem 1. In the remainder of the paper (Sections 4-12), we prove Theorem 2.

The analyses of Sections $8-12$ are primarily due to the first author.
Our notation is fairly standard and tends to follow the notation of [6] and [7]. In particular, if $n$ is a positive integer, then $\mathscr{A}_{n}$ and $\Sigma_{n}$ respectively denote the alternating and symmetric groups of degree $n$. Moreover, for any finite group $J$ and any 2-power $n, \mathscr{E}_{n}(J)$ denotes the set of elementary abelian subgroups of $J$ of order $n$ and $E_{n}$ denotes an elementary abelian subgroup of order $n$. Also for any finite group $J, m_{2}(J)$ denotes the 2-rank of $J, r_{2}(J)$ denotes the sectional 2-rank of $J$ and $I(J)$ denotes the set of involutions of $J$.

## 2. Preliminary results

In this section, we present several results on 2-groups that are required at various points in our proofs of Theorems 1 and 2.

By surveying all groups of order $2^{4}$, the following result is easily verified:
Lemma 2.1. If $X$ is a group of order $2^{4}$ with $\mid$ Aut $\left.(X)\right|_{2} \neq 1$, then $X$ is isomorphic to $E_{16}, Z_{4} \times Z_{4}, Z_{4} \times Q_{8}$, or $Z_{4} * Q_{8}$.

Lemma 2.2. Let $\mathscr{Q}=\langle y, x| y^{2}=x^{2^{n-1}}=t$ and $\left.x^{y}=x^{-1}\right\rangle$ be a generalized quaternion group of order $2^{n+1}$ with $n \geq 2$. Assume that 2 is a maximal subgroup of the 2-group $S$ and that $Z(S)=Z(2)=\langle t\rangle$. Then exactly one of the following conditions holds:
(i) $S$ is generalized quaternion.
(ii) $S$ is semidihedral.
(iii) $n>2$ and there is an element $v \in \mathscr{Q}-\langle x\rangle$ (of order 4) and an involution $\tau \in S-\mathscr{2}$ such that $x^{\tau}=x t, v^{\tau}=v$, and $X=\langle\mathscr{Q}, \tau\rangle$. Also $t, \tau$, and $x v \tau$ are representatives for the 3 conjugacy classes of involutions of $X$.

Proof. Clearly $C_{S}(2)=\langle t\rangle=Z(2)$ and we may assume that $\langle x\rangle \triangleleft S$. If $S$ contains a cyclic maximal subgroup, then [6, Theorems 5.4.3 and 5.4.4] imply that (i) or (ii) holds. Thus we may assume that no maximal subgroup of $S$ is cyclic. Suppose that $\langle x\rangle\left\langle C_{S}(\langle x\rangle)\right.$. Then $C_{S}(\langle x\rangle)=\langle x\rangle \times\langle\tau\rangle$ for some involution $\tau \in S-\mathscr{2}$ and $\tau^{y}=\tau t$ since $[\tau, \mathscr{2}] \neq 1$. Then

$$
y^{\tau x^{n-2}}=(y t)^{x^{2^{n-2}}}=y
$$

and hence $\tau x^{2^{n-2}} \in C_{S}(\mathscr{Q})-\mathscr{Q}$ which is impossible. Thus $C_{S}(\langle x\rangle)=\langle x\rangle$, $n>2$ and there is an involution $\tau \in S-\mathscr{2}$ such that $x^{\tau}=x t$ and $M=\langle x, \tau\rangle$ is a modular maximal subgroup of $S$. If $\tau^{y}=\tau$, set $v=y$. If $\tau^{y}=\tau t$, then $(x y)^{\tau}=x t y t=x y$ and $v=x y$ does the job. In this last case, $S^{\prime}=\left\langle x^{2}\right\rangle=$ $\Phi(S)$ and hence $S / \Phi(S) \cong E_{8}$, so that exactly one of conditions (i)-(iii) hold. The proof is complete.

A proof similar to that just above yields:
Lemma 2.3. Let $\mathscr{D}=\langle y, x| y^{2}=x^{2^{n}}=1$ and $\left.x^{y}=x^{-1}\right\rangle$ be a dihedral group of order $2^{n+1}$ with $n \geq 2$ and let $x^{2^{n-1}}=t$. Assume that $\mathscr{D}$ is a maximal subgroup of the 2-group $S$ and that $Z(S)=Z(\mathscr{D})=\langle t\rangle$. Then exactly one of the following conditions holds:
(i) $S$ is dihedral.
(ii) $S$ is semidihedral.
(iii) $n>2$ and there is an involution $v \in \mathscr{D}-\langle t\rangle$ and an involution $\tau \in$ $S-\mathscr{D}$, such that $x^{\tau}=x \tau, v^{\tau}=v$, and $S=\langle\mathscr{D}, \tau\rangle$. Also $t, v, v x$, $\tau$, and $v \tau$ are representatives for the 5 conjugacy classes of involutions of $S$.

Lemma 2.4. Let $\mathscr{S}=\langle y, x| y^{2}=x^{2^{n}}=1$ and $x^{y}=x^{-1} t$ where $t=$ $x^{2^{2-1}}>$ be a semidihedral group of order $2^{n+1}$ with $n \geq 3$. Assume that $\mathscr{S}$ is a maximal subgroup of the 2-group $S$ and that $Z(S)=Z(\mathscr{S})=\langle t\rangle$. Then there is an involution $\tau \in S-\mathscr{S}$ such that $S=\langle\mathscr{S}, \tau\rangle$ and $x^{\tau}=x t$ and exactly one of the following conditions holds:
(i) $y^{\tau}=y$ and $I(S)=I(\mathscr{S}) \cup\{t, \tau, t \tau\} \cup\left\{x^{j} y \tau \mid j \in Z\right\}$.
(ii) $y^{\tau}=y t$ and $I(S)=I(\mathscr{S}) \cup\{t, \tau, t \tau\}$.

Proof. As above, we may assume that $S$ contains no cyclic maximal subgroup, $C_{S}(\langle x\rangle)=\langle x\rangle \triangleleft S$ and that $S$ contains an involution $\tau \in S-\mathscr{S}$ such that $x^{\tau}=x t$ and $[y, \tau] \in\langle t\rangle$. If $[y, \tau]=1$, then it is easy to see that (i) holds. If $[y, \tau]=t$, it is easy to see that (ii) holds and the proof is complete.

Lemma 2.5. Let $B \cong Z_{4} \times Z_{4} \times Z_{4}, G=$ Aut ( $B$ ), and let $t \in G$ be such that $\beta^{t}=\beta^{-1}$ for all $\beta \in B$. Then $t$ is not a square in $G$.

Proof. Let $X=\Omega_{1}(B)$ and $H=C_{G}(X)$. Then $t \in H, H$ is an elementary abelian 2-group, $H=O_{2}(G)$ and $G / H \hookrightarrow$ Aut $(B / X) \cong G L(3,2)$ since $H=$ $C_{G}(B / X)$. Assume that $\tau \in G$ is such that $\tau^{2}=t$. Then $\tau^{2} \in H=C_{G}(B / X)$ and $\tau \notin H$ since $H$ is an elementary abelian 2-group. Let $X<B_{0}<B$ be such that $C_{B / X}(\tau)=B_{0} / X$. Then $\left|B_{0}\right|=2^{5}$ and $\Omega_{1}\left(B_{0}\right)=X$.

Let $b \in B_{0}-X$. Then $b^{\tau}=b x$ for some $x \in X$ and hence $b^{t}=b^{-1}=b x x^{\tau}$. Thus $b^{2} \in[X, \tau]$ and $E_{4} \cong \mho^{2}\left(B_{0}\right) \leq[X, \tau]$. On the other hand, $\tau^{2} \in H=$ $C_{G}(X)$. This implies that $|[X, \tau]|=2$. This contradiction proves the lemma.

Lemma 2.6. Let $T$ be a 2-group and let $\langle t\rangle \times\langle\rho\rangle$ be a subgroup of Aut ( $T$ ) such that $|t|=2,|\rho|=3$, and $\left|C_{T}(t)\right|=4$. Then $\left|C_{T}(\rho)\right|=1$ and precisely one of the following holds:
(i) $T \cong Z_{2^{n}} \times Z_{2^{n}}$ for some integer $n \geq 1$ and $t$ inverts $\boldsymbol{\mho}^{1}(T)$.
(ii) $T \cong E_{16}$.
(iii) $T$ is isomorphic to a Sylow 2-subgroup of $L_{3}(4), C_{T}(t)=\Phi(T)=T^{\prime}=$ $Z(T)$ and the inverse image in $T$ of $C_{T / \Phi(T)}(t)$ is isomorphic to $Z_{4} \times Z_{4}$ and is inverted by $t$.
(iv) $T$ is isomorphic to a Sylow 2-subgroup of $U_{3}(4), C_{T}(t)=\Phi(T)=T^{\prime}=$ $Z(T)$ and the inverse image in $T$ of $C_{T / \Phi(T)}$ is isomorphic to $Z_{4} \times Z_{4}$ and is inverted by $t$.

Proof. By [6, Theorem 5.3.4], $\rho$ acts nontrivially on $C_{T}(t)$. Hence $C_{T}(t) \cong$ $E_{4}$ and the result follows from [15, Theorem B].

Lemma 2.7. Let $T$ be a 2-group with an involution $t$ such that $\left|C_{T}(t)\right|=8$ and such that $C_{T}(t)$ is not quaternion. Assume that $T$ has an automorphism $\rho$ of order 3 such that $t \in C_{T}(\rho)$. Let $T_{1}=[T, \rho]$. Then $C_{T}(\rho)=\langle t\rangle \nsubseteq T_{1}, T=T_{1}\langle t\rangle$ and precisely one of the following holds:
(i) $T_{1} \cong E_{4}$ and $T \cong E_{8}$;
(ii) $T_{1} \cong Z_{2^{n}} \times Z_{2^{n}}$ for some integer $n \geq 2$ and $T_{1}$ char $T$;
(iii) $T_{1} \cong E_{16}$ and $T_{1}$ char $T$;
(iv) $T_{1}$ is isomorphic to a Sylow 2-subgroup of $L_{3}(4)$ and $T_{1}$ char $T$;
(v) $T_{1}$ is isomorphic to a Sylow 2-subgroup of $U_{3}(4)$ and $T_{1}$ char $T$.

Proof. Clearly $\langle t\rangle \times\langle\rho\rangle$ acts on $T$. Then [6, Theorem 5.3.4] implies that $\rho$ is nontrivial on $C_{T}(t)$. Thus $C_{T}(t)=\langle t\rangle \times\left[C_{T}(t), \rho\right]$ where $\left[C_{T}(t), \rho\right] \cong$ $E_{4}$. Hence $C_{T}(\rho)=\langle t\rangle$.

Let $T$ be a minimal counterexample to the lemma. Then $t \notin Z(T)$ and $Z(T)=\left[C_{T}(t), \rho\right] \cong E_{4}$. Let $X=C_{T}(t)$. Then $X<T$ and $\rho$ acts on $N_{T}(X)>X$. If $u \in N_{T}(X)-X$, then $t^{u}=t \tau$ for some $\tau \in Z(T)^{\#}$ and hence $Z(T)=\left[N_{T}(X), t\right]=\left[N_{T}(X), X\right]$. Letting $\bar{T}=T / Z(T)$, we have

$$
C_{T}(\bar{t})=\overline{N_{T}(X)}, \quad\left|C_{T}(\bar{t})\right|=8, \quad \text { and } \quad C_{T}(\bar{z}, \rho)=\langle\bar{t}\rangle .
$$

Since $t$ is not a square in $T$, neither is any element of $t Z(T)$. Thus $C_{T}(t)$ is not quaternion. Since $|\bar{T}|<|T|$, we conclude that $\bar{T}=[\bar{T}, \rho] C_{T}(\rho)$ where $C_{T}(\rho)=\langle\bar{t}\rangle \not \leq[\bar{T}, \rho]$ and hence $T=T_{1}\langle t\rangle$ where $C_{T}(\rho)=\langle t\rangle \nless T_{1}=$ $[T, \rho] \triangleleft T$. Clearly $\left|C_{T_{1}}(t)\right|=4$. Then Lemma 2.6 implies that $T_{1}$ has the required isomorphism type. In all cases, $\bar{T}_{1}$ is abelian and $C_{T_{1}}(t) \cong E_{4}$. Thus, if $\bar{T}_{1}$ is not isomorphic to $E_{4}$, we have $\bar{T}_{1}=J_{0}(\bar{T})$ char $\bar{T}$ and hence $T_{1}$ char $T$. If $\bar{T}_{1} \cong E_{4}$, then again $T_{1}=J_{0}(T)$ char $T$ and we are done.

Lemma 2.8. Let $T$ be a 2-group that is isomorphic to a Sylow 2-subgroup of $U_{3}(4)$. Then Aut ( $T$ ) does not contain a subgroup isomorphic to $\Sigma_{3}$.

Proof. Let $\langle\rho, x||\rho|=3,|x|=2$, and $\left.\rho^{x}=\rho^{-1}\right\rangle \leq$ Aut (T). Since $Z(T) \cong E_{4}$, it follows from [7, VI, Lemma 2.5(vii)-(viii)] that $[x, Z(T)]=1$. Thus $[\rho, Z(T)]=1$ which is false by [7, VI, Lemma $2.5(\mathrm{ii})]$ and we are done.

Lemma 2.9. Let T be a nonabelian 2-group of order $2^{6}$ such that $\langle\rho, x||\rho|=3$, $\left.|x|=2, \rho^{x}=\rho^{-1}\right\rangle \leq$ Aut $(T)$ with $C_{T}(\rho)=1$. Then $T$ is isomorphic to a Sylow 2-subgroup of $L_{3}(4)$ and $C_{T}(x)$ is isomorphic to $D_{8}$ or $Q_{8}$.

Proof. By Lemma 2.8 and [7, VI, Lemma 2.18], it follows that $T$ is isomorphic to a Sylow 2-subgroup of $L_{3}(4)$. Hence $Z(T)=T^{\prime}=\Phi(T) \cong E_{4}$, $T / T^{\prime} \cong E_{16}, C_{T / T^{\prime}}(x) \cong E_{4}$, and $\left|C_{Z(T)}(x)\right|=2$. Let $\bar{T}=T / T^{\prime}$. Then $C_{\bar{T}}(x)$ is not $\rho$-invariant. Also $\bar{T}$ has exactly five $\rho$-invariant subgroups isomorphic to $E_{4}$, say $\bar{T}_{i}$ for $1 \leq i \leq 5$, such that $\bar{T}^{\#}=\bigcup_{1}^{5} \bar{T}_{i}^{\#}$ where the union is disjoint. Thus we may assume that $x$ fixes $\bar{T}_{1}, \bar{T}_{2}$, and $\bar{T}_{3}$ and $x$ : $\bar{T}_{4} \leftrightarrow \bar{T}_{5}$. Let $T_{i}$ denote the inverse image in $T$ of $\bar{T}_{i}$ for $1 \leq i \leq 5$. Three of the $T_{i}$ are isomorphic to $Z_{4} \times Z_{4}$ and two of the $T_{i}$ are isomorphic to $E_{16}$. Thus we may assume that $T_{1} \cong Z_{4} \times Z_{4}$. Thus $C_{T_{1}}(x)=\left\langle\gamma_{1}\right\rangle \cong Z_{4}$ where $\gamma_{1}^{2}=z$ generates $C_{Z(T)}(x)$. Thus $z \in C_{T_{i}}(x) \triangleleft C_{T}(x)$ and $\left|C_{T_{i}}(x)\right|=4$ for $i=1,2,3$. Hence
$\left|C_{T_{1}}(x) C_{T_{2}}(x)\right|=8,\langle z\rangle=Z(T) \cap\left(C_{T_{1}}(x) C_{T_{2}}(x)\right)$, and $C_{T_{1}}(x) C_{T_{2}}(x) \unlhd C_{T}(x)$. Clearly $C_{T_{3}}(x) \leq C_{T_{1}}(x) C_{T_{2}}(x)$ and hence $C_{T}(x)=C_{T_{1}}(x) C_{T_{2}}(x)$. As $C_{T}\left(\gamma_{1}\right)=$ $T_{1}$, the lemma follows.

Lemma 2.10. Let $T$ be a group of order $2^{5}$ with

$$
\left.\Sigma_{3} \cong\langle\rho, x||\rho|=3,|x|=2, \text { and } \rho^{x}=\rho^{-1}\right\rangle \leq \operatorname{Aut}(T)
$$

Assume also that $Z(T) \cong E_{8}$ and $\left|C_{T}(\rho)\right|=2$. Then exactly one of the following two conditions holds:
(i) There is $a\langle\rho, x\rangle$ invariant subgroup $Q$ of $T$ with $Q \cong Q_{8}, Q\langle\rho, x\rangle \cong$ $G L(2,3), Q^{\prime}=C_{V}(\rho)$ and with $T=[Z(T), \rho] \times Q$.
(ii) $T^{\prime}=C_{T}(\rho)<Z(T)=\Phi(T)=\mho^{1}(T)=C_{T}(\rho) \times[Z(T), \rho], \Omega_{1}(T)=$ $Z(T), \exp (T)=4$ and for any $\alpha \in T-Z(T)$, one has $|\alpha|=4, \alpha^{2} \notin C_{T}(\rho)$, $\alpha^{2} \notin[Z(T), \rho]$, and $C_{T}(\alpha)=\langle\alpha, Z(T)\rangle$. Also
$T / T^{\prime} \cong Z_{4} \times Z_{4}, \quad T /[Z(T), \rho] \cong Q_{8}, \quad$ and $\quad T\langle\rho, x\rangle /[Z(T), \rho] \cong G L(2,3)$.
Proof. Clearly $T / Z(T) \cong E_{4}$ and hence $\left|T^{\prime}\right|=2$ and $T^{\prime} \leq \Phi(T) \leq$ $Z(T)$. Since $C_{T}(\rho) \leq Z(T)$, it follows that $T^{\prime}=C_{T}(\rho)=\langle u\rangle$ for some involution $u \in T$. Thus $C_{T / T^{\prime}}(\rho)=1$ and $T / T^{\prime} \cong E_{16}$ or $Z_{4} \times Z_{4}$. Setting $F=[Z(T), \rho]$, we have $E_{4} \cong F \triangleleft T\langle\rho, x\rangle$ and $Z(T)=\langle u\rangle \times F$. Note that $\left|C_{F}(x)\right|=2$.

Suppose that $T / T^{\prime} \cong E_{16}$. Since $Z(T) / T^{\prime} \cong F$ over $T\langle\rho, x\rangle$ and $\left|C_{T / T},(x)\right|=4$, it follows that $x$ fixes some $\rho$-irreducible subspace $Q / T^{\prime}$ with $Q \neq Z(T), T^{\prime}<Q \triangleleft T\langle\rho, x\rangle$, and $Q / T^{\prime} \cong E_{4}$. Clearly (i) holds in this case.

Suppose that $T / T^{\prime} \cong Z_{4} \times Z_{4}$. Then $T^{\prime}=\langle u\rangle<\Phi(T)=Z(T)=$ $\mho^{1}(T), \Omega_{1}(T)=Z(T)$, and $\exp (T)=4$. Also $T / F \cong Q_{8}$ and $T\langle\rho, x\rangle / F \cong$ $G L(2,3)$. Letting $\alpha \in T-Z(T)$, we have $|\alpha|=4, \quad C_{T}(\alpha)=\langle\alpha, Z(T)\rangle$, $T=\left\langle\alpha, \alpha^{\rho}\right\rangle$, and $u=\left[\alpha, \alpha^{\rho}\right]$. If $\alpha^{2}=u$, then $\left(\alpha^{\rho}\right)^{2}=u$ and $\mho^{1}\left(T / T^{\prime}\right)=1$ which is false. Thus $\alpha^{2} \notin T^{\prime}=C_{T}(\rho)$. Since $T / F \cong Q_{8}$ and $\Omega_{1}(T / F)=\langle u F\rangle$, it follows that $\alpha^{2} \notin F$ and we are done.

Lemma 2.11. Let $T$ and $\langle\rho, x\rangle \leq$ Aut ( $T$ ) be as in Lemma 2.10 and assume that $T$ satisfies conclusion (ii) of Lemma 2.10. Let $\tau$ be an involution in $C_{\text {Aut (T) }}(\langle\rho, x\rangle)$. Then the following conditions hold:
(i) $[Z(T), \tau]=1$;
(ii) $\tau$ either inverts or acts trivially on $T / T^{\prime}$;
(iii) $\quad m_{2}\left(C_{\text {Aut (T) }}(\langle\rho, x\rangle)\right)=1$.

Proof. Since $\left|C_{Z(T)}(\tau)\right| \geq 4$ and $C_{Z(T)}(\tau)$ is $\rho$-invariant, (i) holds. Let $T^{\prime}=$ $\langle u\rangle, F=[Z(T), \rho], C_{F}(x)=\langle z\rangle$, and $F=\langle y, z\rangle$ for some involution $y \in$ $F-\langle z\rangle$. Let $W=\left\langle v \in T \mid v^{2} \in\langle u z\rangle\right\rangle$. Then $W$ is a maximal subgroup of $T, W$ is abelian, $W \cong Z_{4} \times E_{4}$, and $W$ is $\langle\tau, x\rangle$-invariant. Also $\mho^{1}(W)=$ $\langle u z\rangle$ and hence there is a unique maximal subgroup $Y$ of $W$ such that $u z \in Y$ and $Y \mid\langle u z\rangle=C_{W /\langle u z\rangle}(x)$. Then $W=Y \times\langle y\rangle, Y \cong Z_{4} \times Z_{2}, \Omega_{1}(Y)=$ $\langle u, z\rangle, \mho^{1}(Y)=\langle u z\rangle$, and $Y$ is $\tau$-invariant. Hence $Y=\langle q\rangle \times\langle z\rangle$ for some element $q \in Y-\langle u, z\rangle$ such that $q^{2}=u z$ and $q^{\tau} \in q\langle u, z\rangle$. Since $T=$ $q Z(T) \cup q^{\rho} Z(T) \cup q^{\rho^{2}} Z(T)$, it follows that $q^{\tau} \notin\left\{q, q^{-1}=q u z\right\}$. Thus $q^{\tau} \in\left\{q u, q z=q^{-1} u\right\}$ and (ii) holds. Suppose that $E_{4} \cong\left\langle\tau, \tau_{1}\right\rangle \leq C_{\text {Aut (T) }}$ ( $\langle\rho, x\rangle$ ). Then we may assume that $q^{\tau}=q u$ and $q^{\tau_{1}}=q^{-1} u$. Hence $q^{\tau \tau_{1}}=$ $q^{-1}$ and $\tau \tau_{1}$ inverts $T$ which is impossible and we are done.

Our final result of this section is:
Lemma 2.12. Let $T$ be a 2-group such that $T=R * Q_{1} * Q_{2}$ where $Q_{1}, Q_{2}$ are quaternion of order $8,|R| \geq 2^{3}$ and $R$ is dihedral or generalized quaternion. Let $\tau \in I(T)$. Then $\left|C_{T}(\tau)\right| \geq 2^{6}$.

Proof. Clearly we may assume that $\tau \notin Z(T)$ and let $Z(T)=\langle u\rangle$ where $u$ is an involution and $Q_{1}^{\prime}=Q_{2}^{\prime}=\Omega_{1}\left(R^{\prime}\right)=\langle u\rangle$.

Suppose that $|R|=2^{3}$. Then $T^{\prime}=\langle u\rangle$ and $\tau^{T}=\{\tau, \tau u\}$. Hence $\left|C_{T}(\tau)\right|=$ $2^{6}$ since $|T|=2^{7}$. Suppose that $|R|=2^{a} \geq 2^{4}$. Let $\langle\gamma\rangle$ denote the cyclic maximal subgroup of $R$, let $\langle\omega\rangle=\Omega_{2}(\langle\gamma\rangle)$ and let $U=\langle\omega\rangle * Q_{1} * Q_{2}$. Then $U \triangleleft T, C_{T}(\omega)=C_{T}(\gamma)=\langle\gamma\rangle * Q_{1} * Q_{2}$ and $U=\Omega_{1}\left(C_{T}(\omega)\right)$. Suppose that $\tau \in C_{T}(\omega)$. Then, since $\left|C_{T}(\omega)\right| \geq 2^{7}$ and $C_{T}(\omega)^{\prime}=\langle u\rangle$, we have $\left|C_{C_{T}(\omega)}(\tau)\right| \geq 2^{6}$. Suppose that $\tau \notin C_{T}(\omega)$; then $\tau \notin U$ and $T_{0}=\langle U, t\rangle$ has order $2^{7}$. But $T_{0}=\left(T_{0} \cap R\right) * Q_{1} * Q_{2}$ where $\left|T_{0} \cap R\right|=2^{3},\langle\omega\rangle \leq T_{0} \cap R$ and $\langle\omega\rangle \nsubseteq Z\left(T_{0}\right)$. Thus $T_{0} \cap R$ is dihedral or quaternion and since $\tau \in T_{0}$, we have $\left|C_{T_{0}}(\tau)\right|=2^{6}$. This completes the proof of the lemma.

## 3. The proof of Theorem 1

In this section, we present our proof of Theorem 1.
Proposition 3.1. Let $G$ be a finite group with $O(G)=1$. Assume that $G-Z(G)$ contains an involution $t$ such that $H=C_{G}(t)$ contains a 2 -component $L$ such that $m_{2}(L)>1$ and $m_{2}\left(C_{H}(L / O(L))\right)=1$. Then the following conditions hold:
(i) $\quad m_{2}\left(C_{G}(L / O(L))\right)=1, L \triangleleft H, N_{G}(L)=O\left(N_{G}(L)\right) H$, and $C_{G}(L / O(L))$ is tightly embedded in $G$;
(ii) $O_{2}(G)=F(G)=C_{G}(E(G))=1$ and $F^{*}(G)=E(G)$;
(iii) either $F^{*}(G)$ is simple of $F^{*}(G)=R \times R^{t}$ where $R$ is simple and $L=\left\langle r r^{t} \mid r \in R\right\rangle \cong R$.

Proof. Set $N=N_{G}(L), M=C_{G}(L / O(L))$, and $\bar{N}=N / O(N)$. Note that if $K$ is a 2-component of $H$ and $K \neq L$, then $K \leq C_{H}(L / O(L))$ and hence $m_{2}(K)=$ 1. Thus $L \unlhd H \leq N$. Also $t \in C_{G}(L) \leq M \unlhd N$. Choose $S \in \operatorname{Syl}_{2}(N)$ such that $t \in S$ and let $T=S \cap M \in S y l_{2}(M)$. Then $t \in T$ and hence $t \in Z(T)$ and $\langle t\rangle=\Omega_{1}(T)$. Thus $N=M H$ by the Frattini argument and $m_{2}(M)=1$. Thus $T$ is cyclic or generalized quaternion, $M=O(M) C_{M}(t)$ and $N_{G}(L)=$ $O\left(N_{\mathbf{G}}(L)\right) H$. Next suppose that $g \in G-N_{\mathbf{G}}(M)$ is such that $\left|M \cap M^{g}\right|$ is even. Then there are elements $m_{1}, m_{2} \in M$ such that $t^{m_{1}}=t^{m_{2} g}$. Hence $m_{2} g m_{1}^{-1} \in$ $H \leq N \leq N_{G}(M)$ which implies that $g \in N_{G}(M)$, a contradiction. Thus (i) holds.

Suppose that $Q=O_{2}(G) \neq 1$. Then $1 \neq C_{Q}(t) \unlhd C_{H}(L / O(L))$ and hence $t \in Q$. Then $t \in Z(Q)$ and $\Omega_{1}(Q)=\langle t\rangle \leq Z(G)$, which is false. Thus (ii) holds.

Assume that $E(G)=R_{1} \times R_{2} \times \cdots \times R_{r}$ where $r \geq 2$ and $R_{i}$ is simple for all $1 \leq i \leq r$. Note that $L_{2},(H)=L_{2},\left(C_{E(G)}(t)\right)$ by [9, Corollary 3.2]. Suppose that $t$ normalizes $R_{i}$ with $1 \leq i \leq r$. Then, [9, Lemma 2.18] implies that $L_{2}{ }^{\prime}(H)=L_{2},\left(C_{E(G)}(t)\right)=L_{2}\left(C_{R_{1}}(t)\right) \times \cdots \times L_{2},\left(C_{R_{r}}(t)\right)$ and hence we may assume that $L$ is a 2 -component of $C_{R_{1}}(t)$. But $\left|C_{R_{j}}(t)\right|_{2} \geq 2$ for all $j \neq 1$. Thus $r=2, t \in R_{2}, R_{1} \leq H$, and $L=R_{1}$ since $m_{2}\left(R_{1}\right) \geq 2$. Choose $U \in$ $S y l_{2}\left(R_{2}\right)$ with $t \in U$. Then $C_{U}(t) \leq C_{H}(L)$ and hence $\Omega_{1}(U)=\langle t\rangle$. Then $R_{2}$ is not simple, a contradiction, consequently we may assume that $R_{1}^{t}=R_{2}$. Then

$$
D=\left\langle r_{1} r_{1}^{t} \mid r_{1} \in R_{1}\right\rangle=C_{R_{1} \times R_{2}}(t) \unlhd \unlhd H
$$

and $D \cong R_{1} \cong R_{2}$. Since $D$ is simple, $m_{2}(D) \geq 2$ and $D=L$. Thus $t$ normalizes $R_{j}$ for all $j \geq 3$. If $r \geq 3$, we proceed as above to obtain a contradiction. Thus (iii) holds and the proof of the proposition is complete.

Thus, under the hypotheses of this lemma, if $F^{*}(G)=E(G)$ is not simple and the structure of $L / O(L)$ is given, then the possibilities for $G$ are determined by the structure of Aut $(L / O(L))$. Also when a Sylow 2-subgroup of $M$ is not cyclic and $F^{*}(G)=E(G)$ is simple, the possibilities for $G$ are completely determined by [3].

Combining [8, Theorem] and [7, Main Theorem], it follows that conditions (i)-(iv) of Theorem 1 hold. Next we complete the proof of Theorem 1 by proving the following result.

Proposition 3.2. Let $G$ be a finite group with $O(G)=1, F^{*}(G)$ simple and with $r_{2}(G)>4$. Suppose that $G$ contains an involution $t$ such that $H=C_{G}(t)$ contains a 2-component $L$ with $L / O(L) \cong A_{7}$ or $\operatorname{PSL}(2, q)$ for some odd prime
power $q, m_{2}\left(C_{H}(L / O(L))\right)=1$ and with $N_{H}(L) /\left(L C_{H}(L / O(L))\right)$ cyclic. Let $S \in \operatorname{Syl}_{2}\left(N_{G}(L)\right)$ be such that $t \in S$ and let $D=S \cap L \in S y l_{2}(L)$. Then the following conditions hold:
(i) $\langle t\rangle=S \cap C_{G}(L / O(L)) \in S y l_{2}\left(C_{G}(L / O(L))\right)$.
(ii) $S \in S y l_{2}(H)$ and $L=H^{(\infty)}$.
(iii) $H$ contains a normal subgroup $K$ such that $H=\langle t\rangle \times K$ where $K^{(\infty)}=$ $H^{(\infty)}=L, C_{K}(L / O(L))=O(H)=O(K), K / O(K)$ is isomorphic to a subgroup of Aut $(L / O(L))$ containing $\operatorname{Inn}(L / O(L))$ properly with $L O(K) / O(K)$ corresponding to $\operatorname{Inn}(L / O(L))$ and such that $K / L O(K)$ is cyclic. Also if $L / O(L) \cong A_{7}$, then $K / O(K) \cong \Sigma_{7}$ and if $L / O(L) \cong \operatorname{PSL}(2, q)$ for some odd prime power $q$, then $q$ is a square and $K / O(K)$ contains an involution that acts as a "field automorphism" of order 2 on $L O(K) / O(K)$.

Proof. Let $Q=S \cap C_{G}(L / O(L))$. Then $Q \triangleleft S, D \triangleleft S, \Omega_{1}(Q)=\langle t\rangle \leq$ $Z(S), Q$ is cyclic or generalized quaternion, $D$ is dihedral, $[Q, D]=[Q \cap D]=$ $1, Q D=Q \times D$, and $S /(Q \times D)$ is cyclic.

Let $H=C_{G}(t), \quad N=N_{G}(L), \quad M=C_{G}(L / O(L))$, and $\bar{N}=N / M$. Then $S \in S y l_{2}(H), L \cap M=O(L) \triangleleft N, Q \in S y l_{2}(M), L / O(L) \cong \bar{L} \unlhd \bar{N}, \bar{N} / \bar{L}$ is cyclic, and $\bar{N}$ is isomorphic to a subgroup of Aut $(\bar{L})$ containing $\operatorname{Inn}(\bar{L})$ with $\bar{L}$ corresponding to $\operatorname{Inn}(\bar{L})$. Also $S / Q$ is isomorphic to a Sylow 2-subgroup of $\bar{N}$. Setting $\tilde{S}=S / Q$, we conclude that exactly one of the following holds: $(\alpha) \widetilde{S}$ is dihedral; $(\beta) \tilde{S}$ is semidihedral; $(\gamma) \tilde{S} / \tilde{D}$ is cyclic and if $\tilde{D}<\tilde{U} \leq \tilde{S}$ with $\tilde{U} / \tilde{D}=$ $\boldsymbol{\Omega}_{1}(\tilde{S} / \widetilde{D})$, then $\tilde{U}=\tilde{D} \times\langle\tilde{\tau}\rangle$ where $\tilde{\tau}$ is an involution. Also if $L / O(L) \cong$ $\operatorname{PSL}(2, q)$ for some odd prime power $q$, then $q$ is a square and $\tilde{\tau}$ acts like a "field automorphism" of order 2 on $L / O(L)$.

We shall assume that $G$ is a counterexample to the proposition and shall proceed in a series of three steps to a contradiction.
(1) $S \notin S y l_{2}(G)$.

Proof. Assume that $S \in S y l_{2}(G)$. If $Q$ is cyclic, then

$$
r_{2}(S) \leq r_{2}(S /(Q \times D))+r_{2}(Q \times D) \leq 4
$$

which is false. Thus $Q$ is generalized quaternion and $r_{2}(S / Q)>2$. Hence $S \neq Q \times D$ and $(\gamma)$ holds. Let $U$ denote the inverse image of $\tilde{U}$ in $S$. Thus $U$ contains a subgroup $V \triangleleft U$ such that $V=C_{U}(D), V \cap(Q \times D)=Q$, $|V / Q|=2$, and $U=V \times D$. Also $V / Q$ induces an outer automorphism of order 2 on $L / O(L)$ that centralizes $D O(L) / O(L)$. Hence $|D| \geq 2^{3}$.

Let $D=\left\langle y, d \mid y^{2}=d^{2^{n}}=1, d^{y}=d^{-1}\right\rangle$ for some integer $n \geq 2$ and let $z=d^{2 n-1}$. Note that $Z(D)=\langle z\rangle, \Omega_{1}(S) \leq U, C_{S}(D)=V \times\langle z\rangle$, and $U^{\prime}=V^{\prime} \times\left\langle d^{2}\right\rangle$ where $V^{\prime} \leq Q^{\prime}$ and $V^{\prime}$ is cyclic by Lemma 2.2.

Suppose that $D$ is strongly involution closed in $S$ with respect to $G$. Then, since $U=V \times D$, [11, Theorem 3.1] implies that $D$ is strongly closed in $S$ with respect to $G$. Hence [11, Theorem] implies that $F^{*}(G)$ is isomorphic to
$U_{3}(4), A_{7}$, or $\operatorname{PSL}\left(2, q_{1}\right)$ for some odd prime power $q_{1} \geq 5$. Since $C_{G}\left(F^{*}(G)\right)=$ 1 , we conclude that $r_{2}(G) \leq 4$ which is a contradiction. Thus $z^{G} \cap S=z^{G} \cap$ $U \nsubseteq D$.

Let $\sigma \in I(S)-(Q \times D)=I(U)-(Q \times D)$. Then $U=(Q \times D)\langle\sigma\rangle$ and $D\langle\sigma\rangle \in S y l_{2}(L\langle\sigma\rangle)$. Since $U / Q \cong D\langle\sigma\rangle$ is neither dihedral nor semidihedral and $C_{L\langle\sigma\rangle}(L / O(L))=O(L)$, it follows from the structure of Aut $(L / O(L))$ that there is an $l \in L$ such that $\sigma^{l} \in Z(D\langle\sigma\rangle)$. Then $D\langle\sigma\rangle=D \times\left\langle\sigma^{l}\right\rangle$ and $U=$ $Q\left\langle\sigma^{l}\right\rangle \times D$.

Suppose that $t \sim_{G} z \sim_{G} z t$. Then there is an involution $\sigma \in z^{G} \cap(S-$ $(Q \times D)$ ). By the above, we may assume that $D \leq C_{S}(\sigma)$. Since $\langle t, z\rangle \leq$ $Z(S)$, there is an element $g \in G$ such that $\sigma^{g}=z$ and $C_{S}(\sigma)^{g} \leq S$. Then $D^{g} \leq\left(\Omega_{1}\left(C_{S}(\sigma)\right)^{g} \leq \Omega_{1}(S) \leq U\right.$ and $\left(D^{g}\right)^{\prime} \leq U^{\prime}$. Thus $z^{g}=z$ since $\Omega_{1}\left(U^{\prime}\right)=$ $\langle t, z\rangle$ and we have a contradiction. Hence we may assume that $t \sim_{G} z$ or $z t \sim_{G} z$. Since $\langle z, t\rangle \leq Z(S)$, this fusion must take place in $N_{G}(S)$.

Suppose that $\Omega_{1}(S) \leq Q \times D$. Then $\Omega_{1}(S)=\langle t\rangle \times D$ and $\langle z\rangle=$ $\Omega_{1}\left(\Omega_{1}(S)^{\prime}\right) \unlhd N_{G}(S)$ which is false. Thus $I(S)=I(U) \nsubseteq Q \times D$ and $U / D \cong V$ is not generalized quaternion.

Suppose that $C_{V}(Q)>Z(Q)=\langle t\rangle$. Then $\left|C_{V}(Q)\right|=4$. If $C_{V}(Q)=\langle u\rangle$ where $u^{2}=t$, then $\Omega_{1}(S)=U, Z(U)=\langle u\rangle \times\langle z\rangle,\langle u, t\rangle$ char $S$ and $\langle t\rangle$ char $S$. Thus $\langle z\rangle \unlhd N_{G}(S)$ which is false. If $C_{V}(Q)=\langle t, u\rangle$ where $u^{2}=$ 1 , then $\Omega_{1}(S)=\langle u, t\rangle \times D$ and again $\langle z\rangle \unlhd N_{G}(S)$, a contradiction. Thus $C_{V}(Q)=Z(Q)=\langle t\rangle$ and Lemma 2.2 applies.

Suppose that $V$ is semidihedral. Then $r_{2}(U)=r_{2}(V \times D)=4$ and $U<S$. Since $S /(Q \times D)$ is cyclic, Lemma 2.3 yields a contradiction. Thus $V$ satisfies (iii) of Lemma 2.2. Then $|Q|>2^{3}$ and $Q_{1}=Q \cap \Omega_{1}(V)$ is a maximal subgroup of both $\Omega_{1}(V)$ and $Q$. Also $Q_{1}$ is generalized quaternion and $Z\left(\Omega_{1}(V)\right) \cong$ $Z_{4}$. Letting $Z\left(\Omega_{1}(V)\right)=\langle u\rangle$ where $u^{2}=t$, we have $Z\left(\Omega_{1}(S)\right)=\langle u\rangle \times\langle z\rangle$ and we obtain a contradiction as above. Thus (1) holds.

Let $S<T \in S y l_{2}(G)$ and let $x \in N_{T}(S)-S$ be such that $x^{2} \in S$. Note that $t^{x} \neq t$.
(2) $Q$ is cyclic, $|Q| \geq 4$, and $S \neq Q \times D$.

Proof. Suppose that $Q$ is generalized quaternion. Then $Q^{x} \triangleleft S$ and $Q^{x} \cap$ $Q=\left[Q, Q^{x}\right]=1 \quad$ since $t^{x} \neq t$. Hence $Q \cong\left(Q^{x}\right)^{\sim} \triangleleft \tilde{S}=S / Q, \quad U=$ $(Q \times D) Q^{x}=Q C_{S}(Q)$ where $C_{S}(Q)=(\langle t\rangle \times D) Q^{x}$. Since $Q^{x} \cap(\langle t\rangle \times D)$ is a maximal subgroup of $Q^{x}$, we have $t^{x}=z$ where $Z(D)=\langle z\rangle$. But $Q \cong$ $\left(Q^{x}\right)^{\sim} \triangleleft \widetilde{S}$ and $\widetilde{U}=\widetilde{D}\left(Q^{x}\right)^{\sim}$. Thus $(\beta)$ holds and $\tilde{S}$ is semidihedral. Then $\Omega_{1}(\widetilde{S})=\tilde{D}$ and $\Omega_{1}(S) \leq D \times Q$. Hence $\Omega_{1}(S)=D \times\langle t\rangle$ and $\langle z\rangle=$ $\Omega_{1}\left(\Omega_{1}(S)^{\prime}\right)$ char $X$. Thus $z^{x}=z$, a contradiction. It follows that $Q$ is cyclic. Suppose that $Q=\langle t\rangle$. If $S / D$ is cyclic, then $\Omega_{1}(S)=\langle t\rangle \times D, z^{x}=z$ and $C_{S}\left(\Omega_{1}(S)\right)=\langle y, z\rangle$ where $y^{2} \in\{t, t z\}$. Then $\langle z\rangle$ char $S,\left\langle y^{2}\right\rangle$ char $S$ and hence $\langle t\rangle$ char $S$, which is impossible. Thus $t D \notin \mho^{1}(S / D)$ and there is an $f \in S$ such that $S / D=\langle t D\rangle \times\langle f D\rangle$. Therefore $t \notin \Phi(S)$ and hence $S=\langle t\rangle \times X$
for some maximal subgroup $X$ of $S$. Now [14, I, 17.4] implies that $H=\langle t\rangle \times$ $K$ for some normal subgroup $K$ of $H$. Then $K^{(\infty)}=H^{(\infty)}=L$ since $H \leq N$. Also $C_{K}(L / O(L))=O(K)=O(H)$. Note that if $S /\langle t\rangle$ is dihedral or semidihedral, then so is $X$ and [12, Theorem 2] yields a contradiction. Hence ( $\gamma$ ) holds and (iii) of the proposition holds. Thus $Q$ is cyclic and $|Q| \geq 4$. If $S=Q \times D$, then $\Omega_{1}\left(\mho^{1}(Z(S))\right)=\langle t\rangle$ char $S$, which is impossible. Consequently (2) holds.
(3) $S \cong D \times D, T \cong D$ wr $Z_{2}$, and $r_{2}(G) \leq 4$.

Proof. Suppose that $C_{S}(D)=Q \times Z(D)$. Then $\tilde{S}=S / Q$ is dihedral or semidihedral and $\tilde{D}$ is a maximal subgroup of $\tilde{S}$. If $\Omega_{1}(S)=\Omega_{1}(Q \times D)=$ $\langle t\rangle \times D$, then $C_{S}\left(\Omega_{1}(S)\right)=Q \times Z(D)$ and $\langle t\rangle$ char $S$ which is false. Then $S=(Q \times D)\langle\sigma\rangle$ for some involution $\sigma$ and $\tilde{S}$ is dihedral. Since $\langle t\rangle$ is not characteristic in $S, Z(S)=\langle t, z\rangle$ and hence $\sigma$ acts dihedrally or semidihedrally on $Q$. Thus $C_{S}(\sigma)=C_{T}(\langle t, \sigma\rangle)=\langle t, z, \sigma\rangle$ and [12, Theorem 2] yields a contradiction. Hence $Q \times Z(D)$ is a maximal subgroup of $C_{S}(D)$ and $(\gamma)$ holds. Thus $C_{S}(D)=V \times Z(D)$ for some subgroup $V$ containing $Q$ as a maximal subgroup. Also $U=V D=V \times D$. Suppose that $\Omega_{1}(S) \leq Q \times D$. Then $\Omega_{1}(S)=\langle t\rangle \times D$ and $C_{S}\left(\Omega_{1}(S)\right)=V \times Z(D)$ where $\Omega_{1}(V)=\langle t\rangle$. Hence

$$
\Omega_{1}\left(\mho^{1}\left(C_{S}\left(\Omega_{1}(S)\right)\right)\right)=\langle t\rangle \operatorname{char} S
$$

a contradiction. Thus $\langle t\rangle \times D<\Omega_{1}(S) \leq U$ and there is an involution $\tau \in V-Q$ such that $V=Q\langle\tau\rangle$. If $V$ is abelian, then $\Omega_{1}(S)=\langle\tau, t\rangle \times D$, $C_{S}\left(\Omega_{1}(S)\right)=V \times Z(D)$, and

$$
\Omega_{1}\left(\mho^{1}\left(C_{S}\left(\Omega_{1}(S)\right)\right)\right)=\langle t\rangle \operatorname{char} S
$$

a contradiction. A similar argument applies if $V$ is modular. Thus $V$ is dihedral or semidihedral. Setting $\bar{S}=S / D$, we have $C_{\bar{S}}(\bar{Q})=\bar{Q}$ since $\bar{S} / \bar{Q}$ is cyclic. Hence [14, I, 13.19] implies that $S=U=V \times D$. Now $V \times D=S=$ $S^{x}=V^{x} \times D^{x}$ and $t^{x} \neq t$. If $V \nsubseteq D$, then $[14, \mathrm{I}, 12.5]$ implies that there is a normal automorphism $\alpha$ of $S$ such that $V^{x^{\alpha}}=V$ and $D^{x^{\alpha}}=D$. Since $\alpha$ is normal, $\alpha$ acts trivially on $S^{\prime}$ and hence $t^{x}=t$, a contradiction. Thus $S \cong$ $D \times D$ and $V \cong D$. Suppose that $Y=V \cap V^{x} \neq 1$. Then $Y \triangleleft V$ and $Y \triangleleft V^{x}$. Since $t^{x} \in\{z, z t\}$, this is impossible. Thus $S=V \times V^{x}$ and $\langle S, x\rangle \cong D$ wr $Z_{2}$. But $J_{e}(\langle S, x\rangle)=S$ and hence $S$ char $\langle S, x\rangle$. Since $Z(S)=\langle t, z\rangle$, we have $N_{T}(S)=\langle S, x\rangle, T=\langle S, x\rangle$, and $r_{2}(T) \leq 4$. This contradiction concludes the proof of Proposition 3.2 and of Theorem 1.

## 4. Beginning the proof of Theorem 2

We now commence our proof of Theorem 2.
Let $G, t, H, L, S$, and $D$ be as in Theorem 1 and assume that $F^{*}(G)$ is simple, that $r_{2}\left(F^{*}(G)\right)>4$ and that $|D|=2^{3}$.

Observe that if $\left|F^{*}(G)\right|_{2} \leq 2^{10}$, then [5] determines the structure of $F^{*}(G)$ and the conclusion of Theorem 2 follows. Consequently we may assume that
$\left|F^{*}(G)\right|_{2}>2^{10}$ and we shall obtain a contradiction by showing that $\left|O^{2}(G)\right|_{2} \leq$ $2^{10}$.

Applying Theorem $1(\mathrm{v})$, we have $S \cong E_{4} \times D_{8},\left|S^{\prime}\right|=2, t \notin S^{\prime}$, and $S \notin$ $S y l_{2}(G)$. Hence we may choose involutions $u, z \in S$ such that

$$
\begin{equation*}
S^{\prime}=\langle z\rangle, \quad Z(S)=\langle t, u, z\rangle, \quad \text { and } \quad S \notin S y l_{2}(G) \tag{4.1}
\end{equation*}
$$

Moreover we may choose involutions $x, y$ of $S$ such that $S=\langle t, u\rangle \times$ $\langle x, y\rangle,\langle x, y\rangle \cong D_{8}$, and $\langle x, y\rangle^{\prime}=\langle z\rangle$, and:
(4.2) The elements of $Z(S)^{\#}$ are representatives for the distinct $H$-conjugacy classes of $I(S), u \sim x \sim x z$ in $H, z \sim y \sim y z \sim x u \sim x u z$ in $H, u z \sim y u \sim$ $y u z$ in $H, t u \sim t x \sim t x z$ in $H, t z \sim t y \sim t y z \sim t x u \sim t x u z$ in $H, t u z \sim t y u \sim$. $t y u z$ in $H$, and $D=\langle y, x u\rangle$.

Since $S \in S y l_{2}\left(C_{G}(t)\right)$ and $S^{\prime}=\langle z\rangle$, we have:
(4.3) $t \approx z$ in $G$ and $t$ is not a square in $G$.

Set $A=\langle t, u, z, y\rangle$ and $B=\langle t, u, z, x\rangle$.
(4.4) $\quad \mathscr{E}_{16}(S)=\{A, B\}, I(S) \subseteq A \cup B$, and every elementary abelian subgroup of $S$ is contained in $A$ or in $B$.

Also we have

$$
\begin{gather*}
C_{G}(A)=C_{H}(A)=O\left(C_{G}(A)\right) \times A,  \tag{4.5}\\
C_{G}(B)=C_{H}(B)=O\left(C_{G}(B)\right) \times B, \quad C_{H}(z)=O\left(C_{H}(z)\right) S
\end{gather*}
$$

Since $u^{H} \cap A=\{u\}, u^{H} \cap B=\{u, x, x z\},(u z)^{H} \cap B=\{u z\}$, and $(u z)^{H} \cap$ $A=\{u z, y u, y u z\}$, we have

$$
\begin{equation*}
A \sim B \text { in } H, \quad\langle u\rangle \triangleleft N_{H}(A), \quad \text { and } \quad\langle u z\rangle \triangleleft N_{H}(B) . \tag{4.6}
\end{equation*}
$$

Also we have

$$
\begin{gather*}
C_{G}(S)=C_{H}(S)=O\left(C_{G}(S)\right) \times Z(S), \quad N_{H}(S)=O\left(C_{G}(S)\right) \times S  \tag{4.7}\\
C_{G}(Z(S))=C_{H}(Z(S))=O\left(C_{H}(Z(S))\right) S=O\left(C_{G}(Z(S))\right) S
\end{gather*}
$$

Setting $\bar{H}=H / O(H)$, we conclude:
(4.8) There is a 3-element $\rho \in C_{H}(u) \cap N_{H}(A)$ such that $\rho^{x}=\rho^{-1}, C_{A}(\rho)=$ $\langle t, u\rangle,[A, \rho]=\langle y, z\rangle$, and $N_{H}(\bar{A})=\langle\bar{\tau}, \bar{u}\rangle \times\langle\bar{y}, \bar{z}, \bar{\rho}, \bar{x}\rangle$ with $\langle\bar{y}, \bar{z}, \bar{\rho}, \bar{x}\rangle \cong$ $\Sigma_{4}$.
(4.9) There is a 3-element $\rho_{1} \in C_{H}(u z) \cap N_{H}(B)$ such that $\rho_{1}^{y}=\rho_{1}^{-1}$, $C_{B}\left(\rho_{1}\right)=\langle t, u z\rangle,\left[B, \rho_{1}\right]=\langle z, u x\rangle$, and $N_{H}(\bar{B})=\langle\bar{z}, \bar{u} \bar{z}\rangle \times\left\langle\bar{z}, \bar{x} \bar{u}, \bar{\rho}_{1}, \bar{y}\right\rangle$ with $\left\langle\bar{z}, \bar{x} \bar{u}, \bar{\rho}_{1}, \bar{y}\right\rangle \cong \Sigma_{4}$.

Thus $N_{H}(A) \leq O(H) A\langle\rho, x\rangle$ and hence

$$
\begin{align*}
& N_{H}(A)=\left(O(H) \cap N_{H}(A)\right) A\langle\rho, x\rangle  \tag{4.10}\\
& \quad \text { where } O\left(C_{G}(A)\right)=O\left(N_{G}(A)\right)=O(H) \cap N_{H}(A) .
\end{align*}
$$

Similarly for $B$, we have

$$
\begin{align*}
& N_{H}(B)=\left(O(H) \cap N_{H}(B)\right) B\left\langle\rho_{1}, y\right\rangle  \tag{4.11}\\
& \quad \text { where } O\left(C_{G}(B)\right)=O\left(N_{G}(B)\right)=O(H) \cap N_{H}(B) .
\end{align*}
$$

Suppose that $\bar{L} \cong \mathscr{A}_{7}$. Then $C_{H}(\bar{u})=\langle\bar{t}, \bar{u}\rangle \times \overline{\mathfrak{A}}$ for some subgroup $\overline{\mathfrak{A}}$ of $\bar{H}$ with $\langle y, z, \rho\rangle \leq \overline{\mathfrak{A}}$ and $\overline{\mathfrak{A}} \cong \Sigma_{5}$ or $\Sigma_{4}$. Suppose that $\bar{L} \cong \operatorname{PSL}(2, q)$ where $q=p^{2 n}$ for some odd prime integer $p$ and integer $n \geq 1$. Then $C_{H}(\bar{u})=$ $\langle\bar{i}, \bar{u}\rangle=\overline{\mathfrak{M}}$ for some subgroup $\overline{\mathfrak{R}}$ of $\bar{H}$ such that $\overline{\mathfrak{A}}^{\prime} \cong \operatorname{PSL}\left(2, p^{n}\right), O^{2 \prime}(\overline{\mathfrak{R}}) \cong$ $P G L\left(2, p^{n}\right)$, and $\langle\bar{y}, \bar{z}, \bar{\rho}\rangle \leq \overline{\mathfrak{A}}$.

Hence $S \cap O^{2}\left(C_{G}(t, u)\right)=\langle y, z\rangle \in \operatorname{Syl}_{2}\left(O^{2}\left(C_{G}(t, u)\right)\right)$ in all cases and:
(4.12) If $\tau \in t^{G}$ and $\lambda \in I\left(C_{G}(\tau)\right)$ with $\lambda \neq \tau$, then $O^{2}\left(C_{G}(\lambda, \tau)\right)$ is of odd order or has Sylow 2-subgroups of type $E_{4}$.

Clearly:
(4.13) $\quad N_{G}(S)$ controls the $G$-fusion of element of $t^{G} \cap Z(S)$ and $N_{G}(S) \cap$ $C_{G}(Z(S))=O\left(C_{G}(S)\right) \times S$.

Thus, since $S \notin S y l_{2}(G)$, we have

$$
N_{G}(S) /\left(N_{G}(S) \cap C_{G}(Z(S))\right) \hookrightarrow \text { Aut }(Z(S)) \cong G L(3,2)
$$

and $2\left|\left|N_{G}(S) /\left(N_{G}(S) \cap C_{G}(Z(S))\right)\right|\right.$. Set

$$
\gamma=\mid N_{G}(S) /\left(N_{G}(S) \cap C_{G}(Z(S)) \mid\right.
$$

and note that $\gamma \leq 6$ since $t \sim z$ in $G$. Thus $\gamma \in\{2,4,6\}$.
Suppose that $\gamma=6$. Let $P \in S y l_{3}\left(N_{G}(S)\right)$. Then $t \sim t u \sim t z \sim t u z \sim u \sim$ $u z$ in $N_{G}(S)$ and $X=\left(N_{G}(S) \cap C_{G}(Z(S)) P \unlhd N_{G}(S)\right.$. Since

$$
Z(S)=C_{Z(S)}(X) \times[Z(S), X]
$$

where $C_{Z(S)}(X)=\langle z\rangle \triangleleft N_{G}(S)$ and $E_{4} \cong[Z(S), X] \unlhd N_{G}(S)$, we conclude that $N_{G}(S)$ has 3 orbits on $Z(S)^{\#}$. This contradiction implies that $\gamma \neq 6$.

In the next section, we shall examine the case when $\gamma=2$ and the remainder of the paper will be concerned with the case $\gamma=4$.

## 5. The case $\left|N_{G}(S) /\left(N_{G}(S) \cap C_{G}(Z(S))\right)\right|=2$

Throughout this section, we assume that $\gamma=2$ and we choose $S_{1} \in$ $S y l_{2}\left(N_{G}(S)\right)$. Then $\left|S_{1} / S\right|=2$ and $t^{S_{1}}=\{t, \alpha\}$ where $\alpha \in\{u, t u, u z, t u z, t z\}$. We shall now proceed to prove that $|G|_{2} \leq 2^{9}$ in a series of lemmas.

Lemma 5.1. If $\alpha \neq t z$, then $|G|_{2} \leq 2^{7}$.
Proof. Assume that $\alpha \neq t z$ and $|G|_{2} \geq 2^{8}$.
Clearly $S_{1} \in S y l_{2}\left(N_{G}(\langle t, \alpha\rangle)\right), S \in S y l_{2}\left(C_{G}(\langle t, \alpha\rangle)\right)$, and $N_{G}(\langle t, \alpha\rangle)=$ $C_{G}(\langle t, \alpha\rangle) S_{1}$.

Suppose that $\alpha=u$. Then $t^{G} \cap S=\{t, u, x, x z\}$. Since $S_{1} \leq N_{G}(A) \cap$ $N_{G}(B)$, we conclude that $S_{1}$ leaves $\{x, x z\}$ invariant.

Set $M=N_{G}(A)$ and $\bar{M}=M / O(M)$. Now

$$
C_{M}(\langle t, u\rangle)=\left(O\left(C_{G}(A)\right) \times A\right)\langle\rho, x\rangle
$$

where $\rho^{3} \in O\left(C_{G}(A)\right)=O(M), C_{\bar{M}}(\langle\bar{t}, \bar{u}\rangle)=\langle\bar{t}, \bar{u}\rangle \times\langle\bar{y}, \bar{z}, \bar{\rho}, \bar{x}\rangle$, and $C_{\bar{M}}(\langle\bar{t}, \bar{u}\rangle)$ is $\bar{S}_{1}$ invariant. Let $\bar{R}=C_{\bar{R}}(\langle\bar{t}, \bar{u}\rangle) \bar{S}_{1}$. Then $C_{\bar{M}}(\langle\bar{t}, \bar{u}\rangle)$ is of index 2 in $\bar{R}$ and $O^{2}(\bar{R})=\langle\bar{y}, \bar{z}, \bar{\rho}\rangle$. Thus $\bar{X}=\langle\bar{y}, z, \bar{\rho}, \bar{x}\rangle \triangleleft \bar{R}$. Since $\bar{X} \cong \Sigma_{4}$, we have $\bar{R}=C_{\bar{R}}(\bar{X}) \times \bar{X}$ where $\langle\bar{t}, \bar{u}\rangle$ is of index 2 in $C_{\bar{R}}(\bar{X})$. Hence there is an involution $\tau \in\left(S_{1}-S\right) \cap C_{G}(\langle x, y\rangle)$ such that $S_{1}=\langle\tau, t\rangle \times\langle x, y\rangle$ with $\langle\tau, t\rangle \cong D_{8}$ and $t^{\tau}=u$. Hence

$$
S_{0}=\langle\tau, t\rangle \times\langle x, z\rangle \in S y l_{2}\left(C_{G}(x)\right)
$$

and $t^{G} \cap S_{0}=\{t, u, x, x z\}$ since $\left|t^{G} \cap S\right|=4$. Since

$$
I\left(S_{1}-S_{0}\right)=y I(\langle\tau, t\rangle) \cup y z I(\langle\tau, t\rangle) \quad \text { and } \quad t^{G} \cap(z I(\langle\tau, t\rangle))=\emptyset
$$

it follows that $t^{G} \cap S_{1}=\{t, u, x, x z\}$. Also $\left|S_{1}\right|=2^{6}$ and hence there is a 2 group $T$ containing $S_{1}$ with $\left|T: S_{1}\right|=2$. Thus there is an element $\omega \in T-S_{1}$ such that $\omega:\{t, u\} \leftrightarrow\{x, x z\}$ and hence $T$ is transitive on $t^{G} \cap S_{1}$. If $S_{1}$ char $T$, then $T \in S y l_{2}(G)$ and we are done. Thus, $S_{1}$ is not characteristic in $T$.

Now $S_{1}=\Omega_{1}\left(S_{1}\right)=\left\langle D \mid D \in E_{16}\left(S_{1}\right)\right\rangle$. Thus there is an involution in $T-S_{1}$. Suppose that $\lambda \in I\left(T-S_{1}\right)$. Then $\lambda$ leaves $t^{G} \cap S_{1}$ and $S_{1}-$ ( $t^{G} \cap S_{1}$ ) invariant. Thus $\lambda$ normalizes $Y=\langle\tau, t u\rangle \times\langle y, z\rangle$ and $B=$ $\langle t, u, x, z\rangle$ and hence $\lambda: C_{Y}(t, u)=\langle t u, y, z\rangle \leftrightarrow C_{Y}(x, x z)=\langle\tau, t u, z)$. Also $\lambda$ normalizes $Z\left(S_{1}\right)=\langle t u, z\rangle=S_{1}^{\prime}$ and hence $y^{\lambda} \in \tau\langle t u, z\rangle$. Thus implies that $C_{S_{1} / B}(\lambda)=\left\langle y y^{\lambda} B\right\rangle$. Since $C_{B}(\lambda)=\left\langle t t^{\lambda}, u u^{\lambda}\right\rangle$, we conclude that $C_{S_{1}}(\lambda) \cong D_{8}$. Hence $J_{e}(T)=S_{1}$ char $T$ and we have a contradiction. Thus $\alpha \neq u$.

Applying similar arguments when $\alpha \in\{t u, u z, t u z\}$, we obtain Lemma 5.1.
Lemma 5.2. If $\alpha=t z$, then $|G|_{2} \leq 2^{9}$.
Proof. Assume that $t^{S_{1}}=\{t, t z\}$ and that $|G|_{2} \geq 2^{10}$. Then

$$
t^{G} \cap S=\{t, t z, t y, t y z, t x u, t x u z\}
$$

We shall proceed to a contradiction via a series of lemmas.
Lemma 5.3. $A \sim B$ in $G$ and $N_{G}(S)=N_{G}(A) \cap N_{G}(B)$.
Proof. Assume that $A \sim B$ in $N_{G}(S)=O\left(C_{G}(S)\right) S_{1}$ and let $v \in S_{1}-S$. Then $A^{v}=B$ and $t^{v}=t z$. Hence $\left\langle I\left(C_{S}(v)\right)\right\rangle=\left\langle C_{A \cap B}(v)\right\rangle=C_{\langle t, u, z\rangle}(v) \cong$
$E_{4}$ since $t^{v}=t z$ and $v^{2} \in S \leq C_{G}(t, u, z)$. Thus $J_{e}\left(S_{1}\right)=S$ char $S_{1}$ and hence $S_{1} \in S y l_{2}(G)$. Since $\left|S_{1}\right|=2^{6}$, this is impossible and hence $A \triangleleft N_{G}(S)$ and $B \triangleleft N_{G}(S)$. Then $\left\langle S_{1}, \rho\right\rangle$ is transitive on $t^{G} \cap A=t\langle y, z\rangle$ and $N_{G}(A)$ is transitive on $t^{G} \cap A$. Similarly $N_{G}(B)$ is transitive on $t^{G} \cap B$. Since $A \sim B$ in $H$, we conclude that $A \sim B$ in $G$ and Lemma 5.3 follows.

Next we investigate the subgroup $M=N_{G}(A)$. Similar considerations will also clearly apply to the subgroup $N_{G}(B)$.

Set $\bar{M}=M / O(M)$ and $F=\langle y, z\rangle$. Then $F \cong E_{4}$ and $C_{M}(\bar{A})=\bar{A}$ since $C_{G}(A)=O(M) \times A$ and $\bar{M} / \bar{A} \hookrightarrow$ Aut $(A) \cong G L(4,2) \cong \mathscr{A}_{8}$. Also $\bar{M}$ acts transitively on $t^{G} \cap A=t F, C_{\bar{M}}(\bar{t})=\bar{A}\langle\bar{\rho}, \bar{x}\rangle$ and $C_{\bar{M}}(\bar{t}) / \bar{A} \cong \Sigma_{3}$. Hence $|\bar{M} / \bar{A}|=3 \cdot 2^{3}$. Since $C_{A}(\bar{\rho})=\langle t, u\rangle$ is not normal in $M$, we conclude that $O_{3}(\bar{M} / \bar{A})=1$ and hence $\bar{M} / \bar{A} \cong \Sigma_{4}$. Note also that $t^{M}=t F$ and hence $F \triangleleft M$.

Set $W=O_{2^{\prime}, 2}(M), V=O(M)[W, \rho]$, and $\tilde{M}=M /(O(M) \times F)$. Thus $O(M) \times F \leq V$.

Lemma 5.4. (i) $\bar{M}=\bar{W}\langle\bar{\rho}, \bar{x}\rangle$ and $\langle\bar{\rho}, \bar{x}\rangle \cong \Sigma_{3}$;
(ii) $C_{W}(\bar{\rho})=\langle\bar{t}, \bar{u}\rangle$;
(iii) $V \triangleleft M, C_{V}(\bar{\rho})=1$ and $\bar{V} \cong Z_{4} \times Z_{4}$ or $E_{16}$.

Proof. Clearly (i) holds and $\langle\tilde{t}, \tilde{u}\rangle \leq \tilde{W} \triangleleft \tilde{M}=\tilde{W}\langle\tilde{\rho}, \tilde{x}\rangle$ with $\langle\tilde{\rho}, \tilde{x}\rangle=$ $\Sigma_{3}$. Also $|\tilde{W}|=2^{4}$ and $E_{4} \cong\langle\tilde{\tau}, \tilde{u}\rangle \leq C_{\tilde{W}}(\tilde{\rho})<\tilde{W}$. Thus $C_{\tilde{W}}(\rho)=\langle\tilde{u}, \tilde{u}\rangle$ and $\widetilde{W} \cong E_{16}$ or $Z_{2} \times Q_{8}$ by Lemma 2.1. Hence (ii) holds and $V \triangleleft M$ since $\bar{M}=\bar{W}\langle\bar{\rho}, \bar{x}\rangle$.

Suppose that $\tilde{W} \cong Z_{2} \times Q_{8}$. Then $\Omega_{1}(\tilde{W})=\langle\tilde{t} \tilde{u}\rangle=\tilde{A}$. Let $\mathscr{U}$ be a Sylow 2-subgroup of $M=N_{G}(A)$ such that $S<S_{1} \leq \mathscr{U}$ and let $\mathscr{V}=\mathscr{U} \cap W$. Then $\mathscr{V} \triangleleft \mathscr{U}, \mathscr{U}=\mathscr{V}\langle x\rangle, x \notin \mathscr{V}$, and $|\mathscr{U}|=2|\mathscr{V}|=2^{7}$. Hence $\mathscr{U} \notin S y l_{2}(G)$ and there is a 2-element $s \in N_{G}(\mathscr{U})-\mathscr{U}$ such that $s^{2} \in \mathscr{U}$. Then $A \neq A^{s} \triangleleft \mathscr{U}$ and $A^{s} \cap \mathscr{V} \notin A$ since $\mathscr{U} \mid A \cong D_{8}$ and $|\mathscr{V}| A \mid=4$. However $\Omega_{1}(\tilde{W})=A$ implies that $A / F=\Omega_{1}(\mathscr{V} / F)$. This contradiction implies that $\widetilde{W} \cong E_{16}$. Since $\bar{V}=[\bar{W}, \bar{\rho}] \geq \bar{F}$ and $|\bar{V}|=2^{4}$, (iii) follows from Lemma 2.1.

Lemma 5.5. Assume that $\tilde{V} \cong E_{16}$ and let $\mathscr{U} \in S y l_{2}(M)$ be such that $S<$ $S_{1} \leq \mathscr{U}$. Then $\mathscr{E}_{32}(\mathscr{U})$ contains a unique element $E$ such that:
(i) $C_{E}(t)=\langle\tau, F\rangle$ for a unique $\tau \in\{u, t u\}$;
(ii) $\mathscr{U}=E\langle x, t\rangle$;
(iii) $\left|C_{E}(x)\right|=\left|C_{E}(t)\right|=2^{3}$;
(iv) $t^{G} \cap t E=t^{E}=t F$.

Proof. Clearly we may assume that $O(M)=1$. Then $E_{16} \cong V=[W, \rho] \triangleleft$ $M, W=O_{2}(M)=V\langle t, u\rangle, F=\langle y, z\rangle=C_{V}(t)$, and $M=W\langle\rho, x\rangle$. Thus $\langle t, u\rangle \times\langle\rho, x\rangle$ acts on $V$ with $C_{V}(\rho)=1$ and $C_{V}(t)=F$. Thus $\langle z\rangle=C_{V}(x) \cap$ $C_{V}(x t)$ and $\left|C_{V}(x)\right|=\left|C_{V}(x t)\right|=4$. Also $\langle t, u\rangle$ centralizes $C_{V}(t)=F$ and $\langle t, u\rangle$ acts on $C_{V}(x) \neq F$. Since $C_{V}(x) \cong E_{4}$, there is a unique $\tau \in\{u, t u\}$ such
that $\tau$ centralizes $C_{V_{1}}(x)$. Thus $\left|C_{V}(\tau)\right| \geq 2^{3}$ and since $C_{V}(\tau)$ is $\langle\rho\rangle$-invariant, we have $C_{V}(\tau)=V$. Set $E=V \times\langle\tau\rangle$. Then $E \in \mathscr{E}_{32}(\mathscr{U}), E \triangleleft \mathscr{U}$ and (i)-(iii) hold. Since $I(t E)=t F \cup t \tau F$, (iv) also holds. Now (iii) and (iv) imply that $\mathscr{E}_{32}(\mathscr{U})=\{E\}$ and we are done.

Lemma 5.6. $\bar{V} \cong Z_{4} \times Z_{4}$.
Proof. Assume that $\bar{V} \cong E_{16}$ and choose $\mathscr{U}$ as in Lemma 5.5. Let $\mathscr{E}_{32}(\mathscr{U})=$ $\{E\}$ and set $N=N_{G}(E)$. Also choose $\mathcal{N} \in S y l_{2}(N)$ such that $\mathscr{U} \leq \mathscr{N}$. Thus $C_{\mathcal{N}}(t)=S$ and $C_{S}(E)=S \cap E=C_{E}(t)=\langle\tau, F\rangle$. Suppose that $f \in \mathscr{N}$ is such that $[t, f] \in E$. Then $t^{f} \in t^{G} \cap t E=t^{E}$ and hence $f \in E S=\mathscr{U}$. We conclude that $C_{\mathcal{N}}(E)=E$. Also setting $\overline{\mathcal{N}}=\mathcal{N} / E$, we have $\overline{\mathcal{N}} \hookrightarrow$ Aut $(E) \cong$ $G L(5,2)$ and $C_{\mathcal{N}}(\bar{t})=\bar{S}=\langle\bar{t}, \bar{x}\rangle \cong E_{4}$. Thus $\bar{N}$ is dihedral or semidihedral by [14, III, 11.9(b) and 14.23]. Since the 2-exponent of $G L(5,2)$ is $2^{3}$, we have $|\mathcal{N}| \leq 2^{9}$. Thus there is a 2-element $s \in N_{G}(\mathcal{N})-\mathcal{N}$ such that $s^{2} \in \mathscr{N}$. Then $E \neq E_{1}=E^{s} \triangleleft \mathscr{N}, \bar{E}_{1} \triangleleft \overline{\mathcal{N}}$, and $\bar{t} \notin \bar{E}_{1}$ since $\bar{E}_{1} \nsubseteq C_{\bar{N}}(\bar{t})=\bar{S}=\overline{\mathscr{U}}$. Thus $\bar{x} \in \bar{E}_{1}$ or $\bar{x} \bar{t} \in \bar{E}_{1}$. Then Lemma $5.5\left(\right.$ iii) implies that $\left|\bar{E}_{1}\right|=4$, $\overline{\mathcal{N}} \cong D_{8}$, $\left|E_{1} \cap E\right|=2^{3}$, and $E_{1} \cap C_{E}(t)=\langle\tau, z\rangle$. Let $\left\{\bar{x}_{1}\right\}=\{\bar{x}, \bar{x} \bar{t}\} \cap \bar{E}_{1}$. Then $E_{1} \cap E=C_{E}\left(\bar{x}_{1}\right)$ and hence $x \in E_{1}$ or $t x \in E_{1}$. Letting $x_{1}=\{x, x t\} \cap E_{1}$, we have $E_{1}=\left\langle E \cap E_{1}, x_{1}, v\right\rangle$ for some involution $v$. Then $v: t E \leftrightarrow t x_{1} E$ and $Z(\overline{\mathcal{N}})=\left\langle\bar{x}_{1}\right\rangle$. Since $s: E \leftrightarrow E_{1}, s$ normalizes $I\left(\mathcal{N}-\left(E E_{1}\right)\right)=I(t E) \cup$ $I\left(t x_{1} E\right)$. But $I(t E) \cup I\left(t x_{1} E\right)=t^{\mathcal{N}} \cup(t u)^{\mathcal{N}}$. Since $t \sim t u$ in $G$, it follows that $\left|C_{\mathscr{H}^{\prime}}(t)\right|=|S|<\left|C_{\mathscr{N}\langle s\rangle}(t)\right|$ which is impossible. Now Lemma 5.4(iii) yields Lemma 5.6.

Thus we have $\bar{V} \cong Z_{4} \times Z_{4}, \quad \Omega_{1}(\bar{V})=\bar{F}=C_{\bar{V}}(\bar{t})$, and $\bar{V} \triangleleft \bar{M}=$ $\bar{V}(\langle\bar{t}, \bar{u}\rangle \times\langle\bar{\rho}, \bar{x}\rangle)$. Since $\langle\bar{t}, \bar{u}\rangle$ normalizes $C_{V}(\bar{x})$ and $C_{V}(\bar{x}) \cong Z_{4}$, it follows that $\bar{z}$ inverts $\bar{V}$ and there is a unique involution $u_{1} \in\{u, u t\}$ such that $\overline{u_{1}} \in$ $C_{M}(\bar{V})$. Hence $C_{M}(\bar{V})=\left\langle\bar{u}_{1}\right\rangle \times \bar{V} \triangleleft \bar{M}$.

Let $\mathscr{U} \in S y l_{2}(M)$ be such that $S<S_{1} \leq \mathscr{U}$, set $\mathscr{W}=\mathscr{U} \cap W, \mathscr{V}=\mathscr{U} \cap V$, and $E=\mathscr{V}\left\langle u_{1}\right\rangle$. Then $E=\left\langle u_{1}\right\rangle \times \mathscr{V}, \mathscr{V} \cong Z_{4} \times Z_{4}, \Omega_{1}(\mathscr{V})=F, \mathscr{V} \triangleleft$ $\mathscr{U}, E=C_{\mathscr{U}}(\mathscr{V}) \triangleleft \mathscr{U}, t$ inverts $\mathscr{V}, \mathscr{W}=E\langle t\rangle$, and $\mathscr{U}=\left\langle u_{1}\right\rangle \times(\mathscr{V}\langle x, t\rangle)$. Also let $X=\left\langle u_{1}\right\rangle \times F=\Omega_{1}(E)$.

Lemma 5.7. (i) $\mathscr{V}\langle x, t\rangle$ is isomorphic to a Sylow 2-subgroup of $M_{12}$.
(ii) $Z(\mathscr{U})=\left\langle u_{1}, z\right\rangle, \mathscr{U}=\Omega_{1}(\mathscr{U})$, and $\Omega_{1}\left(\mathscr{U}^{\prime}\right)=F$.
(iii) $X=Z(\mathscr{U}) \Omega_{1}\left(\mathscr{U}^{\prime}\right)$ char $\mathscr{U}$.
(iv) $E=J_{0}(\mathscr{W})$ and $\mathscr{W}=C_{\mathscr{U}}(X)$ char $\mathscr{U}$.

Proof. Clearly [7, II, Lemma 2.1(vi)] implies that $\bar{V}(\langle\bar{t}\rangle \times\langle\bar{\rho}, \bar{x}\rangle)$ has Sylow 2-subgroups of type $M_{12}$ and hence (i) holds. Then (ii)-(iv) follow and we are done.

Since $\bar{W}=\bar{W} \triangleleft \bar{M}$, we have $M=O(M) N_{M}(\mathscr{W}), t^{\mathscr{L}}=t F=t^{\mathscr{V}}=t^{M}$, and $\bar{M} / \bar{W} \cong \Sigma_{3}$. Thus $N_{M}(\mathscr{W})=\left(\left(O(M) \cap N_{M}(\mathscr{V})\right) \times \mathscr{W}\right)\left(N_{M}(\mathscr{W}) \cap H\right)$ and hence there is a 3-element $\kappa \in N_{M}(\mathscr{W}) \cap C_{H}\left(u_{1}\right)$ inverted by $x$ such that $\kappa^{3} \in$ $O(M) \cap N_{M}(\mathscr{W})$.

Set $N=N_{G}(\mathscr{W})$ and $\bar{N}=N / O(N)$. Clearly $\langle\mathscr{U}, \kappa\rangle \leq N$ and $Z(\mathscr{W})=$ $X \leq C_{G}(\mathscr{W})$. Let $\mathscr{U} \leq \mathscr{N} \in S y l_{2}(N)$. Then $\mathscr{U}<\mathscr{N}$ since $|\mathscr{U}|=2^{7}$ and $\mathscr{W}$ char $\mathscr{U}$. Let $f \in \mathscr{N}$ be such that $t^{f} \in t X$. Then $t^{f} \in t^{G} \cap(t X)=t F=t^{\mathscr{V}}$. Hence $f \in \mathscr{V} S=\mathscr{U}$. Noting that $C_{\mathscr{U}}(\mathscr{W})=X$, we conclude:

Lemma 5.8. (i) $X=Z(\mathscr{W}) \in \operatorname{Syl}_{2}\left(C_{G}(\mathscr{W})\right)$.
(ii) $C_{G}(\mathscr{W})=O(N) \times X$.

Next we prove:
Lemma 5.9. (i) $|\mathcal{N}|=2^{9}$.
(ii) $\mathscr{W}$ char $\mathscr{N}$.

Proof. Clearly we may assume that $O(N)=1$. Thus $X \triangleleft N$ and $N / X \hookrightarrow$ Aut ( $\mathscr{W}$ ). Hence $|N|_{2},=3, N=O_{2}(N)\langle\kappa, x\rangle$, and $\mathscr{N}=O_{2}(N)\langle x\rangle$. Clearly $C_{O_{2}(N)}(t)=A=\langle t, X\rangle$ and $C_{\mathscr{W}}(\kappa)=\left\langle u_{1}, t\right\rangle$. Since $t^{G} \cap\left\langle u_{1}, t\right\rangle=\{t\}$, we have $C_{O_{2}(N)}(\kappa)=\left\langle u_{1}, t\right\rangle$. Let $v_{1} \in \mathscr{V}$ be such that $v_{1}^{2}=y$ and set $v_{2}=v_{1}^{x}$. Then $v_{2}^{2}=y z,\left(v_{1} v_{2}\right)^{2}=z$, and $C_{r}(x)=\left\langle v_{1} v_{2}\right\rangle$. Since $X \triangleleft N$, it follows that $N$ permutes the sets $\left\{t X, t v_{1} X, t v_{2} X, t v_{1} v_{2} X\right\}$. Since $\left|t^{G} \cap t X\right|=\left|t^{\mathscr{V}}\right|=4$, it follows that $\left|O_{2}(N) / \mathscr{W}\right|=4$. Then (i) holds and $N / \mathscr{W} \cong \Sigma_{4}$.

Suppose that $\mathscr{W}<C_{N}(X)=O_{2}(N)$. Then $Z(N)=\left\langle u_{1}\right\rangle$. Setting $\bar{N}=$ $N /\left\langle u_{1}\right\rangle$, it follows that

$$
C_{\overline{O_{2}(N)}}(\kappa)=\langle\bar{t}\rangle \quad \text { and } \quad C_{\overline{O_{2}(N)}}(\bar{t})=\overline{C_{O_{2}(N)}(t)}=\bar{A} \cong E_{8}
$$

since $t^{G} \cap\left\langle t, u_{1}\right\rangle=\{t\}$. Noting that $Z_{4} \times Z_{4} \cong \bar{E} \triangleleft N$ and $\left|\overline{O_{2}(N)}\right|=2^{7}$, we conclude from Lemmas 2.7 and 2.8 that there is a subgroup $J$ of $O_{2}(N)$ with $u_{1} \in J, J \triangleleft N, t \notin J,|J|=2^{7}, C_{J}(\kappa)=\left\langle u_{1}\right\rangle, O_{2}(N)=J\langle t\rangle$, and with $\bar{J} \cong Z_{8} \times Z_{8}$ or with $\bar{J}$ isomorphic to a Sylow 2-subgroup of $L_{3}(4)$. Letting $x_{1}=x$ if $u_{1}=u$ and $x_{1}=x t$ if $u_{1}=u t$, we have $x_{1} u_{1}=x u, t x_{1} \sim t$ in $G$, $t \sim t x_{1} u_{1}=t x u$ in $G$, and $t x_{1} u_{1} \sim t x_{1}$ in $G$. Since $\mathscr{N}=J\langle x, t\rangle$, we have $\left|C_{J}\left(t x_{1} u_{1}\right)\right| \leq 2^{3}$. But $C_{J}\left(\bar{\tau} \bar{x}_{1} \bar{u}_{1}\right)=C_{J}\left(\bar{t} \bar{x}_{1}\right)=\overline{C_{J}\left(t x_{1} u_{1}\right)}$ since $t x_{1} u_{1} \sim t x_{1}$ in $G$. Thus $\left|C_{J}\left(t \bar{x}_{1}\right)\right| \leq 2^{2}$. But $\bar{z} \bar{x}_{1}$ inverts $\bar{\kappa}$ and hence $\left|C_{J}\left(t \bar{x}_{1}\right)\right|=2^{3}$ in either case by Lemma 2.9. This contradiction implies that $\mathscr{W}=C_{N}(X)$ and hence $\Sigma_{4} \cong N / \mathscr{W} \hookrightarrow \operatorname{Aut}(X) \cong G L(3,2)$.

Clearly $X \triangleleft \mathscr{N}=O_{2}(N)\langle x\rangle, E \triangleleft N$, and hence $F=\mho^{1}(E) \triangleleft N$. Thus $Z\left(O_{2}(N)\right)=F$ and $Z(\mathscr{N})=\langle z\rangle$. Suppose that $E_{8} \cong Y \triangleleft \mathscr{N}$; then $t^{G} \cap$ $Y=\emptyset$ since $4|S|<|\mathcal{N}|=2^{9}, \quad z \in C_{Y}(t),\left|C_{Y}(t)\right| \geq 4$, and $C_{Y}(t) \leq A$ or $C_{Y}(t) \leq B$. Suppose that $C_{Y}(t) \npreceq A$. Then there is an involution $\tau \in C_{Y}(t) \cap$ $(x\langle u, z\rangle \cup t x\langle u, z\rangle)$. Since $\left|\left[\tau, v_{1}\right]\right|=4$, this is impossible. Thus $C_{Y}(t) \leq A$ and $Y \leq N_{\mathscr{N}}(A)=\mathscr{U}=\mathscr{W}\langle x\rangle$ since $Y$ normalizes $X$ and $[t, Y]=C_{Y}(t) \leq$ A. Utilizing $v_{1}$ as above, it follows that $Y \leq \mathscr{W}=E\langle t\rangle$. Assume that $Y \neq X$. Then $Y \nsubseteq E$ and there is an involution $\tau \in\left(t u_{1} F\right) \cap Y$ since $O_{2}(N)$ is transitive on $\left\{t X, t v_{1} X, t v_{2} X, t v_{1} v_{2} X\right\}$. But $C_{O_{2}(N)}(\tau)=C_{W}(\tau)=A$ and hence $\left|\tau^{O_{2}(N)}\right|=$ $2^{4}$ which is impossible. Thus $Y=X$ and $X$ char $\mathscr{N}$. Then $C_{\mathcal{N}}(X)=\mathscr{W}$ char $\mathscr{N}$ and the lemma follows.

Thus $\mathscr{N} \in S y l_{2}(G),|G|_{2}=|\mathscr{N}|=2^{9}$ and the proof of Lemma 5.2 is complete.

$$
\text { 6. The case }\left|N_{G}(S) /\left(N_{G}(S) \cap C_{G}(Z(S))\right)\right|=4
$$

As a result of Lemmas 5.1 and 5.2 we shall assume that

$$
\left|N_{G}(S) /\left(N_{G}(S) \cap C_{G}(Z(S))\right)\right|=4
$$

throughout the remainder of the paper.
Let $S_{1} \in S y l_{2}\left(N_{G}(S)\right)$. Then $S \triangleleft S_{1}, C_{S_{1}}(t)=S,\left|S_{1} / S\right|=4,\left|S_{1}\right|=2^{7}$, and $N_{G}(S)=O\left(N_{G}(S)\right) S_{1}$.

Suppose that $t z \notin t^{S_{1}} ;$ then $t z \notin t^{N_{G}(S)}$. Since

$$
\langle t, u, z\rangle^{\#}-\{t, z, t z\}=\{u, u z, t u, t u z\}
$$

and $\left|t^{s_{1}}\right|=4$, we have $t \sim \alpha \sim \alpha z$ in $S_{1}$ for some $\alpha \in\{u, t u\}$. But $z \in Z\left(S_{1}\right)$ and hence $t z \sim \alpha z \sim \alpha$ in $S_{1}$. Thus $t z \in t^{S_{1}}$ and, by interchanging the roles of $u$ and $t u$, if necessary, we have:

Lemma 6.1. (i) $t^{S_{1}}=t^{N_{G}(S)}=t\langle u, z\rangle$.
(ii) $t^{G} \cap S=t\langle y, z\rangle \cup t u\langle y, z\rangle \cup\{t x, t x z, t u x, t u x z\}$.
(iii) $\left\langle I(S)-\left(t^{G} \cap S\right)\right\rangle=\langle u\rangle \times\langle x, y\rangle$ and $I(\langle u\rangle \times\langle x, y\rangle)=I(S)-$ ( $t^{G} \cap S$ ).
(iv) $t^{G} \cap A=t\langle u, y, z\rangle$ and $t^{G} \cap B=t\langle u, x, z\rangle$.
(v) $\langle u, x, z\rangle$ is strongly closed in $A$ with respect to $G$ and $\langle u, x, z\rangle$ is strongly closed in $B$ with respect to $G$.

Set $\quad X=\langle u, y, z\rangle, \quad M=N_{G}(A)$, and $\bar{M}=M / O(M)$. Since $C_{G}(A)=$ $O(M) \times A$, we have $C_{\bar{M}}(\bar{A})=\bar{A}$ and $\bar{M} / \bar{A} \hookrightarrow$ Aut $(A) \cong G L(4,2)$. Also $C_{M}(t)=N_{H}(A)=O(M) A\langle\rho, x\rangle$ and $C_{M}(\bar{t})=\bar{A}\langle\bar{\rho}, \bar{x}\rangle$ by (4.10). Let $\bar{P}$ be a Sylow $p$-subgroup of $\bar{M}$ for some prime $p \neq 2$. Since $\bar{P}$ normalizes $X$, it centralizes an element of $A-X=t^{G} \cap A$. Then (4.10) and (4.11) imply that $|\bar{P}|=3$. Thus $\langle\bar{\rho}\rangle \in S y l_{3}(\bar{M})$ and $\bar{M}=O_{2}(\bar{M})\langle\bar{\rho}, \bar{x}\rangle$.

Since $\left|t^{G} \cap A\right|=2^{3}$ and $S<N_{S_{1}}(A) \leq M$, we have:
Lemma 6.2. $|\bar{M} / \bar{A}| \in\{12,24,48\}$.
We can easily eliminate one of these three cases.
Lemma 6.3. $|\bar{M} / \bar{A}| \neq 12$.
Proof. Assume that $|\bar{M}| \bar{A} \mid=12$. Then, since $\bar{M} / \bar{A}$ has a subgroup isomorphic to $\Sigma_{3}$, we have $\bar{M} / \bar{A} \cong Z_{2} \times \Sigma_{3}$. Thus $C_{A}\left(O_{3}(\bar{M} / \bar{A})\right)=\langle t, u\rangle \triangleleft M$. Let $\mathscr{M}=N_{S_{1}}(A)$. Then $S \triangleleft_{\neq} \mathscr{M} \triangleleft_{\neq} S_{1}, \mathscr{M} \in S y l_{2}(M), A^{S_{1}}=\{A, B\}$, and $\mathscr{M} \in \operatorname{Sy}_{2}\left(N_{G}(B)\right)$. Also $t^{\mathscr{M}}=\{t, t u\}$. Letting $\beta \in S_{1}-\mathscr{M}$, we have $A^{\beta}=B$ and $M^{\beta}=N_{G}(B)$. But, by utilizing the element $\rho_{1}$ in (4.9), we have $\langle t, u z\rangle \triangleleft$ $N_{G}(B)$. Hence $t^{M}=\{t, t u z\}$. This contradiction establishes the lemma.

The remainder of this section is devoted to proving:

Lemma 6.4. If $|\bar{M} / \bar{A}|=24$, then $|G|_{2} \leq 2^{9}$.
Thus, throughout the rest of this section, we assume that $|\bar{M}| \bar{A} \mid=24$ and that $|G|_{2} \geq 2^{10}$ and we shall proceed to a contradiction.

Now $\rho$ has the following orbits on $t^{G} \cap A=t\langle u, y, z\rangle$ :

$$
\{t\}, \quad\{t u\}, \quad\{t y, t z, t y z\}, \text { and }\{t u y, t u z, t u y z\} .
$$

Since $\left|t^{M}\right|=4$, we have:
(6.1) $t^{M}=t\langle y, z\rangle$ or $t^{M}=\{t, t u z, t u y, t u y z\}, t \sim t u$ in $M$, and $C_{A}(\rho)=$ $\langle t, u\rangle \triangleleft M$.

Hence we have:
Lemma 6.5. $\quad \bar{M} / \bar{A} \cong \Sigma_{4}$ and $M=O_{2^{\prime}, 2}(M)\langle\rho, x\rangle$.
Next we prove:
Lemma 6.6. (i) $S_{1} / S \cong Z_{4}$ and there is an element $\tau \in S_{1}-S$ such that $S_{1}=\langle S, \tau\rangle$ and $\tau^{2} \notin S$.
(ii) If $\tau \in S_{1}-S$ is such that $\tau^{2} \notin S$, then $\tau: A \leftrightarrow B, \tau^{2}: t \leftrightarrow t z$, and $\tau^{2} \in N_{G}(A) \cap N_{G}(B)$.
(iii) $t^{M}=t\langle y, z\rangle$ and $t \sim t u z$ in $N_{G}(B)$.

Proof. Assume that $S_{1} / S \cong E_{4}$ and let $\omega \in S_{1}-S$ be such that $t^{\omega}=t u$. Then $\omega: t \leftrightarrow t u$ and $\omega$ normalizes $O^{2}\left(C_{G}(t, t u)\right) \cap S=\langle y, z\rangle$. Thus $\omega \in$ $N_{G}(\dot{A})=M$ which contradicts (6.1) and (i) holds. Next, let $\tau \in S_{1}-S$ be such that $\tau^{2} \notin S$. Then $S_{1}=\langle S, \tau\rangle$ and $\tau^{2} \in N_{G}(A) \cap N_{G}(B)$. Since $t^{s_{1}}=t\langle u, z\rangle$ and $t \approx t u$ in $M$, it follows that $\tau: A \leftrightarrow B$. Thus $N_{G}(B) / C_{G}(B) \cong \Sigma_{4}$ and $t \sim$ $t u z$ in $N_{G}(B)$ by the above argument applied to $N_{G}(B)$. Hence (ii) holds and (iii) follows from (6.1).

Fix $\tau \in S_{1}-\mathrm{S}$ such that $\tau^{2} \notin S$ and set $\alpha=\tau^{2}$.
Lemma 6.7. (i) $Z\left(S_{1}\right)=\langle z\rangle, \tau: u \leftrightarrow u z, S_{1} / S$ acts regularly on $t\langle u, z\rangle$, and $\langle u, z\rangle \triangleleft S_{1}$.
(ii) $\langle S, \alpha\rangle=C_{S_{1}}(\langle u, z\rangle)$.
(iii) $t^{N_{G}(B)}=t\langle x u, z\rangle$.
(iv) $\Omega_{1}\left(S_{1}\right)=\langle S, \alpha\rangle$.

Proof. Clearly $S_{1} / S$ acts regularly on $t\langle u, z\rangle$ and $\langle z\rangle \leq Z\left(S_{1}\right) \leq\langle u, z\rangle$. If $Z\left(S_{1}\right)=\langle u, z\rangle$, then $t^{\tau} \in\{t u, t u z\}$ implies that $t^{\tau^{2}}=t$, which is false and (i)-(ii) hold. Since $t^{\alpha}=t z, \alpha \in N_{G}(B)$, and $N_{G}(B) / C_{G}(B) \cong \Sigma_{4}$, the corresponding result for $N_{G}(B)$ in Lemma 6.6(iii) yields (iii). Finally $S \leq \Omega_{1}\left(S_{1}\right) \leq\langle S, \alpha\rangle$, $\left|S_{1}\right|=2^{7}$ and the fact that $S$ is not characteristic in $S_{1}$ yield (iv).
 and $F=\langle y, z\rangle$. Then $A \leq \mathscr{W} \triangleleft \mathscr{U},|\mathscr{W}|=2^{6}, \mathscr{W} \mid A \cong E_{4},\left\langle t^{G} \cap A\right\rangle=$
$\langle t, F\rangle \triangleleft M$, and $\left\langle\left\langle t^{G} \cap A\right\rangle-t^{G}\right\rangle=F \triangleleft M$. Also $\mathscr{U}=\mathscr{W}\langle x\rangle,|\mathscr{U}|=$ $2^{7}$, and $M=O(M) \mathscr{W}(\rho, x\rangle$

Lemma 6.8. $Z(\mathscr{W})=\langle u, y, z\rangle, Z(\bar{M})=\langle\bar{u}\rangle$, and $O_{2}(Z(M))=\langle u\rangle$.
Proof. Clearly $O_{2}(Z(M)) \leq A$ and hence we may assume that $O(M)=1$. Since $O_{2}(M)=\mathscr{W}$ is $\langle\rho\rangle$-invariant and $F=\langle y, z\rangle \triangleleft M$, we have $F \leq Z(\mathscr{W})$. Also $\langle u\rangle \leq C_{M}(\langle A, \rho, x, \alpha\rangle)=Z(M)$ and we are done.

We can now obtain fairly precise information about the structure of $\mathscr{U}$.
Lemma 6.9. $\mathscr{U}$ satisfies exactly one of the following two conditions:
(i) $\mathscr{U}$ contains a normal subgroup $\mathscr{V}$ inverted by $t$ with $\mathscr{V} \cong Z_{4} \times Z_{4}$, $\Omega_{1}(\mathscr{V})=F, C_{\mathscr{U}}(\mathscr{V})=\langle u\rangle \times \mathscr{V}$, and $\left.\mathscr{U}=\langle u\rangle \times(\mathscr{V}\langle x, t\rangle)\right)$ with $\mathscr{V}\langle x, t\rangle$ isomorphic to a Sylow 2-subgroup of $M_{12}$. Also $\mathscr{W}=\langle u\rangle \times(\mathscr{V}\langle t\rangle)$ and there is a 3-element $\kappa \in N_{M}(\mathscr{W}) \cap H$ such that $\kappa^{x}=\kappa^{-1}, C_{\mathscr{W}}(\kappa)=\langle t, u\rangle,[\mathscr{W}, \kappa]=$ $\mathscr{V}$, and $\kappa^{3} \in C_{G}(\mathscr{W})$.
(ii) $\mathscr{E}_{32}(\mathscr{U})$ contains a unique element $E$ such that $\mathscr{U}=E\langle x, t\rangle, E \cap S=$ $X=\langle u, y, z\rangle=C_{E}(t), t^{E}=t\langle y, z\rangle,\left|C_{E}(x)\right|=\left|C_{E}(x t)\right|=8, \mathscr{W}=E\langle t\rangle$, $I(t E)=t^{E} \cup(t u)^{E}, I(x E)=x^{E} \cup(x u)^{E}$, and $I(x t E)=(x t)^{E} \cup(x t u)^{E}$. Also there is a 3-element $\kappa \in N_{M}(\mathscr{W}) \cap N_{M}(E) \cap H$ such that $\kappa^{x}=\kappa^{-1}, C_{E}(\kappa)=$ $\langle u\rangle, F \leq[E, \kappa],|[E, \kappa]|=16, \kappa^{3} \in C_{G}(\mathscr{W})$, and $E=[\mathscr{W}, \kappa] \times\langle u\rangle$.

Proof. Clearly $M=O(M) N_{M}(\mathscr{W})$ and, since $t^{M}=t^{\mathscr{W}}$, we have

$$
M=O(M) \mathscr{W}\left(N_{M}(\mathscr{W}) \cap H\right)
$$

Since $C_{\mathscr{W}}(t)=A$, we have $O\left(N_{M}(\mathscr{W}) \cap H\right)=O(M) \cap N_{M}(\mathscr{W}) \cap H$ and

$$
O_{2^{\prime}, 2}\left(N_{M}(\mathscr{W}) \cap H\right)=\left(O(M) \cap N_{M}(\mathscr{W}) \cap H\right) \times A
$$

Thus there is a 3-element $\kappa \in N_{M}(\mathscr{W}) \cap H$ such that $\kappa^{x}=\kappa^{-1}$ and $\bar{M}=$ $\bar{W}\langle\bar{\kappa}, \bar{x}\rangle$. It follows that we may assume that $O(M)=1$. Set $\bar{M}=M / F$ and let $\mathscr{V}=[\mathscr{W}, \kappa]$. Then $|\mathscr{W}|=2^{4}, \tilde{\mathscr{W}}=O_{2}(\tilde{M})$, and $C_{\mathscr{W}}(\kappa)=\langle t, u\rangle=Z(\tilde{M})$ since $t^{M}=t F$.

Suppose that $\tilde{\mathscr{W}} \cong Z_{2} \times Q_{8}$. Then there is a subgroup $Y$ of $A$ such that $F<Y<A, Y \triangleleft M, \mathscr{W} / Y \cong Q_{8}$, and $M / Y \cong G L(2,3)$. Thus $\mathscr{U} / Y$ is semidihedral of order 16. Since $|\mathscr{U}|=2^{7}$ and $\mathscr{U} \in S y l_{2}\left(N_{G}(A)\right)$, it follows that $\mathscr{U}$ has a normal subgroup $A^{*}$ with $A \neq A^{*}$ and $A \cong A^{*}$. Then $A^{*} Y / Y \triangleleft \mathscr{U} / Y$. and hence $A^{*} Y=A$. Since $A^{*} \neq A$, this is impossible. As $C_{\tilde{W}}(\tilde{\kappa})=\langle\tilde{t}, \tilde{u}\rangle$, Lemma 2.1 implies that $\tilde{\mathscr{W}} \cong E_{16}$ and hence $\mathscr{V}=[\mathscr{W}, \kappa]$ has order 16. Thus $\mathscr{V} \cong E_{16}$ or $\mathscr{V} \cong Z_{4} \times Z_{4}$.

Suppose that $\mathscr{V} \cong Z_{4} \times Z_{4}$. Then $\mathscr{V} \triangleleft M, \Omega_{1}(\mathscr{V})=F, C_{M}(\mathscr{V})=$ $\langle u\rangle \times \mathscr{V}, \mathscr{W}=\langle u\rangle \times(\mathscr{V}\langle t\rangle), M=\langle u\rangle \times \mathscr{V}(\langle t\rangle \times\langle\kappa, x\rangle), t$ inverts $\mathscr{V}$ and $\mathscr{V}(\langle t\rangle \times\langle\kappa, x\rangle)$ has Sylow 2-subgroups of type $M_{12}$ by [7, II, Lemma 2.1(iv)-(vi)]. Thus (i) holds in this case.

Suppose that $\mathscr{V} \cong E_{16}$. Then $E=\langle u\rangle \times \mathscr{V} \in \mathscr{E}_{32}(\mathscr{U})$ and $\mathscr{W}=E\langle t\rangle$.

Since $\langle u\rangle=Z(M)$ and $C_{\mathscr{r}}(\kappa)=1$, it is clear that $E \cap S=C_{E}(t)=X$, $C_{E}(x, t)=\langle u, z\rangle$, and $\left|C_{E}(x)\right|=\left|C_{E}(x t)\right|=8$. Since $\mathscr{U}=E\langle x, t\rangle$, it follows that $E$ is the unique element of $\mathscr{E}_{32}(\mathscr{U})$ and (ii) holds.

We shall now treat case (ii) of Lemma 6.9.
Lemma 6.10. Assume that (ii) of Lemma 6.9 holds. Then the following conditions hold:
(i) $N_{G}(\mathscr{W}) \leq N_{G}(A)=M$ and $\mathscr{U} \in S y l_{2}\left(N_{G}(\mathscr{W})\right)$.
(ii) $t \sim t u$ in $N_{G}(E)$.
(iii) $E \in S y l_{2}\left(C_{G}(E)\right)$ and $C_{G}(E)=O\left(C_{G}(E)\right) \times E$.

Proof. Since $E$ char $\mathscr{W}$ and $\langle I(t E)\rangle=\langle I(\mathscr{W}-E)\rangle=A$, (i) follows. Suppose that $w \in N_{G}(E)$ is such that $t^{w}=t u$. Since $C_{E}(t)=C_{E}(t u)=X$, we have $w \in N_{G}(A)=M$ and (ii) holds. Then $t^{N_{G}(E)} \cap t E=t^{E}$. Since $\mathscr{U}=E S \leq$ $N_{G}(E)$ and $C_{\mathscr{U}}(E)=E$, we have (iii).

## Lemma 6.11. Lemma 6.9(ii) does not hold.

Proof. Assume that Lemma 6.9(ii) holds and set $N=N_{G}(E)$ and $\bar{N}=$ $N / O(N)$. Clearly $C_{G}(E)=O(N) \times E$ and $\bar{N} / \bar{E} \hookrightarrow$ Aut $(E) \cong G L(5,2)$. Now Lemma 6.10(ii) implies that $C_{N / \bar{E}}(\bar{t} \bar{E})=\overline{C_{N}(t)} \bar{E} / \bar{E}$. However $C_{N}(t) \leq C_{M}(t)=$ $O(M) A(\kappa, x\rangle$ and $A\langle\kappa, x\rangle \leq N$. Also $O(M) \cap N$ centralizes $t$ and $C_{E}(t)=X$ and hence $O(M) \cap N \leq C_{G}(E)$ by [6, Theorem 5.3.4]. Thus $C_{N}(t)=$ $(O(N) \cap H) A\langle\kappa, x\rangle$ and hence $C_{N / \bar{E}}(\bar{t} \bar{E}) \times\langle\bar{\kappa} \bar{E}, \bar{x} \bar{E}\rangle \cong Z_{2} \times \Sigma_{3}$. Let $\mathscr{U} \leq$ $\mathscr{T} \in S y l_{2}(N)$. Clearly $\mathscr{U}<\mathscr{T}$ since $E$ char $\mathscr{U}$. Also $\exp (\mathscr{T} \mid E) \leq 8$ and $\mathscr{T} \mid E$ is dihedral or semidihedral since $C_{\mathscr{T} / \mathbf{E}}(t E)=\langle t E, x E\rangle$. Hence $|\mathscr{T}| \leq 2^{9}<$ $|G|_{2}$ and there is a 2-element $\tau \in(\mathscr{T})-\mathscr{T}$ such that $\tau^{2} \in \mathscr{T}$. Set $\mathscr{S}=\langle\mathscr{T}, \tau\rangle$ and let $E_{1}=E^{\tau}$. Then $E_{1} \neq E, E_{1} \triangleleft \mathscr{T}$, and $t: E \leftrightarrow E_{1}$. Letting $\tilde{\mathscr{T}}=\mathscr{T} / E$, we conclude that $1 \neq \tilde{E}_{1} \triangleleft \tilde{\mathscr{T}}$ and $Z(\tilde{\mathscr{T}}) \leq\langle\tilde{x}, \tilde{\eta}\rangle$. However $I(t E) \cup I(x t E) \subseteq$ $t^{G}$ and $t^{G} \cap E_{1}=\emptyset$. Thus $\langle\tilde{x}\rangle=Z(\tilde{\mathscr{T}}) \leq \widetilde{E}_{1}$. Let $\mathscr{V}=[E, \kappa]$ and choose $\alpha \in \mathscr{V}^{\#}$ such that $C_{\mathscr{v}}(x)=\langle z, \alpha\rangle$. Then $\alpha^{t}=\alpha z, C_{\nu}(x t)=\langle z, y \alpha\rangle$ and there is an element $\beta \in \mathscr{V}-\langle z, y, \alpha\rangle$ such that $\beta^{t}=\beta y$ and $\mathscr{V}=\langle z, y, \alpha, \beta\rangle$. Note that $N_{E}(S)=\langle z, u, \alpha\rangle$. Thus $C_{E}(x E)=\langle z, u, \alpha\rangle$. Thus $E \cap E_{1}=C_{E}(x)$, $\left|\widetilde{E}_{1}\right|=4, \tilde{\mathscr{T}} \cong D_{8}$, and $|\mathscr{S}|=2^{9}$. Also $I(x E)=x\langle z, u, \alpha\rangle$ so that $x \in E_{1}$. Thus $E_{1}=\langle u, z, \alpha, x, \delta\rangle$ for some involution $\delta \in E_{1}-\langle u, z, \alpha, x\rangle$. Now suppose that $E_{2} \neq E$ and $E \cong E_{2} \triangleleft \mathscr{T}$. Then the above argument implies that $\langle u, z, \alpha, x\rangle \leq E_{2}$ and $\tilde{E}_{2}=\langle\tilde{x}, \tilde{\delta}\rangle$. Thus $E_{2}=\langle u, z, \alpha, x, e \delta\rangle$ for some element $e \in E$. However $e \in C_{E}(x)=\langle u, z, \alpha\rangle$ and hence $E_{2}=E_{1}$. Thus $E$ and $E_{1}$ are the only two normal subgroups of $\mathscr{E}_{32}(\mathscr{T}), \mathscr{T}=E E_{1}\langle t\rangle$ where $t \notin E E_{1}$ and $Z(\mathscr{T})=\langle u, z\rangle$. Note that $I(x E) \subseteq E_{1}$ and $E \cap E_{1} \leq C_{E}(\delta)$. However, if $E \cap E_{1}=C_{E}(\delta), I(\delta E) \subseteq E_{1}$ and if $E \cap E_{1}<C_{E}(\delta)$, then $\left\langle C_{E}(\delta), \tau\right\rangle$ is elementary abelian of order $2^{5}$ for every $\tau \in I(\delta E)$. Since $t: \delta E \leftrightarrow \delta x E$, we have $t^{G} \cap(x E \cup \delta E \cup x \delta E)=\emptyset$ and hence $t^{G} \cap\left(E E_{1}\right)=\emptyset$.

On the other hand, $I(\mathscr{T})=I\left(E E_{1}\right) \cup I(t E) \cup T(x t E)$ and $\delta: t E \leftrightarrow x t E$. It follows that we may assume that $t^{\tau}=t u$. Hence $S^{\tau}=C_{\mathscr{T}}(t)^{\tau}=C_{\mathscr{T}}(t u)=S$
and $\mathscr{S}=E E_{1} N_{\mathscr{S}}(S)$ where $\tau \in N_{\mathscr{S}}(S)-N_{\mathscr{T}}(S)$. Note that $N_{\mathscr{T}}(S)=$ $\langle u, z, y, \alpha, x, t\rangle=N_{\mathscr{U}}(S)=\Omega_{1}\left(N_{\mathscr{C}}(S)\right)$ by Lemmas 6.6 and 6.7. Set $Y=$ $\langle u, z, \alpha, x\rangle=\langle u, \alpha\rangle \times\langle x, y\rangle$. Then

$$
Y=\left(E E_{1}\right) \cap N_{\mathscr{T}}(S) \triangleleft N_{\mathscr{G}}(S)
$$

Also $[x, E] \leq\langle u, z, \alpha\rangle \leq Y$ and hence $E$ and $E_{1}=E^{\tau}$ normalize $Y$. Thus $Y \triangleleft \mathscr{S}$. Similarly, since $Y\langle t\rangle=N_{\mathscr{T}}(S) \triangleleft N_{\mathscr{C}}(S)$ and $[t, E] \leq Y$, we conclude that $Y\langle t\rangle \triangleleft \mathscr{S}$.

Setting $\overline{\mathscr{S}}=\mathscr{S} /(Y\langle t\rangle)$, we have $\bar{\tau}: \bar{E}=\langle\bar{\beta}\rangle \leftrightarrow \bar{E}_{1}=\langle\bar{\delta}\rangle$ and $\overline{\mathscr{S}}=$ $\langle\bar{\beta}, \bar{\delta}, \bar{\tau}\rangle \cong D_{8}$. Suppose that $j \in I(\mathscr{S}-\mathscr{T})$. Then $\bar{j} \sim \bar{\tau}$ in $\overline{\mathscr{S}}$ and hence $j \in$ $N_{\mathscr{L}}(S)-N_{\mathscr{T}}(S)$. Since $\Omega_{1}\left(N_{\mathscr{S}}(S)\right)=N_{\mathscr{T}}(S)$, this is impossible. Hence $\Omega_{1}(\mathscr{S})=$ $\mathscr{T}$ char $\mathscr{S}$ and $N_{G}(\mathscr{S})$ acts on $\left\{E, E_{1}\right\}$. Thus $\mathscr{S} \in S y l_{2}(G)$ and $|G|_{2}=2^{9}$ which is false and the proof of Lemma 6.11 is complete.

Thus, for the remainder of this section, we shall assume that Lemma 6.9(i) holds.

Let $\kappa_{1} \in \mathscr{V}$ be such that $\kappa_{1}^{2}=y$ and set $\kappa_{2}=\kappa_{1}^{x}$. Then $\mathscr{V}=\left\langle\kappa_{1}\right\rangle \times\left\langle\kappa_{2}\right\rangle$ and $C_{\mathscr{V}}(x)=\left\langle\kappa_{1} \kappa_{2}\right\rangle$. Note that $\mathscr{U}=\langle u\rangle \times(\mathscr{V}\langle x, t\rangle), Z(\mathscr{U})=\langle u, z\rangle, \mathscr{U}^{\prime}=$ $\left\langle y, \kappa_{1} \kappa_{2}\right\rangle$, and $\Omega_{1}\left(\mathscr{U}^{\prime}\right)=F$. Thus $X=Z(\mathscr{U}) \Omega_{1}\left(\mathscr{U}^{\prime}\right)$ char $\mathscr{U}, C_{\mathscr{U}}(X)=\langle u\rangle \times$ $(\mathscr{V}\langle t\rangle)$ char $\mathscr{U}$ and $J_{0}(\langle u\rangle \times(\mathscr{V}\langle t\rangle))=\langle u\rangle \times \mathscr{V}$ char $\mathscr{U}$.

Set $E=\langle u\rangle \times(\mathscr{V}\langle t\rangle), N=N_{G}(E)$, and $\bar{N}=N / O(N)$. Then $\langle\mathscr{U}, \kappa\rangle \leq N$, $Z(E)=X \leq Z\left(C_{G}(E)\right)$, and $Z(E)=X \triangleleft N \leq N_{G}(X)$. Also $E$ char $\mathscr{U}$ and $|\mathscr{U}|=2^{7}$ implies that $\mathscr{U} \notin S y l_{2}(N)$. Since $\overline{\mathscr{U}} \in S y l_{2}\left(N_{\Gamma}(\bar{A})\right)$ and $C_{\mathscr{U}}(\bar{E})=\bar{X}$, it follows that $X \in S y l_{2}\left(C_{G}(E)\right)$ and $C_{G}(E)=O(N) \times X$. Noting that $\mid$ Aut $\left.(E)\right|_{2^{\prime}}=3$, we conclude that $\bar{N}=O_{2}(\bar{N})\langle\bar{\kappa}, \bar{x}\rangle$ where $\bar{\kappa}^{3}=1$.

Next we prove:
Lemma 6.12. (i) $t^{N G(X)} \cap(t u F)=t^{N} \cap(t u F)=\emptyset$.
(ii) Every involution of $E-(\langle u\rangle \times \mathscr{V})$ is conjugate in $N$ to $t$ or tu.
(iii) $|N|_{2}=2^{9}$.
(iv) $C_{O_{2}(N)}(\bar{\kappa})=\langle\bar{t}, \bar{u}\rangle$.

Proof. Suppose that $n \in N_{G}(X)$ is such that $t^{n}=t u$. Then $n \in N_{G}(A)=M$. Since $t \sim t u$ in $M$, this is impossible. Since $N=N_{G}(E) \leq N_{G}(X)$, (i) holds. Clearly $\langle\bar{t}, \bar{u}\rangle \leq C_{O_{2}(N)}(\bar{\kappa})$ and $C_{O_{2}(N)}(\bar{t})=\bar{A}$. This implies (iv). Also $\langle u\rangle \times$ $\mathscr{V} \triangleleft N$, if

$$
\tau \in I(E-(\langle u\rangle \times \mathscr{V}))=I(t(\langle u\rangle \times \mathscr{V}))
$$

then $\tau^{E}=\tau F$ and $\left\{t, t u, t \kappa_{1}, t u \kappa_{1}, t \kappa_{2}, t u \kappa_{2}, t \kappa_{1} \kappa_{2}, t u \kappa_{1} \kappa_{2}\right\}$ is a set of representatives for the $E$-conjugacy classes of involutions in $E-(\langle u\rangle \times \mathscr{V})$. Since $C_{E}(\kappa)=\langle t, u\rangle$ and $\kappa$ is transitive on $\left\{\kappa_{1} F, \kappa_{2} F, \kappa_{1} \kappa_{2} F\right\}$, we conclude that $\left|O_{2}(\bar{N}) / \bar{E}\right|=4$, and we have (ii) and (iii).

Lemma 6.13. Let $\mathscr{U}<\mathscr{T}$ where $\mathscr{T}$ is a 2-group. Then:
(i) $X=\langle u, y, z\rangle$ is the unique normal element $\mathscr{E}_{8}(\mathscr{T})$ and $S C N_{4}(\mathscr{T})=\emptyset$.
(ii) $N_{G}(\mathscr{T}) \leq N_{G}(X)$.

Proof. Since $r_{2}(\mathscr{T}) \geq r_{2}(\mathscr{U}) \geq 1+r_{2}(\mathscr{V}\langle x, t\rangle)=5$, it follows from [16, Four Generator Theorem] that $\mathscr{T}$ contains a normal subgroup $Y$ with $Y \in$ $\mathscr{E}_{8}(\mathscr{T})$. Then $C_{Y}(t) \leq A$ or $C_{Y}(t) \leq B,\left|C_{Y}(t)\right| \geq 4$, and $t^{G} \cap Y=\emptyset$. Suppose that $C_{Y}(t) \not \leq A$. Then there is an involution $\tau \in C_{Y}(t) \cap(x\langle u, z\rangle)$. Since $\left|\left[\kappa_{1}, \tau\right]\right|=4$, this is impossible. Thus $C_{Y}(t) \leq A$ and hence $C_{Y}(t) \leq X=$ $\langle u, y, z\rangle$. Suppose that $Y \neq X$. Then $C_{Y}(t)=A \cap Y$ is maximal in $Y$ and hence $[Y, A] \leq A$. Thus $Y \leq N_{\mathscr{T}}(A)=\mathscr{U}$. As $t^{G} \cap Y=\emptyset$, there is an involution $\tau \in Y \cap\{x, x u\}$. Since $\left|\left[\kappa_{1}, \tau\right]\right|=4$, this is impossible and hence $Y=X$. Next suppose that $Y \in \mathscr{E}_{16}(\mathscr{T})$ and $Y \triangleleft \mathscr{T}$. Then $X \leq Y$ and hence $Y \leq$ $N_{\mathscr{T}}(A)=\mathscr{U}$. Then $Y \leq C_{\mathscr{U}}(X)=\langle u\rangle \times \mathscr{V}\langle t\rangle$ and $Y$ is conjugate in $N$ to $A$ by Lemma 6.12(ii). Thus $t^{G} \cap Y \neq \emptyset$ and $Y$ is conjugate in $G$ to $A$. Since $\left|N_{G}(A)\right|_{2}=|\mathscr{U}|$, this is impossible and the lemma holds.

We shall now conclude the proof of Lemma 6.4.
Clearly $C_{N}(X) \triangleleft N$ and $C_{G}(E) E \leq C_{N}(X) \leq O_{2^{\prime}, 2}(N) ;$ thus $\bar{N} / C_{N}(X) \hookrightarrow$ Aut $(X) \cong G L(3,2)$. Let $\mathscr{U}<\mathscr{T} \in \operatorname{Syl}_{2}(N)$, so that $|\mathscr{T}|=2^{9}$. Then $\overline{\mathscr{T}}=$ $O_{2}(\bar{N})\langle\bar{x}\rangle$ and $C_{N}(X)=\bar{E}$ or $C_{N}(X)=O_{2}(\bar{N})$.

Suppose that $C_{N}(X)=\bar{E}$. Then $C_{\mathscr{T}}(X)=E$ char $\mathscr{T}$ since $X$ char $\mathscr{T}$ by Lemma 6.13. Then $\mathscr{T} \in S y l_{2}(G)$ and $|G|_{2}=2^{9}$. Hence $C_{\Gamma}(\bar{X})=O_{2}(\bar{N})$, $C_{N}(X)=O_{2^{\prime}, 2}(N),\langle u\rangle \leq Z(N)$, and $\langle\bar{u}\rangle=Z(\bar{N})$. Set $\tilde{N}=\bar{N} /\langle\bar{u}\rangle$. Then $C_{O_{2}(\tilde{N})}(\tilde{t})=\tilde{A}$ and $C_{O_{2}(\tilde{N})}(\tilde{\kappa})=\langle\tilde{t}\rangle$. Applying Lemmas 2.6, 2.7, and 2.8 and setting $R=O(N)\left[O_{2^{\prime}, 2}(N), \kappa\right]\langle u\rangle$, we conclude that $O_{2}(\tilde{N})=\widetilde{R}\langle\tilde{t}\rangle$ where $\tilde{\mathscr{V}} \leq \widetilde{\mathscr{R}} \triangleleft \tilde{N}$ and $\tilde{\mathscr{R}}=Z_{8} \times Z_{8}$ or $\widetilde{R}$ is isomorphic to a Sylow 2-subgroup of $L_{3}(4)$. Note that $C_{\bar{R}}(\bar{\kappa})=\langle\bar{u}\rangle$ and that $\bar{R} /\langle\bar{u}\rangle \cong \widetilde{R}$. Also set $\mathscr{Q}=\mathscr{T} \cap$ $O_{2^{\prime}, 2}(N)$, and $\mathscr{R}=R \cap \mathscr{T}$. Then $\mathscr{2}$ char $\mathscr{T}$ since $X$ char $\mathscr{T}, \mathscr{Q}=C_{\mathscr{T}}(X)=$ $\mathscr{R}\langle t\rangle$ and $X=Z(\mathscr{2})$.

Suppose that $\widetilde{R}$ is of type $L_{3}(4)$. Then $t$ acts freely on $\mathscr{R} / X$ since $\mathscr{R} / X \cong E_{16}$ and $\mathscr{Q}|X=\mathscr{R}\langle t\rangle| X$. Then $\mathscr{R}$ char $\mathscr{T}$ and $\langle I(\mathscr{Q}-\mathscr{R})\rangle=\langle t(\langle u\rangle \times \mathscr{V})\rangle=$ $E$ char $\mathscr{T}$ and $|\mathscr{T}|=|G|_{2}=2^{9}$ which is impossible.

Suppose that $\tilde{R} \cong Z_{8} \times Z_{8}$. If $\bar{R}$ is abelian, then $\bar{R}=\langle\bar{u}\rangle \times[\bar{R}, \bar{\kappa}]$ where $[\bar{R}, \bar{\kappa}] \cong \widetilde{R}$ and $\bar{x} \bar{t}$ centralizes an element of $[\bar{R}, \bar{\kappa}]$ of order 8 . Since this is impossible, we have $\bar{R}^{\prime}=\langle\bar{u}\rangle$ and $\mho^{1}(\bar{R})=\Phi(\bar{R})=Z(\bar{R})=\langle\bar{u}\rangle \times \overline{\mathscr{V}}$. Also $\bar{i}$ inverts $\bar{R} / \bar{X}$ and hence $J_{0}(\mathscr{Q} / X)=\mathscr{R} / X$ and $\mathscr{R}$ char $\mathscr{2}$ char $\mathscr{T}$. If $\bar{t}$ does not invert $\bar{R} /\langle\bar{u}\rangle$, then $\Omega_{1}(\mathscr{2})=E$ and $T \in S y l_{2}(G)$ which is impossible. Thus $\bar{t}$ inverts $\bar{R} /\langle\bar{u}\rangle$.

Now $\mathscr{R}^{\prime}=\langle u\rangle, X, \mathscr{R}$, and $\mathscr{Q}$ are all characteristic subgroups of $\mathscr{T}, \Phi(\mathscr{R})=$ $\langle u\rangle \times \mathscr{V}, \mathscr{Q}=\mathscr{R}\langle t\rangle$, and $E=\Phi(\mathscr{R})\langle t\rangle$. Also $N=O(N) N_{N}(\mathscr{Q}), X$ char $\langle u\rangle \times$ $\mathscr{V}$ char $\mathscr{R}$ char $\mathscr{Q}$ and $\mid$ Aut $\left.(\mathscr{2})\right|_{2^{\prime}}=3$. Since $I(E-\Phi(\mathscr{R}))=t^{2} \cup(t u)^{2}$, it follows that $N=O(N) \mathscr{2}\left(N_{N}(\mathscr{2}) \cap H\right)$ and hence there is a 3-element $\gamma \in$ $N_{N}(\mathscr{Q}) \cap H$ such that $\gamma^{x}=\gamma^{-1}, \gamma^{3} \in O(N), C_{2}(\gamma)=\langle t, u\rangle$, and $[\mathscr{Q}, \gamma]=\mathscr{R}$. Setting $J=N_{G}(\mathscr{Q})$ and $\bar{J}=J / O(J)$, we have $\langle\mathscr{T}, \gamma\rangle \leq J \leq N_{G}(X) \cap C_{G}(u)$, $C_{G}(2)=O(J) \times X$, and $\bar{J}=O_{2}(\bar{J})\langle\bar{\gamma}, \bar{x}\rangle$. Since $C_{O_{2}(J)}(\bar{\gamma})=\langle\bar{t}, \bar{u}\rangle$, it follows that $O_{2}(\bar{J})$ contains a maximal subgroup $\bar{P}$ containing $\overline{\mathscr{R}}$ such that $O_{2}(\bar{J})=$ $\bar{P}\langle\bar{t}\rangle$ and $\bar{P} \triangleleft \bar{J}$. Also since $Z_{8} \times Z_{8} \cong \overline{\mathscr{R}}|\langle\bar{u}\rangle \leq \bar{P}|\langle\bar{u}\rangle$, we conclude that $\bar{P} /\langle\bar{u}\rangle \cong Z_{2^{n}} \times Z_{2^{n}}$ for some integer $n \geq 4$. Thus $\bar{P}^{\prime}=\langle\bar{u}\rangle$ and $\Phi(\bar{P})$ is abelian.

Since $\overline{\mathscr{R}} \leq \Phi(\bar{P})$, this is impossible. This contradiction completes the proof of Lemma 6.4.

## 7. The case $|\bar{M} / \bar{A}|=48$

In view of our results to this point, it suffices to prove:
Lemma 7.1. If $|\bar{M} / \bar{A}|=48$, then $\left|O^{2}(G)\right|_{2} \leq 2^{10}$.
Since the remainder of our paper is devoted to proving this lemma, we shall assume that $|\bar{M}| \bar{A} \mid=48$ for the rest of the paper.

Lemma 7.2. (i) $t^{G} \cap A=t^{M} \cap A=t X$.
(ii) $A \sim B$ in $G$ and $N_{G}(S) \leq M$.
(iii) $\bar{M} / \bar{A} \cong Z_{2} \times \Sigma_{4}$.

Proof. Since $\left|(\bar{M} / \bar{A}):\left(C_{\bar{M} / \bar{A}}(\bar{t})\right)\right|=8$, (i) is clear. Suppose that $A \sim B$ in $G$. Then $t^{G} \cap B=t^{N_{G}(B)}$ and hence $A \sim B$ in $H$, which is false. Thus (ii) holds. Clearly $\bar{M} / \bar{A} \hookrightarrow G L(4,2), C_{\bar{M} / \bar{A}}(\bar{t}) \cong \Sigma_{3}$, and $O_{3}(\bar{M} / \bar{A})=1$ since $C_{\bar{A}}(\bar{\rho})=\langle\bar{z}, \bar{u}\rangle \nexists \bar{M}$. As $G L(4,2)$ has no subgroup isomorphic to $G L(2,3)$, we have (iii).

Let $S<S_{1} \leq \mathscr{U} \in S y l_{2}(M), W=O_{2^{\prime}, 2}(M), \mathscr{W}=\mathscr{U} \cap W$, and $F=\langle y, z\rangle$. Clearly we have:
(7.1.) $\mathscr{W}$ is a maximal subgroup of $\mathscr{U}, \mathscr{W}\left|A \cong E_{8}, \mathscr{U}=\mathscr{W}\langle x\rangle,|\mathscr{U}|=2^{8}\right.$, $|\mathscr{W}|=2^{7}, C_{\mathscr{W}}(t)=A, t^{\mathscr{W}}=t^{G} \cap A=t X$, and $\mathscr{W} \mid A$ acts regularly on $t X$.

Since $M=O(M) N_{M}(\mathscr{W})$ and $t^{G} \cap A=t^{\mathscr{W}}$ we also have:
(7.2) $\quad M=O(M) \mathscr{W}\left(N_{M}(\mathscr{W}) \cap H\right)$ where $x \in N_{M}(\mathscr{W}) \cap H$. Also there is a 3-element $\kappa \in N_{M}(\mathscr{W}) \cap H$ such that $\kappa^{x}=\kappa^{-1}, \kappa^{3} \in O(M),[A, \kappa]=F$, and $C_{A}(\kappa)=\langle t, u\rangle$.

Set $\mathscr{Y}=C_{\mathscr{W}}(\kappa)$. Then we have:
(7.3) $|\mathscr{Y}|=8, C_{A}(\kappa)=\langle t, u\rangle \triangleleft \mathscr{Y}, t^{\mathscr{Y}}=\{t, t u\}, \mathscr{Y} \cong D_{8}, \mathscr{Y}^{\prime}=Z(\mathscr{Y})=$ $\langle u\rangle,\langle\mathscr{U}, \kappa\rangle \leq N_{G}(A \mathscr{Y})$, and $A \mathscr{Y} \leq N_{\mathcal{M}}(S)=S_{1}$.

Since $X=\left\langle A-\left(t^{G} \cap A\right)\right\rangle$, we have:
(7.4) $\quad X \triangleleft M$.

Set $\mathscr{V}=[\mathscr{W}, \kappa]$. Then:

$$
\begin{equation*}
F \leq \mathscr{V}, \mathscr{W}=\mathscr{V} \mathscr{Y}, \kappa^{3} \in C_{G}(\mathscr{W}), \mathscr{V} A / A \cong E_{4}, \text { and }\langle\mathscr{U}, \kappa\rangle \leq N_{G}(\mathscr{V}) \tag{7.5}
\end{equation*}
$$

Since $\mathscr{Y}=C_{\mathscr{W}}(\kappa)$ acts on $[A, \kappa]=F$, we have:

$$
\begin{equation*}
[F, \mathscr{Y}]=1 . \tag{7.6}
\end{equation*}
$$

Thus:
(7.7) $\mathscr{Y}$ has the following orbits on $t^{G} \cap A:\{t, t u\},\{t z, t u z\},\{t y, t u y\}$, and $\{t y z, t u y z\}, \mathscr{V} A \mid A$ acts regularly on these four orbits and $O_{2}(Z(M))=\langle u\rangle$.

Lemma 7.3. (i) $\mathscr{W}^{\prime}=\Phi(\mathscr{W})=\mho^{1}(\mathscr{W})=X$.
(ii) $F=\langle y, z\rangle \leq \mathscr{V} \cap A \leq X$.
(iii) $\langle[\mathscr{Y}, x],[\mathscr{Y}, x t]\rangle=\langle u\rangle$ and $x$ or $x t$ centralizes $\mathscr{Y}$.

Proof. Clearly $X \leq \mathscr{W}^{\prime} \leq A$. Since $\mathscr{W} \mid A \cong E_{8}$ and no element of $t X$ is a square, it follows that $\mathscr{W} \mid X \cong E_{16}$ and (i) holds. Thus $t \notin \mathscr{V}$ and (ii) follows. Finally $x \in N_{G}(\mathscr{Y})$ and $[x,\langle t, u\rangle]=1$. Thus $x$ or $x t$ centralizes $\mathscr{Y}$ and (iii) holds.

Lemma 7.4. $\mathscr{V}$ satisfies one of the following five conditions:
(i) $\mathscr{V} \cong E_{16}$ and $C_{\mathscr{V}}(t)=F$.
(ii) $\mathscr{V} \cong Z_{4} \times Z_{4}, F=\Omega_{1}(\mathscr{V})$, and $t$ inverts $\mathscr{V}$.
(iii) There is $a\langle\kappa, x\rangle$-invariant subgroup $\mathscr{2}$ of $\mathscr{V}$ such that $\mathscr{V}=F \times \mathscr{Q}$, $\mathscr{2} \cong Q_{8}, \mathscr{Q}^{\prime}=\langle u\rangle$, and $\mathscr{Q}\langle\kappa, x\rangle \mid\left\langle\kappa^{3}\right\rangle \cong G L(2,3)$.
(iv) $\mathscr{V}^{\prime}=\langle u\rangle\left\langle X=Z(\mathscr{V})=\Phi(\mathscr{V})=\mho^{1}(\mathscr{V})=\Omega_{1}(\mathscr{V}), \exp (\mathscr{V})=4\right.$, $\mathscr{V}\left|\mathscr{V}^{\prime} \cong Z_{4} \times Z_{4}, \mathscr{V}\right| F \cong Q_{8}$, t inverts $\mathscr{V} \mid \mathscr{V}^{\prime}$, and $(\mathscr{V}\langle\kappa, x\rangle) /\left(\left\langle\kappa^{3}\right\rangle \times F\right) \cong$ $G L(2,3)$. Also if $\alpha \in \mathscr{V}-Z(\mathscr{V})$, then $|\alpha|=4, C_{\mathscr{V}}(\alpha)=\langle\alpha, Z(\mathscr{V})\rangle$, and $\alpha^{2} \notin$ $\langle u\rangle \cup F$.
(v) $\mathscr{V}^{\prime}=Z(\mathscr{V})=\langle u\rangle, \mathscr{V}$ contains subgroups $Q_{1}$ and $Q_{2}$ with $Q_{1} \cong Q_{2}$ quaternion of order 8 such that $\mathscr{V}=Q_{1} * Q_{2}, \mathscr{V}$ char $\mathscr{V} A=\mathscr{V}\langle t\rangle$, and $Q_{1}^{t}=Q_{2}$.

Proof. Suppose that $\langle u\rangle<Z(\mathscr{V} A)$. Then, as $\mathscr{V} A$ is $\langle\kappa\rangle$-invariant, $t \notin Z(\mathscr{V} A)$ and $C_{\mathscr{V}}(t)=A$, it follows that $Z(\mathscr{V} A)=X$. Thus $F \triangleleft \mathscr{V} A, C_{V A / F}(\kappa)=$ $\langle t F, u F\rangle,|\mathscr{V} A| F \mid=2^{4}$ and $[\mathscr{V} A / F, \kappa]=\mathscr{V} \mid F$. Since no element of $t F \cup t u F$ is a square, we have $\mathscr{V} \mid F \cong E_{4}$ or $\mathscr{V} \mid F \cong Q_{8}$ with $(\mathscr{V} \mid F)^{\prime}=\langle u F\rangle$. If $\mathscr{V} \mid F \cong$ $E_{4}$, then $|\mathscr{V}|=2^{4}$ and clearly (i) or (ii) hold. In the other case, $X=Z(\mathscr{V})$ and $C_{\gamma}(\kappa)=\langle u\rangle$. Then Lemma 2.10 yields (iii) or (iv).

Finally suppose that $Z(\mathscr{V} A)=\langle u\rangle$. Then $(\overline{\mathscr{V}} \bar{A}\langle\bar{\kappa}, \bar{x}\rangle) / \bar{A} \cong \Sigma_{4}$ and [7, VI, Lemma 2.6] implies that $\mathscr{V} A$ is of type $\mathscr{A}_{8}$. Also $C_{V A}(\kappa)=\langle t, u\rangle,|\mathscr{V} A|=2^{6}$, and $\mathscr{V} A$ contains a characteristic maximal subgroup $\mathscr{Q}$ such that $\mathscr{Q}$ contains subgroups $Q_{1}$ and $Q_{2}$ with $Q_{1} \cong Q_{2} \cong Q_{8}$ and $\mathscr{Q}=Q_{1} * Q_{2}$. Moreover if $v \in \mathscr{V} A-\mathscr{Q}$, then $Q_{1}^{v}=Q_{2}$. Clearly $\mathscr{V}=[\mathscr{V} A, \kappa]=\mathscr{2}$ and (v) holds. This completes the proof of Lemma 7.4.

Our analysis of each of these five possibilities in Lemma 7.4 is presented in one of the remaining five sections of the paper.

## 8. The case of Lemma 7.4(i)

In this section, we shall prove:
Lemma 8.1. If $\mathscr{V}$ satisfies (i) of Lemma 7.4, then $\left|O^{2}(G)\right|_{2} \leq 2^{10}$.
Thus, throughout this section, we assume that $\mathscr{V} \cong E_{16}, C_{\mathscr{V}}(t)=F$, and that $2^{10}<\left|O^{2}(G)\right|_{2}$ and we shall proceed to a contradiction.

Clearly $\mathscr{Y} \cap \mathscr{V}=1=[u, \mathscr{V}], C_{\mathscr{V}}(x) \neq C_{\mathscr{V}}(t)$, and $\mathscr{Y}$ normalizes $C_{\mathscr{V}}(x)$ since $[x, \mathscr{Y}] \leq\langle u\rangle$. It follows that $C_{\mathscr{y}}(\mathscr{V})=\mathscr{P}$ is a maximal subgroup of $\mathscr{Y}$. Clearly $u \in \mathscr{P},[\mathscr{P}, \mathscr{V}]=1$, and $\langle\mathscr{U}, \kappa\rangle \leq N_{G}(\mathscr{V}) \cap N_{G}(\mathscr{P})$. Setting $\mathscr{Q}=$ $\mathscr{P} \times \mathscr{V}$, we have $\mathscr{W}=\mathscr{2}\langle t\rangle, \mathscr{Q} \triangleleft \mathscr{U}=\mathscr{2}\langle x, t\rangle, Z(\mathscr{U})=\langle u, z\rangle$, and $[\mathscr{P}, t]=$ $\langle u\rangle$. Also $\left|C_{\mathscr{v}}(x t)\right|=4$ and $x t$ does not centralize $\mathscr{Y}$ since $t x \sim t$ in $G$. Hence $[\mathscr{Y}, x]=1$ and $[\mathscr{P}, x t]=\langle u\rangle$.

Lemma 8.2. $\mathscr{P} \cong Z_{4}$.
Proof. Assume that $\mathscr{P} \cong E_{4}$. Then $\mathscr{Q} \cong E_{64},\left|C_{2}(x)\right|=2^{4}$ and $\left|C_{2}(t)\right|=$ $\left|C_{\mathscr{Q}}(x t)\right|=2^{3}$. Hence $\mathscr{Q}=J_{e}(\mathscr{U})$ char $\mathscr{U}$ and $\mathscr{U} \notin S y l_{2}\left(N_{G}(\mathscr{Q})\right.$. Let $\mathscr{U} \leq \mathscr{T} \notin$ $S y l_{2}\left(N_{G}(\mathscr{2})\right)$. Then $\mathscr{U}<\mathscr{T}, t^{G} \cap \mathscr{Q}=\emptyset, I(t \mathscr{Q})=t^{2}$ and hence $N_{\mathscr{T}}(\mathscr{Q}\langle t\rangle)=$ $\mathscr{2 S}=\mathscr{U}$. This implies that $C_{\mathscr{T}}(\mathscr{Q})=\mathscr{2}$. Setting $\overline{\mathscr{T}}=\mathscr{T} / \mathscr{Q}$, we have $\overline{\mathscr{T}} \hookrightarrow$ Aut $(\mathscr{2}) \cong G L(6,2)$ and $C_{\overline{\mathscr{T}}}(\bar{t})=\langle\bar{t}, \bar{x}\rangle$. Thus $\overline{\mathscr{T}}$ is dihedral or semidihedral and $|\bar{T}| \leq 2^{4}$ since the 2-exponent of $G L(6,2)$ is 8 . Hence $2^{3} \leq|\mathscr{T}| \leq 2^{10}$ and $\mathscr{T} \notin S y l_{2}(G)$. Also $Z(\overline{\mathscr{T}})=\langle\bar{x}\rangle$ and $t \mathscr{Q} \sim x t \mathscr{Q}$ in $\mathscr{T}$ since $\left|C_{\mathscr{Q}}(\bar{t})\right|=$ $\left|C_{2}(\bar{x} \bar{t})\right| \neq\left|C_{2}(\bar{x})\right|$. As $\mathscr{T} \notin S y l_{2}(G)$, there is a 2-element $\omega \in N_{G}(\mathscr{T})-\mathscr{T}$ such that $\omega^{2} \in \mathscr{T}$ and $\mathscr{Q}_{1}=\mathscr{Q}^{\omega} \triangleleft \mathscr{T}$ and $\mathscr{Q}_{1} \neq \mathscr{Q}$. Hence $\bar{x} \in \overline{\mathscr{Q}}_{1}$ and $\left|\overline{\mathscr{Q}}_{1}\right| \leq 4$. Since $\left|C_{2}(x)\right|=2^{4}$, we have $2 \cap \mathscr{Q}_{1}=C_{2}(x)$ and $\left\langle C_{2}(x), x\right\rangle \leq \mathscr{Q}_{1}$. Thus $\left|\overline{\mathscr{Q}}_{1}\right|=4$ and $\overline{\mathscr{T}} \cong D_{8}$ since $\overline{\mathscr{Q}}_{1} \triangleleft \overline{\mathscr{T}}$. Let $\alpha \in \mathscr{Q}_{1}-\left\langle C_{2}(x), x\right\rangle$. Then

$$
\mathscr{Q}_{1}=\left\langle C_{\mathscr{2}}(x), x, \alpha\right\rangle, \alpha: t \mathscr{Q} \leftrightarrow t x \mathscr{Q} \quad \text { and } \quad t: \alpha \mathscr{Q} \leftrightarrow \alpha x \mathscr{Q} .
$$

On the other hand, $I(\mathscr{T})=\mathscr{Q}^{\#} \cup I(x \mathscr{Q}) \cup I(\alpha \mathscr{Q}) \cup I(\alpha x \mathscr{Q}) \cup I(t \mathscr{Q}) \cup I(x t \mathscr{Q})$ and $\left\langle x, \mathscr{Q} \cap \mathscr{Q}_{1}, \alpha\right\rangle \leq C_{G}\left(\mathscr{Q} \cap \mathscr{Q}_{1}\right)$ where $\mathscr{Q} \cap \mathscr{Q}_{1} \cong E_{16}$. Thus $t^{G} \cap \mathscr{T}=$ $I(t \mathscr{Q}) \cup I(x t \mathscr{Q})=t^{\mathscr{F}}$ and hence $S<C_{\langle\mathscr{T}, \omega\rangle}(t)$, which is impossible. This concludes the proof of Lemma 8.2.

Let $\mathscr{P}=\langle\omega\rangle$ where $\omega^{2}=u$. Clearly $\omega^{t}=\omega^{x t}=\omega^{-1}, \Omega_{1}(\mathscr{2})=\langle u\rangle \times \mathscr{V}$, and $\mho^{1}(\mathscr{2})=\langle u\rangle$. Set $E=\Omega_{1}(2)$ and $N=N_{G}(\mathscr{2}), C=C_{G}(2)$ and $D=$ $C_{N}(E)$. Thus $C \leq D \unlhd N \leq C_{G}(u), D / C$ is a 2-group, $O(N)=O(C)=O(D)$, $\langle\mathscr{U}, \kappa\rangle \leq N$, and $C_{2}(\kappa)=\mathscr{P}$. Setting $\bar{N}=N / O(N)$, we prove:

Lemma 8.3. (i) $\bar{C}=C_{\bar{C}}(\bar{\kappa}) \times \overline{\mathscr{V}}$ where $\bar{V}=[\bar{C}, \bar{\kappa}], C_{\bar{C}}(\bar{\kappa})$ is a cyclic 2-group, and $\overline{\mathscr{P}}=\Omega_{2}\left(C_{\bar{C}}(\bar{\kappa})\right)$.
(ii) $\bar{S}$ normalizes $C_{\bar{c}}(\kappa)$ and $C_{\overline{\mathcal{C}}}(\bar{\kappa})\langle\bar{t}\rangle$ is dihedral or semidihedral.
(iii) $\overline{\mathscr{Q}} \leq \bar{C} \leq \bar{D} \leq O_{2}(\bar{N})$.

Proof. Set $\bar{Y}=\bar{C}\langle\bar{t}\rangle$. Clearly $\overline{\mathscr{V}} \triangleleft \bar{Y}, \bar{Y}$ is $\langle\bar{\kappa}, \bar{x}\rangle$ invariant, $I(\bar{t} \overline{\mathscr{V}})=$ $\bar{i}^{\bar{V}}, \quad \bar{S} \in S y l_{2}\left(C_{N}(\bar{t})\right)$, and $\bar{A}=\bar{S} \cap \bar{Y} \in S y l_{2}\left(C_{Y}(\bar{t})\right)$. Thus $E_{4} \cong \bar{A} \overline{\mathcal{V}} / \overline{\mathcal{V}} \in$
$\operatorname{Syl}_{2}\left(C_{Y / \overline{\mathcal{V}}}(\bar{t} \overline{\mathcal{V}})\right)$ and $\bar{Y} / \overline{\mathscr{V}}$ has dihedral or semidihedral Sylow 2-subgroups. Since $Z_{4} \cong \overline{\mathscr{V}} / \overline{\mathcal{V}} \unlhd \bar{Y}$, [1, I, Proposition 1] and [8, Theorem 1] imply that $\bar{Y} / \bar{V}$ has a normal 2-complement. As $\overline{\mathscr{V}} \leq Z(\bar{C})$, we conclude that $\bar{Y}$ is a 2-group and hence (iii) holds. Also $\bar{C} / \overline{\mathscr{V}}$ is a maximal subgroup of $\bar{Y} / \overline{\mathscr{V}}$ and $\overline{\mathscr{Q}} / \overline{\mathscr{V}} \leq Z(\bar{C})$. Thus $\bar{C} / \overline{\mathscr{V}}$ is cyclic, $\bar{C}$ is abelian, and (i) holds. Since $\bar{S}=$ $\bar{A}\langle\bar{x}, \bar{t}\rangle$, (ii) also holds.

Lemma 8.4. (i) $\bar{D}=C_{\bar{D}}(\bar{\kappa}) \times \overline{\mathscr{V}}$ where $\overline{\mathscr{V}}=[\bar{D}, \bar{\kappa}]$.
(ii) $\bar{S}$ normalizes $C_{D}(\bar{\kappa})$ and $C_{\bar{D}}(\bar{\kappa})\langle\bar{t}\rangle$ is dihedral or semidihedral;
(iii) either $C_{\bar{D}}(\bar{\kappa})=C_{\bar{c}}(\bar{\kappa})$ (and $C=D$ ) or $C_{\bar{D}}(\bar{\kappa})$ is dihedral or generalized quaternion and $C_{\bar{C}}(\bar{\kappa})$ is the unique cyclic maximal subgroup of $C_{\bar{D}}(\bar{\kappa})$ when $\left(C_{D} \bar{\kappa}\right)$ is not isomorphic to $Q_{8}$.
(iv) $t^{G} \cap D=\emptyset$.
(v) $\overline{\mathscr{Q}}=\overline{\mathscr{P}} \times \overline{\mathscr{V}} \operatorname{char} \bar{D}$ if $C_{\bar{D}}(\bar{\kappa})$ is not isomorphic to $Q_{8}$.
(vi) $C_{N}(\bar{t})=\bar{A}\langle\bar{\kappa}, \bar{x}\rangle$.

Proof. Set $\bar{Y}=\bar{D}\langle\bar{t}\rangle$. Clearly $\overline{\mathscr{V}} \triangleleft \bar{Y}$ and $\bar{A} \in S y l_{2}\left(C_{Y}(\bar{t})\right)$. As in the proof of the preceding lemma, $\bar{Y} / \overline{\mathscr{V}}$ is dihedral or semidihedral and $\bar{\kappa}$ acts trivially on $\bar{Y} / \overline{\mathscr{V}}$. Thus (i)-(iii) and (v) hold. Since every involution of $\bar{D}$ centralizes $\bar{E}$, (iv) also holds. Also $C_{N}(t)$ normalizes $C_{E}(t)=X$ and hence $C_{N}(t)=$ $\left(O\left(C_{H}(A)\right) \cap N\right) A\langle\kappa, t\rangle$. Since $O\left(C_{H}(A)\right) \cap N \leq C$ by [6, Theorem 5.3.4], (vi) also holds.

From the nature of the remainder of the proof of Lemma 8.1 and in order to simplify the notation, it is clear that, without loss of generality, we may (and shall) assume that $O(N)=1$.

Set $\mathscr{R}=C_{D}(\kappa)$. Then $D=\mathscr{R} \times \mathscr{V}, \mathscr{R}\langle t\rangle$ is dihedral or semidihedral, $Z(\mathscr{R}\langle t\rangle)=\langle u\rangle$ and $\mathscr{R}=C_{\mathscr{R}\langle t\rangle}(E)$ is cyclic, dihedral, or generalized quaternion. Also $E=\langle u\rangle \times \mathscr{V} \leq Z(D)$ and $t^{G} \cap D=\emptyset$. Let $\gamma$ be a generator of the cyclic maximal subgroup of $\mathscr{R}\langle t\rangle$. Then $\mathscr{P} \leq\langle\gamma\rangle, \gamma \in C$ if and only if $C=D$ and $\left\langle\gamma^{2}\right\rangle=C_{C}(\kappa)$ if and only if $C \neq D$. Also $I(t D)=I(t \mathscr{R}) \times F$ and hence $I(t D)=t^{D}$ if $\mathscr{R}\langle t\rangle$ is semidihedral and $I(t D)=t^{D} \cup(t \gamma)^{D}$ if $\mathscr{R}\langle t\rangle$ is dihedral. However, if $\mathscr{R}\langle t\rangle$ is dihedral and $C \neq D$, then $\mathscr{R}$ is dihedral and $t^{G} \cap t D=t^{D}$ since $t^{G} \cap D=\emptyset$.

Also $\left|C_{\mathscr{V}}(x t)\right|=4$ and $\left|C_{\mathscr{R}\langle x t\rangle}(x t)\right|=\langle u, x t\rangle$. Hence $\mathscr{R}\langle x t\rangle$ is dihedral or semidihedral with $\mathscr{P} \triangleleft \mathscr{R}\langle x t\rangle$ and if $\tau \in I(x t D)$, then

$$
C_{D\langle x \tau\rangle}(\tau)=\langle\tau, u\rangle \times C_{\gamma}(x) \cong E_{16} .
$$

On the other hand, $\mathscr{P} \leq \mathscr{R} \cap C_{N}(x)$. Thus, by enumerating the possibilities for $\mathscr{R}\langle x\rangle$ and applying Lemmas 2.2 and 2.3, if necessary, if follows that if $\tau \in I(\mathscr{R} x)$, then either $\left|C_{\mathscr{R}\langle x\rangle}(\tau)\right|>2^{3}$ or $C_{\mathscr{R}\langle x\rangle}$ is abelian of order 8. Hence $t^{G} \cap(D\langle x\rangle)=\emptyset$.

Setting $\hat{E}=E /\langle u\rangle$, we have $\hat{E} \cong E_{16}, N$ acts on $\hat{E}$ and $D \leq C_{N}(\hat{E}) \unlhd N$.
Lemma 8.5. $\quad C_{N}(\hat{E})=D$ and $N / D \hookrightarrow$ Aut $(\hat{E}) \cong G L(4,2)$.

Proof. Clearly $C_{N}(\hat{E}) \leq O_{2}(N)$. Suppose that $D \neq C_{N}(\hat{E})$. Clearly

$$
X=C_{N}(\hat{E}) \cap C_{N}(t)=C_{D}(t)
$$

Let $D<Y \leq C_{D}(\hat{E})$ be such that $Y / D=C_{C_{N}(\hat{E}) / D}(t)$. Then $Y$ is $\langle\kappa\rangle$-invariant and $Y$ normalizes $D\langle t\rangle$. Thus $|Y| D \mid=2$ and $[Y, \kappa]=\mathscr{V} \triangleleft Y$. Hence $Y \leq C_{N}(E)=D$ which is false and we are done.

Choose $v_{1} \in \mathscr{V}^{\#}$ such that $C_{\mathscr{V}}(x)=\left\langle z, v_{1}\right\rangle$. Then $v_{1}^{t}=v_{1} z$ and $C_{\mathscr{y}}(x t)=$ $\left\langle z, v_{1} y\right\rangle$. Since $x$ normalizes $\mathscr{R}\langle t\rangle$, we have $\mathscr{R}\langle x, t\rangle=\langle\gamma, x, t\rangle$ and $x$ normalizes $\langle\gamma\rangle$. Thus $(D\langle x, t\rangle)^{\prime}=\left\langle\gamma^{2}\right\rangle \times\left\langle z, y, v_{1}\right\rangle$ and

$$
C_{D\langle x, t\rangle}\left(\Omega_{1}\left((D\langle x, t\rangle)^{\prime}\right)=D \text { char } D\langle x, t\rangle\right.
$$

Thus $E$ char $D\langle x, t\rangle$. Suppose that $\mathscr{2}=\mathscr{P} \times \mathscr{V}$ is not characteristic in $D\langle x, t\rangle$. Then $\gamma^{2}=u$ and $C=D=\mathscr{2}$, which is a contradiction. Thus $\mathscr{2}$ char $D\langle x, t\rangle$. Let $D\langle x, t\rangle \leq \mathscr{T} \in S y l_{2}(N)$.

Lemma 8.6. $\mathscr{T} \neq D\langle x t\rangle$.
Proof. Suppose that $\mathscr{T}=D\langle x, t\rangle \in S y l_{2}(N)$. Then $\mathscr{T} \in S y l_{2}(G),|\mathscr{T}| \geq$ $2^{11}, Z(\mathscr{T})=\langle u, z\rangle,|\gamma| \geq 2^{5}, \mathscr{T}^{\prime}=\left\langle\gamma^{2}\right\rangle \times\left\langle z, y, v_{1}\right\rangle$, and $\Omega_{1}\left(\mathcal{J}^{1}\left(\mathscr{T}^{\prime}\right)\right)=$ $\langle u\rangle$. However, since $x \sim u$ in $G$, there is an element $g \in G$ such that $x^{g}=u$ and $C_{\mathscr{F}}(x)^{g} \leq \mathscr{T}$. Since $\left\langle\gamma^{2}, x, t\right\rangle \leq C_{\mathscr{F}}(x)$, we have $\left\langle\gamma^{4}\right\rangle^{g} \leq\left(C_{\mathscr{T}}(x)^{g}\right)^{\prime}$. Thus $\langle u\rangle^{g} \leq \Omega_{1}\left(\mho^{1}\left(\left(C_{\mathscr{J}}(x)^{g}\right)^{\prime}\right)\right) \leq \Omega_{1}\left(\mho^{1}\left(\mathscr{T}^{\prime}\right)\right)=\langle u\rangle$ and we have a contradiction.

Lemma 8.7. (i) $\quad C_{N / D}(t D)=\langle t D\rangle \times\langle\kappa D, x D\rangle=C_{N}(t) D / D$.
(ii) $O_{2}(N)=D$.
(iii) $\mathscr{T} \mid D \cong D_{8}, Z(\mathscr{T} \mid D)=\langle x D\rangle$ and $t D \sim x t D$ in $\mathscr{T}$.

Proof. Assume that $C_{N / D}(t D) \neq C_{N}(t) D / D$. Then $\mathscr{R}\langle t\rangle$ is dihedral, $C=D$, $\mathscr{R}=\langle\gamma\rangle$, and $\left|C_{N / D}(t D):\left(\left(C_{N}(t) D\right) / D\right)\right|=2$. As $N / D G G L(4,2) \cong \mathscr{A}_{8}$, it follows from the structures of the centralizers of involutions in $\mathscr{A}_{8}$ that $C_{N / D}(t D)$ has Sylow 2-subgroups of type $D_{8}$. Hence $x D \sim x t D$ in $N / D$ which is false since $t^{G} \cap D\langle x\rangle=\emptyset$. Thus (i) holds. Now (ii)-(iii) are immediate.

Lemma 8.8. $\mathscr{T} \in \operatorname{Syl}_{2}(G)$.
Proof. Assume that there is a 2-element $\tau \in N_{G}(\mathscr{T})-\mathscr{T}$ such that $\tau^{2} \in \mathscr{T}$. Let $\mathscr{2}_{1}=\mathscr{2}^{\tau}$ and $E_{1}=E^{\tau}=\Omega_{1}\left(\mathscr{Q}_{1}\right)$. Then $\mathscr{2} \neq \mathscr{Q}_{1} \triangleleft \mathscr{T}$ and $E_{1} \triangleleft \mathscr{T}$. Since $t^{G} \cap E=\emptyset$, we have $C_{E_{1}}(t)=\langle u, y, z\rangle$ or $C_{E_{1}}(t)=\langle u, x, z\rangle$. Suppose that $C_{E_{1}}(t)=\langle u, y, z\rangle$. Then $\left[E_{1}, A\right] \leq A$ and $E_{1} \in C_{\mathscr{U}}(X)=\mathscr{2}\langle t\rangle$ and $\left|E \cap E_{1}\right| \geq 2^{4}$. This implies that $E_{1}=E$ and $\mathscr{Q}_{1} \leq C_{\mathscr{T}}(E)=D=\mathscr{R} \times \mathscr{V}$. Hence $\mathscr{Q}_{1}=\left(\mathscr{Q}_{1} \cap \mathscr{R}\right) \times \mathscr{V}$ where $\mathscr{Q}_{1} \cap \mathscr{R} \cong Z_{4}$ and $\mathscr{Q}_{1} \cap \mathscr{R}$ is $t$-invariant. This forces $\mathscr{Q}_{1} \cap \mathscr{R}=\mathscr{P}$ and $\mathscr{Q}_{1}=\mathscr{2}$ which is false. Thus $C_{E_{1}}(t)=\langle u, x, z\rangle$. Since $\mathscr{T} \mid D \cong D_{8}$, we have $\left|E_{1} \cap D\right| \geq 2^{3}$. We also have $\langle u, z\rangle \leq E_{1} \cap D \leq$ $C_{D}(x) \leq \mathscr{R} \times\left\langle z, v_{1}\right\rangle,\left[E_{1}, t\right] \leq\langle u, x, z\rangle$, and $E_{1} \leq N_{\mathscr{T}}(B)$. Thus $E_{1} \cap$ $D \leq N_{R}(B) \times\left\langle z, v_{1}\right\rangle$. However $\left[N_{\mathscr{R}}(B), t\right] \leq \mathscr{R} \cap B=\langle u\rangle$ and hence
$N_{\mathscr{R}}(B)=\mathscr{P}$ and $E_{1} \cap D=\left\langle u, z, v_{1}\right\rangle$. Thus $x D \in E_{1} D / D \cong E_{4}$ and $\mathscr{Q}_{1} \cap$ $(t D)=\emptyset=\mathscr{Q}_{1} \cap(x t D)$.

Since $\tau: \mathscr{Q} \leftrightarrow \mathscr{Q}_{1}, \tau$ leaves $I\left(\mathscr{T}-\mathscr{Q Q}_{1}\right)=I(t D \cup x t D)$ invariant. Since $t D \sim x t D$ in $\mathscr{T}$, it follows that $C=D, \mathscr{R}=\langle\gamma\rangle$, and $\gamma^{t}=\gamma^{-1}$. Moreover we may assume that $t^{\tau}=t \gamma$. Also

$$
\left\langle u, z, v_{1}\right\rangle \leq \mathscr{Q}_{1} \cap \mathscr{Q} \leq C_{2}(x) \leq \mathscr{R} \times\left\langle z, v_{1}\right\rangle
$$

and $\mathscr{Q}_{1}$ is abelian. Thus $\mathscr{Q}_{1} D=E_{1} D$ and hence $\left|\mathscr{Q}_{1} \cap \mathscr{Q}\right|=2^{4}$ and $\mathscr{Q}_{1} \cap \mathscr{Q}=$ $\mathscr{P} \times\left\langle z, v_{1}\right\rangle$. Since $\tau$ normalizes $\mathscr{Q}_{1} \cap \mathscr{Q}, \tau \in C_{G}(u)$ and hence $\langle t, u\rangle^{\tau}=$ $\langle t \gamma, u\rangle$. But $\langle y, z, \kappa\rangle \leq C_{G}(\langle t, u\rangle) \cap C_{G}(t \gamma, u)$ since $[\mathscr{R}, \kappa]=1$. Now (4.12) implies that

$$
\tau: \mathscr{T} \cap O^{2}\left(C_{G}(t, u)\right)=\langle y, z\rangle \rightarrow \mathscr{T} \cap O^{2}\left(C_{G}\left(t^{\gamma}, u\right)\right)=\langle u, z\rangle
$$

But $y \in \mathscr{Q}$ and $y \notin \mathscr{Q}_{1}=\mathscr{Q}^{\tau}$, which is a contradiction and the lemma follows.
We shall now conclude the proof of Lemma 8.1. Let $Y$ be the maximal subgroup of $\mathscr{T}$ such that $D<Y$ and $Y / D \cong Z_{4}$. Clearly $\Omega_{1}(Y / D)=\langle x D\rangle$ and hence $t^{G} \cap Y=\emptyset$. Hence $t \notin O^{2}(G)$ by [17, Lemma 5.38]. Since $\left|O^{2}(G)\right|_{2} \geq$ $2^{11}$, we have $|\mathscr{T}| \geq 2^{12}$ and $|\gamma| \geq 2^{5}$. Since $x$ normalizes $\langle\gamma\rangle$ and centralizes $\mathscr{P}=\Omega_{2}(\langle\gamma\rangle)$, we have $\left\langle\gamma^{2}, x, t\right\rangle \leq C_{\mathscr{F}}(x)$. Since $t$ inverts $\gamma^{2}$, we have $\left\langle\gamma^{4}\right\rangle \leq$ $C_{\mathscr{F}}(x)^{\prime} \leq \mathscr{T}^{\prime} \leq D\langle x\rangle$. Hence $\left\langle\gamma^{8}\right\rangle \leq D=\mathscr{R} \times \mathscr{V}$ and $\gamma^{16} \in \mathcal{J}^{1}(\mathscr{R})=$ $\left\langle\gamma^{2}\right\rangle$. Since $|\gamma| \geq 2^{5}$, and $u \in Z(\mathscr{T})$, we obtain a contradiction as in Lemma 8.6. Thus Lemma 8.1 is established.

## 9. The case of Lemma 7.4(ii)

In this section, we shall prove:
Lemma 9.1. If $\mathscr{V}$ satisfies (ii) of Lemma 7.4, then $\left|O^{2}(G)\right|_{2} \leq 2^{10}$.
Thus, throughout this section, we assume that $\mathscr{V} \cong Z_{4} \times Z_{4}, F=\Omega_{1}(\mathscr{V})$, $t$ inverts $\mathscr{V}$, and that $2^{10}<\left|O^{2}(G)\right|_{2}$ and we shall proceed to a contradiction.

Clearly $\langle\kappa, x\rangle$ normalizes $\mathscr{V}$ and $\left[\kappa^{3}, \mathscr{V}\right]=1=\mathscr{Y} \cap \mathscr{V}$. Let $v_{1} \in \mathscr{V}$ be such that $v_{1}^{2}=y$ and set $v_{2}=v_{1}^{x}$ and $v=v_{1} v_{2}$. Then $v_{2}^{2}=y z, v^{2}=z$, and $C_{\mathscr{V}}(x)=\langle v\rangle$. Then $\mathscr{P}=C_{y y}(\mathscr{V})$ is a maximal subgroup of $\mathscr{Y}$. Clearly $u \in \mathscr{P}$, $[\mathscr{P}, \mathscr{V}]=1$, and $\langle\mathscr{U}, \kappa\rangle \leq N_{G}(\mathscr{V}) \cap N_{G}(\mathscr{P})$. Setting $\mathscr{Q}=\mathscr{P} \times \mathscr{V}$, we have $\mathscr{W}=\mathscr{Q}\langle t\rangle, \mathscr{Q} \triangleleft \mathscr{U}=\mathscr{Q}\langle x, t\rangle, \quad Z(\mathscr{U})=\langle u, z\rangle$, and $[\mathscr{P}, t]=\langle u\rangle$. Also $C_{\boldsymbol{v}}(x t)=\langle v y\rangle$ and $\langle u\rangle \times C_{\boldsymbol{v}}(x t) \leq C_{2}(x t)$. Thus

$$
(\langle u\rangle \times\langle v y\rangle)(\langle x, t\rangle) \leq C_{\vartheta}(x t)
$$

and hence $(\langle u\rangle \times\langle v y\rangle)(\langle x, t\rangle)=C_{\mathscr{u}}(x t) \in \operatorname{Syl}_{2}\left(C_{G}(x t)\right),[x, \mathscr{P}]=1$, and $[x t, \mathscr{P}]=\langle u\rangle$.

Let $\tau \in I(x \mathscr{Q})$. Then $C_{2}(\tau)=\mathscr{P} \times\langle v\rangle,\left|C_{2\langle x\rangle}(\tau)\right|=2^{5}$ and $C_{2\langle x\rangle}(\tau)$ is abelian. Thus $t^{G} \cap(\mathscr{Q}\langle x\rangle)=\emptyset$.

Note also that $\mathscr{U}^{\prime}=\langle u\rangle \times\langle v\rangle \times\langle y\rangle, C_{\mathscr{U}}\left(\mathscr{U}^{\prime}\right)=\mathscr{Q}, \Omega_{1}\left(\mathscr{U}^{\prime}\right)=X, C_{\mathscr{U}}(X)=$ $\mathscr{Q}\langle t\rangle$, and $\boldsymbol{\mho}^{1}\left(\mathscr{U}^{\prime}\right)=\langle z\rangle$.

## Lemma 9.2. $\mathscr{P} \cong Z_{4}$.

Proof. Assume that $\mathscr{P}=\langle u, \omega\rangle$ where $\omega^{2}=1$. Let $\mathscr{U}$ be of index 2 in the 2-subgroup $\mathscr{T}$ of $G$. Clearly $\mathscr{Q} \triangleleft \mathscr{T}$ and $\mathscr{Q}\langle t\rangle \triangleleft \mathscr{T}$. Since $t^{G} \cap(x \mathscr{Q})=\emptyset$, we have $\mathscr{2}\langle x t\rangle \triangleleft \mathscr{T}$. Then, since $I(x t \mathscr{Q})=(x t)^{2}$, we have $\left|C_{\mathscr{T}}(x t)\right|=2^{6}$ which is a contradiction since $t \sim x t$ in $G$. This completes the proof of the lemma.

Let $\mathscr{P}=\langle\omega\rangle$ where $\omega^{2}=u$. Thus $t$ inverts $\mathscr{Q}=\mathscr{P} \times \mathscr{V}, \Omega_{1}(\mathscr{2})=$ $X, \omega^{x t}=\omega u, I(t \mathscr{Q})=t \mathscr{Q}, I(x \mathscr{Q})=x(\langle u\rangle \times\langle v y\rangle)$, and $I(x t \mathscr{Q})=x t(\mathscr{P} \times\langle v\rangle)$.

Lemma 9.3. Let $\mathscr{U} \leq \mathscr{R}$ where $\mathscr{R}$ is a 2 -subgroup. Then $X \triangleleft \mathscr{R}$ and $X$ is the unique normal element of $\mathscr{E}_{8}(\mathscr{R})$.

Proof. Since $X$ char $\mathscr{U}$, it suffices, by induction on $|\mathscr{R}|$, to assume that $X \triangleleft \mathscr{R}$ and to show that $X$ is unique. Thus let $X \neq Y \triangleleft \mathscr{R}$ where $Y \in \mathscr{E}_{8}(\mathscr{R})$. Since $2^{7}<|\mathscr{R}|, t^{G} \cap Y=\emptyset$. Thus $\left|C_{Y}(t)\right| \geq 4$ and $C_{Y}(t) \leq\langle u, x, z\rangle$ or $C_{Y}(t) \leq\langle u, y, z\rangle$. Note that if $\tau_{1} \in I(t \mathscr{Q}), \tau_{2} \in I(x \mathscr{Q})$, and $\tau_{3} \in I(x t \mathscr{Q})$, then $\left\langle\tau_{1}, X\right\rangle \leq\left\langle\tau^{2}\right\rangle,\left\langle\tau_{2}, v y\right\rangle \leq\left\langle\tau_{2}^{2}\right\rangle$, and $\left\langle\tau_{3}, v\right\rangle \leq\left\langle\tau_{3}^{2}\right\rangle$. Hence $C_{Y}(t) \leq X$ and $Y \leq N_{\mathscr{R}}(A)=\mathscr{U}$. Then $Y \leq \mathscr{Q}, Y=X$ and we are done.

Clearly $\mathscr{Q}=J_{0}(\mathscr{W})$ char $\mathscr{W}=\mathscr{2}\langle t\rangle,\langle\mathscr{U}, \kappa\rangle \leq N_{G}(\mathscr{W}) \leq N_{\mathbf{G}}(\mathscr{2}), C_{\mathbf{G}}(\mathscr{W})=$ $O\left(C_{G}(\mathscr{W})\right) \times X$, and $\kappa^{3} \in O\left(C_{G}(\mathscr{W})\right)$.

Lemma 9.4. (i) $\mathscr{2} \leq N_{G}(\mathscr{W}) \cap C_{G}(\mathscr{Q}) \leq N_{G}(\mathscr{W})$ and $O\left(N_{G}(\mathscr{W})\right)$ is a normal 2-complement of $N_{G}(\mathscr{W}) \cap C_{G}(\mathscr{2})$.
(ii) Either $\mathscr{Q} \in S y l_{2}\left(N_{G}(\mathscr{W}) \cap C_{G}(\mathscr{2})\right)$ and $t^{N_{G}(\mathscr{W}) \cap C_{G}(2)}=t X=t^{2}$ or $\mathscr{Q}$ is a maximal subgroup of a Sylow 2-subgroup of $N_{G}(\mathscr{W}) \cap C_{G}(\mathscr{2})$ and $t^{N_{G}(\mathscr{W}) \cap C_{G}(2)}=$ $t(\mathscr{P} \times F)$.

Proof. Let $N=N_{G}(\mathscr{W}), \bar{N}=N / O(N)$, and $J=C_{N}(\mathscr{Q})$. Clearly $\mathscr{2} \leq Z(J)$, $J \triangleleft N \leq N_{G}(\mathscr{2}), O(N)=O(J)=O\left(C_{G}(\mathscr{W})\right)$, and $\bar{J}=C_{N}(\overline{\mathscr{Q}})$. Let $\tau \in J$. Then $t^{\tau} \in \tau \mathscr{Q}$ and hence $t^{\tau^{2}} \in t X=t^{2}$. Thus $\tau^{2} \in C_{N}(\mathscr{W}) \mathscr{Q}=O(N) \times \mathscr{Q}$. Hence $\bar{J} / \overline{\mathscr{Q}}$ is an elementary abelian 2-group and (i) holds. Then

$$
\bar{J} / \overline{\mathscr{Q}}=\left(\left(C_{J}(\bar{\kappa}) \overline{\mathscr{Q}}\right) / \overline{\mathscr{Q}}\right) \times(([\bar{J}, \bar{\kappa}] \overline{\mathscr{Q}}) / \overline{\mathscr{Q}}) .
$$

Note that $C_{J}(\bar{t})=C_{\bar{N}}(\bar{W})=\bar{X}$ and $\bar{i}^{\overline{9}}=\bar{\lambda} \bar{X}$.
Let $\overline{\mathscr{Z}}=[\bar{J}, \bar{\kappa}] \overline{\mathscr{Q}}$. Then $\overline{\mathscr{Z}}$ is $(\langle\bar{t}\rangle \times\langle\bar{\kappa}, \bar{x}\rangle)$-invariant. Suppose that $|\overline{\mathscr{Z}}| \overline{\mathscr{Z}} \mid \geq 8$. Then there is an element $\bar{\tau} \in \overline{\mathscr{Z}}-\overline{\mathscr{Q}}$ such that $\bar{t}^{\bar{\tau}}=\bar{t} \bar{\omega}$. Hence $[\bar{\tau}, \bar{\kappa}] \in C_{J}(\bar{t})=\bar{X} \leq \overline{\mathscr{Q}}$. Since $C_{\overline{\mathscr{Q}} / \overline{\mathscr{L}}}(\bar{\kappa})=1$, this is impossible.

Suppose that $|\overline{\mathscr{Z}}| \overline{\mathscr{Q}} \mid=4$. Then $|\overline{\mathscr{Z}}|=2^{8},|\overline{\mathscr{Z}}| \overline{\mathscr{V}} \mid=2^{4},(\langle\bar{t}\rangle \times\langle\bar{\kappa}, \bar{x}\rangle)$ normalizes $\overline{\mathscr{Z}} / \overline{\mathscr{V}}$ and $\overline{\mathscr{V}} / \overline{\mathcal{V}}=C_{\overline{\mathscr{V}}} / \overline{\mathscr{V}}(\bar{\kappa}) \leq Z(\overline{\mathscr{Z}} / \overline{\mathcal{V}})$. Set $\overline{\mathscr{X}}=[\overline{\mathscr{Z}}, \bar{\kappa}]$. Since $\overline{\mathscr{V}} \leq \bar{X}$, we conclude that either $|\bar{X}|=2^{6}$ or $\bar{X} / \overline{\mathscr{V}} \cong Q_{8}$. Assume that $|\overline{\mathscr{Z}}|=$ $2^{6}$. Then since $\overline{\mathscr{V}} \leq Z(\bar{X})$ and $C_{\bar{X}}(\bar{\kappa})=1$, [7, IV, Lemma 2.5] implies that either $\overline{\mathscr{X}} \cong Z_{8} \times Z_{8}$ or $\overline{\mathscr{X}}=\overline{\mathscr{V}} \times \overline{\mathscr{V}}_{1}$ where $\overline{\mathscr{V}}_{1}$ is a $\langle\bar{\kappa}\rangle$-invariant 4-group. In either case, we have $\left|C_{J\langle\bar{x}, \bar{i}\rangle}(\bar{x} \bar{t})\right| \geq 2^{6}$ and we have a contradiction. Thus $\bar{X} \mid \overline{\mathscr{V}} \cong Q_{8}$ and $C_{\bar{x}}(\bar{\kappa})=\langle\bar{u}\rangle=\overline{\mathscr{X}}^{\prime}$. If $\overline{\mathscr{X}} \mid\langle\bar{u}\rangle \cong Z_{8} \times Z_{8}$, then there is an
element $\bar{\lambda} \in \bar{X}-\overline{\mathscr{Q}}$ such that $\bar{\lambda}^{\bar{x} \bar{z}}=\bar{\lambda} \bar{u}$. Hence $(\bar{\lambda} \bar{\omega})^{\bar{x} \bar{t}}=\bar{\lambda} \bar{\omega}$ and $\left|C_{\left.J_{\langle\bar{x}, i\rangle}\right\rangle}(\bar{x} \bar{t})\right| \geq$ $2^{6}$ which is impossible. Hence $\bar{X} /\langle\bar{u}\rangle \cong Z_{4} \times Z_{4} \times E_{4}$ and there is an element $\bar{\lambda} \in \bar{X}-\overline{\mathscr{Z}}$ such that $\bar{\lambda}^{\bar{x} \bar{z}}=\bar{\lambda} \bar{u}$ and we obtain a contradiction in the same way. Hence $\overline{\mathscr{Z}}=\overline{\mathscr{Q}}$. Finally, let $\bar{\tau} \in C_{J}(\bar{\kappa})$. Then $\bar{t}^{\bar{t}} \in \bar{\tau} C_{\overline{\mathscr{2}}}(\bar{\kappa})=\bar{\tau} \overline{\mathcal{P}}$ and (ii) holds.

For the remainder of this section, let $N=N_{G}(\mathscr{Q}), C=C_{G}(2)$, and $\bar{N}=$ $N / O(N)$. Clearly $\mathscr{2}(\langle t\rangle \times\langle\kappa, x\rangle) \leq N$. Let $Y=C\langle t\rangle$ and let $\mathscr{U}=\mathscr{2}\langle x, t\rangle \leq$ $\mathscr{T} \in S y l_{2}(N)$. Clearly $Y \triangleleft N$ as $t$ inverts $\mathscr{Q}$ and $\kappa^{3} \in C$. Also let $O(N) \leq \mathscr{R} \leq C$ be such that $\overline{\mathscr{R}}=C_{\bar{C}}(\bar{\kappa})$.

Lemma 9.5. (i) $\bar{C}=\overline{\mathscr{R}} \times \overline{\mathscr{V}}, \overline{\mathscr{V}}=[\bar{C}, \bar{\kappa}], \overline{\mathscr{R}}$ is a cyclic 2-group, and $\overline{\mathscr{P}}=$ $\Omega_{2}(\bar{\Re})$.
(ii) $\bar{S}$ normalizes $\overline{\mathscr{R}}$ and $\overline{\mathscr{R}}\langle\bar{t}\rangle$ is dihedral or semidihedral.
(iii) $C_{N}(\bar{t})=\bar{A}\langle\bar{\kappa}, \bar{x}\rangle$.

Proof. Clearly $\mathscr{S}=\mathscr{T} \cap Y \in \operatorname{Syl}_{2}(Y), \mathscr{S}=(\mathscr{S} \cap C)\langle t\rangle, C_{\mathscr{S}}(t)=A$, and $\mathscr{V} \triangleleft Y$. Set $\tilde{Y}=Y / \mathscr{V}$. Then $C_{\tilde{\mathscr{S}}}(\tilde{t})=\langle\tilde{u}, \tilde{t}\rangle$ by Lemma 9.4(ii). Hence $\mathscr{\mathscr { S }}$ is dihedral or semidihedral. Also $\mathscr{S} \cap C \in S y l_{2}(C), \mathscr{Q}=\mathscr{P} \times \mathscr{V} \leq Z(C)$ and hence $\widetilde{P} \leq Z(\widetilde{C})$. Thus $(S \cap C)^{\sim}$ is cyclic and (i)-(ii) hold. Finally

$$
C_{N}(t)=\left(O\left(C_{N}(t)\right) \cap O\left(N_{H}(A)\right) A\langle\kappa, x\rangle\right.
$$

as $C_{N}(t) \leq N_{H}(A)=O\left(N_{H}(A)\right) A\langle\kappa, x\rangle$. Since $O\left(C_{N}(t)\right) \cap O\left(N_{H}(A)\right) \leq C_{G}(2)$ by [6, Theorem 5.3.4], (iii) also holds.

From the nature of the remainder of the proof of Lemma 9.1 and in order to simplify the notation, it is clear that, without loss of generality, we may (and shall) assume that $O(N)=1$. Then $C=\mathscr{R} \times \mathscr{V}$ and $C\langle x, t\rangle \leq \mathscr{T} \in \operatorname{Syl}_{2}(N)$.

Lemma 9.6. (i) $\mathscr{Q}=\Omega_{2}(C)$ char $C\langle x, t\rangle$.
(ii) $\mathscr{T} \neq C\langle x, t\rangle$.

Proof. Clearly $t^{G} \cap C=\emptyset=t^{G} \cap C x$. Also $X$ char $C\langle x, t\rangle$ by Lemma 9.3. Thus $C\langle t\rangle=C_{C\langle x, t\rangle}(X)$ char $C\langle x, t\rangle$. Since $C=J_{0}(C\langle t\rangle)$ and $\Omega_{2}(C)=\mathscr{Q}$, (i) holds.

Suppose that $\mathscr{T}=C\langle x, t\rangle$. Then $\mathscr{T} \in S y l_{2}(G)$ and $t^{G} \cap(C\langle x\rangle)=\emptyset$ implies that $|\mathscr{T}| \geq 2^{12}$ by [17, Lemma 5.38]. Hence $|\mathscr{R}| \geq 2^{6}$. Letting $\mathscr{R}=$ $\langle\gamma\rangle$, we have $\gamma^{2} \in C_{\mathscr{T}}(x)$. Since $Z(\mathscr{T})=\langle u, z\rangle$, there is an element $g \in G$ such that $C_{\mathscr{T}}(x)^{g} \leq \mathscr{T}$ and $x^{g}=u$. Thus $\left(\alpha^{2}\right)^{g} \in \mathscr{T}$ and hence $1 \neq\left(\alpha^{16}\right) \in \mathcal{J}^{3}(\mathscr{T}) \leq$ $\mathscr{R}$. Then $u^{g}=u$, a contradiction; hence (ii) holds.

Lemma 9.7. (i) $|N|_{2^{\prime}}=3$ and $Y=C\langle t\rangle \leq O_{2}(N)$.
(ii) $N=O_{2}(N)\langle\kappa, x\rangle$ and $\mathscr{T}=O_{2}(N)\langle x\rangle$.

Proof. Clearly $Y=C\langle t\rangle \leq O_{2}(N)$ and $N / C \hookrightarrow$ Aut (2). Thus $|N|_{2^{\prime}}=3$ if $C=\mathscr{R} \times \mathscr{V} \neq \mathscr{Q}=\mathscr{P} \times \mathscr{V}$. On the other hand, suppose that $C=\mathscr{2}$. Then every element of $t C$ is an involution and $t^{\mathscr{T}} \neq t^{\mathscr{Q}}=t X$. Suppose that
$|N|_{2^{\prime}} \neq 3$. Then $|N|_{2^{\prime}}=3 \cdot 7$ and $N / O_{2}(N) \hookrightarrow G L(3,2)$. Since $\langle\kappa, x\rangle \cong \Sigma_{3}$, it follows that $N / O_{2}(N) \cong G L(3,2)$. Also $C_{N}(t)=A\langle\kappa, x\rangle,\left|C_{N}(t)\right|=3 \cdot 2^{5}$, $N$ permutes the eight $Y$-conjugacy classes in $t C$, and $t^{Y}=t X$. Since $N_{N}(A)=$ $\mathscr{2}(\langle t\rangle \times\langle\kappa, x\rangle)$ is the stabilizer of $t^{Y}$, we have a contradiction and (i) holds. Clearly (ii) is immediate and we are done.

## Lemma 9.8. $\mathscr{R}\langle t\rangle$ is dihedral.

Proof. Assume that $\mathscr{R}\langle t\rangle$ is semidihedral. Then $t C=t(\mathscr{R} \times \mathscr{V})$ decomposes into four conjugacy classes under $Y=C\langle t\rangle$. Thus $N / Y \cong \Sigma_{4}$. Note that $t C$ is not a square in $N / C$ by Lemma 2.5. Thus $O_{2}(N) / C \cong E_{8}$ where $C_{O_{2}(N) / C}(\kappa)=\langle t C\rangle$. Since $X$ char $\mathscr{T}$ by Lemma 9.3, we have $C_{\mathscr{T}}(X)=C\langle t\rangle$ or $O_{2}(N)$. Suppose that $C_{\mathscr{T}}(X)=C\langle t\rangle$. Then $C$ char $\mathscr{T}, \mathscr{Q}=\Omega_{2}(C)$ char $\mathscr{T}$, and $\mathscr{T} \in S y l_{2}(G)$. Suppose that $C_{\mathscr{T}}(X)=O_{2}(N)$. Then $\mathscr{Q} \leq O_{2}(N)^{\prime} \leq C$ and hence $\mathscr{Q}=\Omega_{2}\left(C_{\mathscr{T}}(X)^{\prime}\right)$ char $\mathscr{T}$. Thus $\mathscr{2}$ char $\mathscr{T}$ and $\mathscr{T} \in S y l_{2}(G)$ in either case. Moreover $N_{G}(\mathscr{T})=N_{N}(\mathscr{T})=\mathscr{T}$.

Clearly $\langle u\rangle \leq Z(\mathscr{T}) \leq\langle u, z\rangle$ and all involutions of $X=\langle u, y, z\rangle$ are $G$ conjugate into $\langle u, z\rangle$. Suppose that $\omega \in u^{G} \cap(\langle u, z\rangle-\langle u\rangle)$. Then $Z(\mathscr{T})=$ $\langle u\rangle, O_{2}(N)$ does not centralize $X$ and $\langle u, z\rangle$ is the unique normal 4-subgroup of $\mathscr{T}$ lying in $X$. Let $g \in G$ be such that $\omega^{g}=u$ and $C_{\mathscr{I}}(\omega)^{g} \leq \mathscr{T}$. Since $C\langle x, t\rangle \leq$ $C_{\mathscr{F}}(\omega) \max \mathscr{T}, C_{\mathscr{T}}(\omega)^{g} \leq C_{\mathscr{F}}\left(u^{g}\right)$, and $u^{g} \notin Z(\mathscr{T})$, we have $C_{\mathscr{T}}(\omega)^{g}=$ $C_{\mathscr{T}}\left(u^{g}\right) \max \mathscr{T}$ and $\left\langle u, u^{g}\right\rangle \leq Z\left(C_{\mathscr{T}}(\omega)^{g}\right)$.

Suppose $\mathscr{S}$ is an arbitrary maximal subgroup of $\mathscr{T}$ such that $\left|\Omega_{1}(Z(\mathscr{P}))\right| \geq 4$. Since $Z(\mathscr{T})=\langle u\rangle$, we have $\langle u\rangle \leq \Omega_{1}(Z(\mathscr{S}))$ and $\left|\Omega_{1}(Z(\mathscr{S}))\right|=4$. Since $\Omega_{1}(Z(\mathscr{S})) \leq \mathscr{T}$, we have $\Omega_{1}(Z(\mathscr{S})) \leq N_{\mathscr{T}}(A)=\mathscr{Q}\langle x, t\rangle$. Hence $\Omega_{1}(Z(\mathscr{S})) \leq$ $X, \Omega_{1}(Z(\mathscr{S}))=\langle u, z\rangle$, and $\mathscr{S}=C_{\mathscr{T}}(\omega)$.

This implies that $g \in N_{G}\left(C_{\mathscr{F}}(\omega)\right)$. But $C_{\mathscr{G}}(\omega) / C \cong E_{8}$ and $X \leq(C(x, t\rangle)^{\prime} \leq$ $C_{\mathscr{F}}(\omega)^{\prime}$. Thus $X=\Omega_{1}\left(C_{\mathscr{T}}(\omega)^{\prime}\right)$ and $g$ normalizes $C_{\mathscr{T}}(\omega) \cap C_{G}(X)=C\langle t\rangle$. Hence $g \in N_{\mathrm{G}}(\mathbb{2})=N$ which is impossible since $\langle u\rangle \leq Z(N)$. We have shown that $u^{G} \cap X=\{u\}$.

Let $\mathscr{R}=\langle\gamma\rangle$ and let $g \in G$ be such that $x^{g}=u$ and $C_{\mathscr{T}}(x)^{g} \leq \mathscr{T}$. Noting that $\gamma^{2} \in C_{\mathscr{F}}(x),\left|\gamma^{2}\right| \geq 4$, and $u^{g} \notin C$, we conclude that $|\gamma|=2^{3}$ and $|\mathscr{T}|=2^{11}$. Setting $w=u^{g}$, we also have $w=u^{g} \in \mho^{1}(\mathscr{T} / C)=(\mathscr{T} / C)^{\prime}$ since $\mathscr{T} / C \cong Z_{2} \times$ $D_{8}$. Letting $\mathscr{S}=C\left[O_{2}(N), \kappa\right]\langle x\rangle$, we have $\mathscr{S} \max \mathscr{T}$ and $\mathscr{S} \mid C \cong D_{8}$. But $t^{G} \cap(C\langle x\rangle)=\emptyset$ and $t \in G^{\prime}$ since $|\mathscr{T}|=2^{11}$. Then [13, Corollary 2.1.2] implies that $t^{G} \cap C w \neq \emptyset$. Let $s \in t^{G} \cap C w$. Then $\left|C_{\mathscr{F}}(s)\right| \leq 2^{5}$ and hence $\left|s^{\mathscr{T}}\right| \geq 2^{6}$. But $w=u^{g} \in I(C w), C\langle w\rangle \triangleleft \mathscr{T}$, and $|C w|=2^{7}$. Then $s^{\mathscr{T}} \subseteq C w$ and hence $D=\left\{c \in C \mid c^{s}=c^{-1}\right\}$ is a subgroup of $C$ with $|D|>2^{6}$. Thus $s$ inverts $C$ and hence $t s \in C_{G}(2)=C$ which is false and the proof of the lemma is complete.

In view of Lemma 9.8, we conclude that $t$ inverts $C=\mathscr{R} \times \mathscr{V}$. Set $\mathscr{Z}=$ $O_{2}(N)$.

Lemma 9.9. (i) $\mathscr{R}\langle t\rangle=C_{\mathscr{R}}(\kappa)$.
(ii) $\mathscr{Z} / C \cong E_{8}$.
(iii) $\mathscr{Q}$ char $\mathscr{T}$ and $\mathscr{T} \in \operatorname{Syl}_{2}(G)$.

Proof. Suppose that $\mathscr{R}\langle t\rangle \neq C_{\mathscr{P}}(\kappa)$. Then, as $C_{\mathscr{R}}(\kappa, t)=\langle t, u\rangle$, we conclude that $C_{\mathscr{P}}(\kappa)$ is dihedral or semidihedral. Also, since $C_{Y}(\kappa)=\mathscr{R}\langle t\rangle \triangleleft$ $C_{\mathscr{Z}}(\kappa)$, we conclude that $\mathscr{R}\langle t\rangle$ is a maximal subgroup of $C_{\mathscr{t}}(\kappa)$. Clearly $\mathscr{R}=$ $\Phi\left(C_{\mathscr{X}}(\kappa)\right), x$ normalizes $C_{\mathscr{X}}(\kappa)$, and $x$ leaves invariant the three maximal subgroups of $C_{\mathscr{P}}(\kappa)$. Let $\alpha$ generate the maximal cyclic subgroup of $C_{\mathscr{X}}(\kappa)$. Then $C_{\mathscr{T}}(\kappa)=\langle\alpha, t\rangle, \mathscr{R}=\mho^{1}(\langle\alpha\rangle),[\alpha, x] \in \mathscr{R}, \alpha$ normalizes $[C, \kappa]=\mathscr{V}$, and hence $\alpha$ normalizes $C_{\mathscr{V}}(x)=\langle v\rangle$. Thus, as $\alpha$ does not centralize $\mathscr{Q}, \alpha$ inverts $\mathscr{V}$. Thus $t \alpha \in C_{N}(\mathscr{V})$ and $t \approx t \alpha$ in $G$. Set $\mathscr{S}=\langle C, x, t, \alpha\rangle$, so that $\mathscr{S} / C \cong E_{8}$ and $C\langle x, t\rangle$ is a maximal subgroup of $\mathscr{S}$. Since $x t$ inverts $\mathscr{P}=\Omega_{2}(\mathscr{R})$, we conclude that $\mathscr{R}\langle x t\rangle$ is dihedral or semidihedral. If $\mathscr{R}\langle x t\rangle$ is semidihedral, then $I(x t C)=$ $(x t)^{C}$. But $C\langle x t\rangle \triangleleft \mathscr{S}$ and $C\langle t\rangle=Y \triangleleft \mathscr{S}$. Hence $C\langle x\rangle \triangleleft \mathscr{S}, C\langle x t\rangle \triangleleft \mathscr{S}$, and $\left|C_{\mathscr{y}}(x t)\right|=2\left|C_{C\langle x, t\rangle}(x t)\right|=2^{6}$ which is impossible. Thus $\mathscr{R}\langle x t\rangle$ is dihedral and $[\mathscr{R}, x]=1$. Moreover $\mathscr{S} / C$ contains seven involutions with $C_{C}(t C)=X, C_{C}(\alpha C)=\mathscr{R} \times F, C_{C}(x C)=\mathscr{R} \times\langle v\rangle, C_{C}(t \alpha C)=\langle u\rangle \times \mathscr{V}$, $C_{\boldsymbol{C}}(x t C)=\langle u\rangle \times\langle v y\rangle, C_{\boldsymbol{C}}(x \alpha C)=\mathscr{R} \times\langle v y\rangle$, and $C_{\boldsymbol{C}}(x \alpha t C)=\langle u\rangle \times\langle v\rangle$. Suppose that $\mathscr{S} \neq \mathscr{T}$ and let $\gamma \in N_{\mathscr{R}}(\mathscr{S})-\mathscr{S}$. Then $\gamma$ normalizes $C, C t, C \alpha$, and $C \alpha t$. Note that $\langle\alpha, x\rangle$ is abelian or modular so that $I(C \alpha x)=\emptyset$. Hence $(C x)^{\gamma} \neq C \alpha x$ and $\gamma$ acts trivially on $\mathscr{S} / C$. Since $I(x t C)=(x t)^{\langle C, \alpha\rangle}$ and $\left|C_{\mathscr{O}}(x t)\right|=2^{5}$, this is a contradiction and we conclude that $\mathscr{S}=\mathscr{T}$. Then $\mathscr{T}^{\prime}=\mathscr{R} \times\langle v\rangle \times\langle y\rangle, C_{\mathscr{T}}\left(\mathscr{T}^{\prime}\right)=C, \mathscr{Q}$ char $\mathscr{T}$, and $\mathscr{T} \in \operatorname{Syl}_{2}(G)$. Hence $|\alpha| \geq 2^{5}$ since $|\mathscr{T}| \geq 2^{11}$. Clearly $u \in Z(\mathscr{T})$ and there is an element $g \in G$ such that $x^{g}=u$ and $C_{\mathscr{T}}(x)^{g} \leq \mathscr{T}$. Then, since $\alpha^{2} \in C_{\mathscr{F}}(x)$, we have $\left(\alpha^{4}\right)^{g} \in C=$ $\mathscr{R} \times \mathscr{V}$. Hence $1 \neq\left(\alpha^{16}\right) \in \mathscr{R}$ and $u^{g}=u$, which is a contradiction. We conclude that (i) holds.

Now $C_{\mathscr{X}}(t)=A, \mathscr{Z} \mid Y$ acts regularly on the orbits of $Y$ on $t^{\mathscr{X}}, \kappa$ acts nontrivially and fixed point freely on $\mathscr{Z} / Y$, and $t C$ decomposes into eight $Y$ conjugacy classes. Thus (ii) holds by Lemma 2.5. Also $X$ char $\mathscr{T}$ and $C\langle t\rangle \leq$ $C_{\mathscr{T}}(X) \leq \mathscr{Z}$. If $C_{\mathscr{T}}(X)=C\langle t\rangle$, then $\mathscr{2}$ char $\mathscr{T}, \mathscr{T} \in S y l_{2}(G)$ and (iii) holds. Suppose that (iii) does not hold. Then $C_{\mathscr{T}}(X)=\mathscr{Z}$. Hence $[\mathscr{Z}, t] \leq \mathscr{Z}^{\prime}$ and $\mathscr{Z}^{\prime}=\mho^{1}(\mathscr{R}) \times \mathscr{V}$; this forces $\mathscr{Z}^{\prime}=\langle u\rangle \times \mathscr{V}$ and $\left.C_{\mathscr{Z}}\left(\mathscr{Z}^{\prime}\right)\right\rangle C=\mathscr{R} \times \mathscr{V}$ where $C_{\mathscr{Z}}\left(\mathscr{Z}^{\prime}\right) / C \cong E_{4}$. It follows that $C_{\mathscr{g}}\left(\mathscr{Z}^{\prime}\right)=C[\mathscr{Z}, \kappa]$ is a maximal subgroup of $\mathscr{Z}$. Setting $\mathscr{J}=[\mathscr{Z}, \kappa] \mathscr{Z}^{\prime}$, we have $\mathscr{J} \leq C_{\mathscr{Z}}\left(\mathscr{Z}^{\prime}\right)$, $\mathscr{Z}^{\prime} \leq Z(\mathscr{J})$, $\mathscr{J} \triangleleft N$, and $|\mathscr{F}|=2^{7}$. Also $\langle t\rangle \times\langle\kappa, x\rangle$ acts on $\tilde{J}=\mathscr{J} \mid\langle u\rangle, C_{\tilde{\mathscr{y}}}(\kappa)=1$, and $\overline{\mathscr{V}} \cong \overline{\mathscr{Z}}^{\prime} \leq Z(\widetilde{\mathscr{J}})$. Since $|\widetilde{\mathscr{J}}|=2^{6}$, we conclude that $\mathscr{J}$ is abelian by [7, IV, Lemma 2.5]. Since $\langle\kappa, x t\rangle$ acts on [ $\mathscr{Z}, \kappa$ ] and $\mathscr{V} \leq Z([\mathscr{Z}, \kappa])$, it follows that $[\mathscr{Z}, \kappa]$ is not abelian. Thus $\mathscr{J}=[\mathscr{Z}, \kappa]$ and $\mathscr{J}^{\prime}=\langle u\rangle$. Since $N_{\mathscr{I}}(A)=$ $C\langle t\rangle$, we have $N_{\mathscr{J}}(A)=\mathscr{Z}^{\prime}$. Hence $\Omega_{1}(\tilde{J})=\tilde{X}$ as $C_{\tilde{\mathscr{F}}}(t)=\tilde{X}$. Thus $\tilde{J} \cong$ $Z_{8} \times Z_{8}$ and there is an element $\beta \in \mathscr{J}-\mathscr{Z}^{\prime}$ with $\beta^{x t}=\beta u$. Then $\beta \omega \in$ $C_{\mathscr{O}}(x t) \leq Y=\mathscr{Q}\langle t\rangle$ which is impossible and we are done.

We can now conclude the proof of Lemma 9.1. Since $|\mathscr{T}| \geq 2^{11}$, we have $|\mathscr{R}| \geq 2^{3}$ and $u \in Z(\mathscr{T})$. Also $N_{G}(\mathscr{T})=N_{N}(\mathscr{T})=\mathscr{T}$. Then the final portion of the proof of Lemma 9.8 applies to force a contradiction and the proof of Lemma 9.1 is complete.

## 10. The case of Lemma 7.4(iii)

In this section, we shall prove:
Lemma 10.1. If $\mathscr{V}$ satisfies (iii) of Lemma 7.4, then $\left|O^{2}(G)\right|_{2} \leq 2^{10}$.
Thus throughout this section, we assume that $\mathscr{V}$ contains a $\langle\kappa, x\rangle$-invariant subgroup 2 such that $\mathscr{V}=\mathscr{2} \times F, \mathscr{Q} \cong Q_{8}, \mathscr{Q}^{\prime}=\langle u\rangle$, and $(\mathscr{Q}\langle\kappa, x\rangle) \mid\left\langle\kappa^{3}\right\rangle \cong$ $G L(2,3)$. We shall also assume that $\left|O^{2}(G)\right|_{2} \geq 2^{11}$ and we shall proceed to obtain a contradiction.

Clearly $\mathscr{Y} \cap \mathscr{V}=\langle u\rangle$ and $\mathscr{Y}$ acts on $C_{\mathscr{V}}^{*}(x)=\left\{v \in \mathscr{V} \mid v^{x}=v\right.$ or $\left.v^{x}=v^{-1}\right\}=$ $\langle z\rangle \times\langle q\rangle$ where $q \in \mathscr{Q}$ is such that $q^{x}=q^{-1}=q u$. Also $t^{2}=t F$ or $t^{2}=t u F$ and hence $q^{t} \in\{q z, q u z\}$. Since $\mathscr{Q}=\left\langle q, q^{\kappa}, q^{\kappa^{2}}\right\rangle$, it follows that no element of $\mathscr{Y}$ can invert $q$. Then $C_{\mathscr{U}}(\mathscr{V})=\mathscr{P}$ is a maximal subgroup of $\mathscr{Y}$ and $\langle\mathscr{U}, \kappa\rangle \leq$ $N_{G}(\mathscr{V}) \cap N_{G}(\mathscr{P})$. Also $\langle\mathscr{V}, \mathscr{P}, \kappa, x\rangle \leq N_{G}(\mathscr{Q})$ and $I(t \mathscr{V})=t^{\mathscr{V}} \cup(t u)^{\mathscr{V}}$. Set $E=P \mathscr{V}=P * \mathscr{V}$. Then $\mathscr{W}=E\langle t\rangle, E \triangleleft \mathscr{U}=E\langle x, t\rangle, Z(\mathscr{U})=\langle u, z\rangle$, $Z(E)=\mathscr{P} \times F$, and $[\mathscr{P}, t]=\langle u\rangle$.

Lemma $10.2 . \quad \mathscr{P} \cong Z_{4}$.
Proof. Assume that $\mathscr{P}=\langle u, \omega\rangle$ where $\omega^{2}=1$. Then $E=\langle\omega, y, z\rangle \times \mathscr{Q}$, $I(t E)=t X=t^{E}$, and $\langle I(t E)\rangle=A$. Note that $\langle x, q\rangle \cong D_{8}$ and $\langle x, q\rangle=$ $\langle x, x q\rangle \leq\langle I(x E)\rangle$ and hence $\langle I(x E)\rangle$ is not abelian. A similar argument implies that $\langle I(x t E)\rangle$ is not abelian. But $\mathscr{U}^{\prime}=F \times\langle q\rangle$ and hence $C_{\mathscr{U}}\left(\Omega_{1}\left(\mathscr{U}^{\prime}\right)=\right.$ $C_{\mathscr{U}}(X)=E\langle t\rangle$ char $\mathscr{U}$. Since $t^{G} \cap E=\emptyset$ and $t^{E}=t X=I(t E)$, we conclude that $A \triangleleft N_{G}(\mathscr{U})$. Hence $|\mathscr{U}|=|G|_{2}=2^{8}$, which is false and the proof is complete.

Let $\mathscr{P}=\langle\omega\rangle$ where $\omega^{2}=\mathscr{U}$ and $\omega^{t}=\omega^{-1}=\omega u$. Thus $I(t E)=t X \cup$ $(t \omega) X, E=F \times \mathscr{P} * \mathscr{Q},|E|=2^{6}$, and if $j \in I(E)-Z(E)$, then $C_{E}(j)$ is abelian of order $2^{5}$. Thus $t^{G} \cap E=\emptyset$. Also $C_{E}(t)=C_{E}(t \omega)=X=\Omega_{1}(Z(E))$ and $Z(E)=F \times \mathscr{P}$ and $X=\Omega_{1}(Z(E))$. If $x$ inverts $\omega$, then $I(x E)=x(\langle z\rangle \times$ $\langle\omega, q\rangle)$ and if $x$ centralizes $\omega$, then $I(x E)=x(\langle z\rangle \times\langle q\rangle)$. A similar result holds for $x t$. Also $\mathscr{U}^{\prime}=F \times\langle q\rangle, \Omega_{1}\left(\mathscr{U}^{\prime}\right)=X$, and $C_{\mathscr{U}}(X)=E\langle t\rangle$. Thus $\Omega_{1}(E)=E$ char $\mathscr{U}$ since $C_{E}(t)=C_{E}(t \omega)=X$.

Set $N=N_{G}(E), \bar{N}=N / O(N)$, and $C=C_{G}(E)$. Thus $\langle\mathscr{U}, \kappa\rangle \leq N, \kappa^{3} \in C$, and $Z(E)=F \times \mathscr{P} \leq Z(C)$. Also let $\mathscr{U} \leq \mathscr{T} \in S y l_{2}(N)$ and set $Y=C\langle t\rangle$. Note that $E^{\prime}=\langle u\rangle \leq Z(N)$ and $X=\Omega_{1}(Z(E)) \triangleleft N$. Let $O(N) \leq \mathscr{R} \leq C$ be such that $\bar{R}=C_{\bar{c}}(\bar{\kappa})$.

Lemma 10.3. (i) $\bar{C}=\overline{\mathscr{R}} \times \bar{F}$ where $[\bar{C}, \bar{\kappa}]=\bar{F}, \overline{\mathscr{R}}=C_{\bar{C}}(\bar{\kappa})$ is a cyclic 2 group, $\overline{\mathscr{P}}=\Omega_{2}(\overline{\mathscr{R}})$, and $\bar{X}=\Omega_{1}(\bar{C})$.
(ii) $\bar{S}$ normalizes $\overline{\mathscr{R}}, C_{\overline{\mathscr{R}}}(\bar{t})=\langle\bar{u}\rangle$, and $\overline{\mathscr{R}}\langle\bar{t}\rangle$ is dihedral or semidihedral.
(iii) $C_{N}(\bar{t})=\bar{A}\langle\bar{\kappa}, \bar{x}\rangle$.

Proof. Let $\mathscr{T}_{0}=\mathscr{T} \cap C$. Then $\mathscr{T}_{0} \triangleleft \mathscr{T}, \mathscr{T}_{0} \in S y l_{2}(C)$, and $\mathscr{T}_{0}\langle t\rangle \in$ $\operatorname{Syl}_{2}(Y)$. Clearly $F \triangleleft Y, C_{E}(t)=X$, and $\bar{F} \triangleleft \bar{Y}$. Set $\tilde{Y}=\bar{Y} / \bar{F}$. Then

$$
C_{\widetilde{T}_{0}}(\tilde{t}) \leq\left(N_{\mathscr{T}_{0}}(A)\right)^{\sim} \leq\left(\mathscr{U} \cap \mathscr{T}_{0}\right)^{\sim}=(\mathscr{U} \cap C)^{\sim}=\widetilde{\mathscr{P}}
$$

and hence $C_{\widetilde{T}_{0}}(\tilde{t})=\langle\tilde{u}\rangle$. Thus $C_{\widetilde{T}_{0}\langle\tau\rangle}(\tilde{t})=\langle\tilde{t}, \tilde{u}\rangle$ and $\tilde{\mathscr{T}}_{0}\langle\tilde{t}\rangle$ is dihedral or semidihedral. Since $\mathscr{P} \leq Z(\widetilde{Y})$, it follows that $\mathscr{T}_{0}$ is cyclic. As $F \leq Z(C)$, (i) holds. Since $\bar{S}=\bar{X}\langle\bar{x}, \bar{t}\rangle$, (ii) holds. Also $C_{N}(t)=H \cap N_{N}(A)=(N \cap$ $\left.O\left(N_{H}(A)\right)\right) A\langle\kappa, x\rangle$. Since $N \cap O\left(N_{H}(A)\right)$ centralizes $C_{E}(t)=X$, we have $C_{N}(t)=(O(N) \cap H) A\langle\kappa, x\rangle$ by [6, Lemma 5.3.4] and we are done.

From the nature of the remainder of the proof of Lemma 10.1 and in order to simplify the notation, it is clear that, without loss of generality, we may (and shall) assume that $O(N)=1$. Then $C=\mathscr{R} \times F, E C=F \times(\mathscr{R} * \mathscr{Q}) \triangleleft N$; $E C \leq C_{N}(X) \triangleleft N$, and $t^{G} \cap E C=\emptyset$. Since $X \triangleleft N$, we also have:
(10.1) $E C\langle x\rangle \approx E C\langle t\rangle \approx E C\langle x t\rangle$ in $N$.

Lemma 10.4. $\mathscr{R}\langle t\rangle$ is dihedral.
Proof. Assume that $\mathscr{R}\langle t\rangle$ is semidihedral. Then $I(t E C)=t^{E C},|\mathscr{R}| \geq 8$, $\mathscr{T}=E C\langle x, t\rangle$ by (10.1), and $Z(\mathscr{T})=\langle u, z\rangle$. Also $\mathscr{T}^{\prime}=F \times \boldsymbol{U}^{1}(\mathscr{R}) *\langle q\rangle$ where $\mathscr{P} \leq \mho^{1}(\mathscr{R}), C_{\mathscr{T}}\left(\mathscr{T}^{\prime}\right)=F \times \mathscr{R} *\langle q\rangle, \mho^{1}\left(C_{\mathscr{T}}\left(\mathscr{T}^{\prime}\right)\right)=\mho^{1}(\mathscr{R})$, and $C_{\mathscr{T}}\left(\mho^{1}(\mathscr{R})\right)=E C\langle x\rangle$ or $E C\langle x t\rangle$. Let $|\mathscr{R}|=2^{a}$ for some integer $a \geq 3$ and let $\mathscr{S}=C_{\mathscr{T}}\left(\mho^{1}(\mathscr{R})\right)=C_{\mathscr{T}}\left(\mho^{1}\left(C_{\mathscr{T}}\left(\mathscr{T}^{\prime}\right)\right)\right)$. Note that if $j \in I(E C)$, then $\left|C_{\mathscr{S}}(j)\right| \geq$ $2^{a+3}$ and if $j \in I(\mathscr{S}-E C)$, then $\left|C_{\mathscr{S}}(j)\right|=2^{a+2}$. Thus $\Omega_{1}(E C)=E \triangleleft N_{G}(\mathscr{T})$ and hence $\mathscr{T} \in S y l_{2}(G)$. Then $a \geq 5$ and $\left|\mho^{1}(\mathscr{R})\right| \geq 2^{4}$. But then $x$ centralizes $\boldsymbol{\mho}^{1}(\mathscr{R})$ and there is an element $g \in G$ such that $x^{g}=u$ and $C_{\mathscr{T}}(x)^{g} \leq \mathscr{T}$. Then

$$
\left(\mho^{2}(\mathscr{R})\right)^{g} \leq \mathscr{T}^{\prime}=F \times \boldsymbol{J}^{1}(\mathscr{R}) *\langle q\rangle
$$

and $u^{g}=u$ which is a contradiction and the lemma follows.
Let $\mathscr{R}=\langle\gamma\rangle$. Then $I(t E C)=t^{E C} \cup(t \gamma)^{E C}$. Since $S \leq E C\langle x, t\rangle$ and $t^{G} \cap$ $E C=\emptyset$, we conclude that $\left|N_{N}(E C\langle t\rangle): E C(\langle t\rangle \times\langle\kappa, x\rangle)\right| \leq 2$.

Lemma 10.5. $\quad N_{N}(E C\langle t\rangle) \neq E C(\langle t\rangle \times\langle\kappa, x\rangle)$.
Proof. Assume that $N_{N}(E C\langle t\rangle)=E C(\langle t\rangle \times\langle\kappa, x\rangle)$. Then $\mathscr{T}=E C\langle x, t\rangle$ by (10.1). Suppose that $\mathscr{R}=\mathscr{P}$. Then $\mathscr{T}^{\prime}=F \times\langle q\rangle, \Omega_{1}\left(\mathscr{T}^{\prime}\right)=X, C_{\mathscr{G}}(X)=$ $E\langle t\rangle$, and $\Omega_{1}(E)=E \triangleleft N_{G}(\mathscr{T})$ since $t^{G} \cap E=\emptyset$. Then $|\mathscr{T}|=|G|_{2}=2^{8}$ which is false. Hence $|\mathscr{R}| \geq 2^{3}, \mathscr{T}^{\prime}=F \times \boldsymbol{J}^{1}(\mathscr{R}) *\langle q\rangle, C_{\mathscr{T}}\left(\mathscr{T}^{\prime}\right)=F \times$
$\mathscr{R} *\langle q\rangle, \mho^{1}\left(C_{\mathscr{F}}\left(\mathscr{T}^{\prime}\right)\right)=\mho^{1}(\mathscr{R})$, and $C_{\mathscr{F}}\left(\mho^{1}(\mathscr{R})\right)=E C\langle x\rangle$ or $E C\langle x t\rangle$. But then we obtain a contradiction as in the proof of Lemma 10.4 and we are done.

Set $J=N_{N}(E C\langle t\rangle)$. Then $J=O_{2}(J)\langle\kappa, x\rangle$ and $\left[O_{2}(J), \kappa\right]=[E C, \kappa]=$ $F \times \mathscr{Q}=\mathscr{V} \triangleleft J$. Hence $F \triangleleft J,\left[O_{2}(J), X\right]=1$ and $O_{2}(J)=\mathscr{V} C_{O_{2}(J)}(\kappa)$. Thus $\mathscr{R}\langle t\rangle=C_{E C\langle t\rangle}(\kappa)$ is a maximal subgroup of $C_{O_{2}(J)}(\kappa)$. Also $C_{O_{2}(J)}(t, \kappa)=$ $\langle t, u\rangle$ and $C_{O_{2}(J)}(\kappa)$ is $\langle x\rangle$-invariant and dihedral or semidihedral. Then Lemmas 2.3 and 2.4 imply that $\left\langle C_{O_{2}(J)}(\kappa), x\right\rangle^{\prime} \leq \mathscr{R} \leq C_{N}(\mathscr{V})$. Hence $C_{O_{2}(J)}(\kappa, \mathscr{V})=\mathscr{R}_{1}$ is a maximal subgroup of $C_{O_{2}(J)}(\kappa), C_{O_{2}(J)}(\kappa)=\mathscr{R}_{1}\langle t\rangle, \mathscr{R}_{1}$ is dihedral or generalized quaternion, and $\mathscr{R}$ is the cyclic maximal subgroup of $\mathscr{R}_{1}$. Also $\mathscr{R}_{1} E C=$ $F \times \mathscr{R}_{1} * \mathscr{Q}$ and $\mathscr{S}=\left(F * \mathscr{R}_{1} * \mathscr{Q}\right)\langle x, t\rangle \in S y l_{2}(J)$. Then $\mathscr{S}^{\prime}=F \times \mathscr{R} *\langle q\rangle$, $\Omega_{1}\left(\mathscr{S}^{\prime}\right)=F \times\langle u, \omega q\rangle, Z(\mathscr{S})=\langle u, z\rangle, y^{\mathscr{\varphi}}=y\langle z\rangle,(\omega q)^{\langle 2, t\rangle}=\omega q\langle u, z\rangle$, and $(\omega q y)^{\langle 2, t\rangle}=\omega q y\langle u, z\rangle$. Hence $X=F \times\langle u\rangle \operatorname{char} \mathscr{S}$ and $C_{\mathscr{\mathscr { L }}}(X)=$ $\left(F \times\left(\mathscr{R}_{1} * \mathscr{Q}\right)\right)\langle t\rangle$ char $\mathscr{S}$. But $t^{G} \cap\left(F \times\left(\mathscr{R}_{1} * \mathscr{Q}\right)\right)=\emptyset$ and $I\left(t\left(F \times \mathscr{R}_{1} * \mathscr{Q}\right)\right)$ $=t^{\left(F \times R_{1}{ }^{*} \mathscr{2}\right)}$ as is easily seen. Thus $\mathscr{S}=\mathscr{T} \in S y l_{2}(G),|\mathscr{R}| \geq 2^{4}$, and $[x, \mathscr{R}]=$ 1 since $\langle x\rangle$ normalizes the cyclic maximal subgroup of $R_{1}\langle t\rangle$. Letting $g \in G$ be such that $x^{g}=u$ and $C_{\mathscr{T}}(x)^{g} \leq \mathscr{T}$, we conclude that $\left(\mho^{1}(\mathscr{R})\right)^{g} \leq \mathscr{T}^{\prime}=F \times$ $\mathscr{R} *\langle q\rangle$ and hence $u^{g}=u$. This contradiction completes the proof of Lemma 10.1.

## 11. The case of Lemma 7.4(iv)

In this section we shall prove:
Lemma 11.1. If $\mathscr{V}$ satisfies (iv) of Lemma 7.4, then $\left|O^{2}(G)\right|_{2} \leq 2^{10}$.
Thus, throughout this section, we assume that $\mathscr{V}$ satisfies (iv) of Lemma 7.4 and that $2^{10}<\left|O^{2}(G)\right|_{2}$ and we shall proceed to a contradiction.

Thus, if $q \in \mathscr{V}-X$, then $q^{t}=q^{-1} u=q^{3} u$ since $t$ inverts $\mathscr{V} \mid\langle u\rangle$ and

$$
\mathscr{V}=q X \cup q^{\kappa} X \cup q^{\kappa^{2}} X
$$

cannot be inverted by $t$. Since $[\mathscr{Y}, x] \leq\langle u\rangle=Z(\mathscr{Y}) \leq C_{\mathscr{W}}(\mathscr{V})$, Lemma 2.11(iii) implies that $\mathscr{P}=C_{\mathscr{y}}(\mathscr{V})$ is a maximal subgroup of $\mathscr{Y}$. Clearly $u \in \mathscr{P}$, $\langle\mathscr{U}, \kappa\rangle \leq N_{G}(\mathscr{V}) \cap N_{G}(\mathscr{P})$ and $I(t \mathscr{V})=t^{\mathscr{V}} \cup(t u)^{\mathscr{V}}$. Set $\mathscr{Q}=\mathscr{P} \mathscr{V}=\mathscr{P} * \mathscr{V}$. Then $\mathscr{W}=\mathscr{Q}\langle t\rangle, \mathscr{Q} \triangleleft \mathscr{U}=\mathscr{Q}\langle x, t\rangle, Z(\mathscr{U})=\langle u, z\rangle$, and $[\mathscr{P}, t]=\langle u\rangle$. Note also that $C_{\mathscr{V}\langle u\rangle}(x t) \cong Z_{4}$ and hence there is an element $v \in \mathscr{V}-X$ such that $v^{2}=u z$ and $v^{x t} \in v\langle u\rangle$. If $v^{x t}=v$, then

$$
\mathscr{S}=\langle u, z, v, x t, t\rangle=C_{\mathscr{U}}(x t) \in S y l_{2}\left(C_{G}(x t)\right)
$$

But then $\mathscr{S}^{\prime}=\mho^{1}(\mathscr{S}) \cong Z_{2}, v^{2}=u z$, and $[v, t]=v^{-2} u=z$, which is impossible. Thus $v^{x t}=v u$.

Lemma $11.2 . \quad \mathscr{P} \cong E_{4}$.
Proof. Assume that $\mathscr{P}=\langle\omega\rangle$ where $\omega^{2}=u$. Clearly $\omega^{t}=\omega^{-1}=\omega u$ and $\Omega_{1}(\mathcal{Q})=X$. Suppose that $x t$ inverts $\mathscr{P}$. Then $C_{\mathscr{u}}(x t)=\langle u, z, \omega v, x, t\rangle \in$
$S y l_{2}\left(C_{G}(x t)\right)$. Since $(\omega v)^{2}=z$ and $[\omega v, t]=u z$, this is impossible. Thus $[\mathscr{P}, x t]=1$ and $\omega^{x}=\omega^{-1}$.

Set $N=N_{G}(\mathscr{Q}), C=C_{G}(\mathscr{Q})$, and $\bar{N}=N / O(N)$. Thus $Z(\mathscr{Q})=\mathscr{P} \times F \leq$ $Z(C),\langle\mathscr{U}, \kappa\rangle \leq N, \kappa^{3} \in C, Z(\mathscr{Q})=\mathscr{P} \times F=\mathscr{Q} \cap C \triangleleft N$, and $X \leq Z(C\langle t\rangle)$. Let $\mathscr{U} \leq \mathscr{T} \in \operatorname{Syl}_{2}(N)$. Then $\mathscr{T}_{1}=C \cap \mathscr{T} \triangleleft \mathscr{T}, \mathscr{P} \times F \leq \mathscr{T}_{1} \in \operatorname{Syl}_{2}(C)$, and $\mathscr{T}_{1}\langle t\rangle \in S y l_{2}(C\langle t\rangle)$.

Suppose that $\tau_{1} \in \mathscr{T}_{1}$ is such that $t^{\tau_{1}} \in t F$. Then

$$
\tau_{1} \in N_{\mathscr{T}_{1}}(A)=\mathscr{U} \cap \mathscr{T}_{1}=\mathscr{P} \times F
$$

and hence $\tau_{1} \in C_{\mathscr{T}_{1}}(t)=X$. Then since $F \leq Z\left(\mathscr{T}_{1}\langle t\rangle\right)$, we conclude that $C_{\mathscr{F}_{1}\langle t\rangle / F}(t F)=A / F$ and that $\mathscr{T}_{1}\langle t\rangle / F$ is dihedral or semidihedral. Since $\bar{F} \leq Z(\bar{C})$ and $\mathscr{P} \cong(\bar{P} \times \bar{F}) / \bar{F} \leq Z(\bar{C} / \bar{F})$, it follows that $\bar{C} / \bar{F}$ is a cyclic $2-$ group and $\bar{C}=C_{\bar{c}}(\bar{\kappa}) \times \bar{F}$ where $C_{\overline{\mathcal{C}}}(\bar{\kappa})$ is cyclic $\overline{\mathscr{P}}=\Omega_{2}\left(C_{C}(\bar{\kappa})\right)$ and $\bar{F}=$ $[\bar{C}, \bar{\kappa}]$.

From the nature of the remainder of the proof of Lemma 11.2 and in order to simplify the notation, it is clear that, without loss of generality, we may (and shall) assume that $O(N)=1$.

Set $\mathscr{R}=C_{C}(\kappa)$. Then $C=\mathscr{R} \times F, \mathscr{R}$ is a cyclic 2 -group, $\mathscr{P}=\Omega_{2}(\mathscr{R})$, $[C, \kappa]=F, \kappa^{3}=1$, and $C\langle x, t\rangle \leq \mathscr{T}$. Since $[x t, \mathscr{P}]=1$, it follows that $\left[x t, \mho^{1}(\mathscr{R})\right]=1$ and hence $|\mathscr{R}| \leq 2^{3}$. Suppose that $|\mathscr{R}|=2^{3}$. Then $\mathscr{R}\langle x t\rangle$ is a modular 2-group and letting $\mathscr{R}=\langle\gamma\rangle$, we conclude that $\gamma v \in C_{\mathscr{F}}(x t)$. Since $|\gamma v|=2^{3}$, this is impossible. Thus $\mathscr{R}=\mathscr{P}$.

Since $N / C \hookrightarrow$ Aut (2) where $\mathscr{2}=\mathscr{P} * \mathscr{V}$, it is easy to see that $|N|_{2^{\prime}}=3$. Thus $N=O_{2}(N)\langle\kappa, x\rangle$ and $\mathscr{T}=O_{2}(N)\langle x\rangle$.

Let $\mathscr{Z}=O_{2}(N)$. Then $C\langle t\rangle \leq \mathscr{Z}, \mathscr{V} \leq \mathscr{Z}, C \mathscr{V}=\mathscr{P} * \mathscr{V}=\mathscr{2} \leq \mathscr{Z}$ and $C_{\mathscr{X}}(t)=A$. Clearly $t^{G} \cap \mathscr{Q}=\emptyset$.

Suppose that $\mathscr{Z}=\mathscr{Q}\langle t\rangle$. Then $\mathscr{T}=\mathscr{U}, \Omega_{1}\left(\mathscr{T}^{\prime}\right)=X$ char $\mathscr{T}, C_{\mathscr{T}}(X)=$ $\mathscr{Q}\langle t\rangle \operatorname{char} \mathscr{T}, \Omega_{1}(\mathscr{Q}\langle t\rangle)=\langle\omega, t\rangle \times F \operatorname{char} \mathscr{T}, \mathscr{P} \times F \operatorname{char} \mathscr{T}, \mathscr{Q}=C_{\mathscr{T}}(\mathscr{P} \times$ $F)$ char $\mathscr{T}$, and $\mathscr{T} \in S y l_{2}(G)$ which is false. Thus $\mathscr{W}=\mathscr{2}\langle t\rangle \neq \mathscr{Z}$.

Let $\mathscr{Z}_{1}=N_{\mathscr{X}}(\mathscr{W})$. Since $I(t \mathscr{Q})=t^{2} \cup(t \omega)^{2}$, it follows that $\left|\mathscr{Z}_{1}\right| \mathscr{W} \mid=2$ and $\mathscr{Z}_{1}$ is $\langle\kappa, x\rangle$ invariant. Thus [ $\left.\mathscr{Z}, \kappa\right]=\mathscr{V} \triangleleft \mathscr{Z}_{1}$ and $\mathscr{Y}=\mathscr{P}\langle t\rangle$ is of index 2 in $\mathscr{Y}_{1}=C_{\mathscr{O}_{1}}(\kappa)$. Also $C_{\mathscr{Y}_{1}}(t)=\langle t, u\rangle, \mathscr{Y}_{1}$ is dihedral or semidihedral, $\mathscr{Y}_{1}$ is $\langle x\rangle$ invariant, $\mathscr{Y}_{1}^{\prime}=\mathscr{P}$, and $\mathscr{Y}_{1} \cap \mathscr{V}=\langle u\rangle$. Since $x$ normalizes the unique cyclic maximal subgroup of $\mathscr{Y}_{1},\langle\kappa, x\rangle$ acts trivially on $\mathscr{Y}_{1} / \mathscr{Y}_{1}^{\prime}$ and hence $\mathscr{R}_{1}=C_{\mathscr{O}_{1}}(\mathscr{V})$ is a maximal subgroup of $\mathscr{Y}_{1}$ by Lemma 2.1(iii). Thus $\mathscr{R}_{1}$ is dihedral or generalized quaternion of order $8, \mathscr{R}_{1} \mathscr{V}=\mathscr{R}_{1} * \mathscr{V}, \mathscr{R}_{1} \cap \mathscr{V}=$ $\langle u\rangle$, and $\mathscr{Y}_{1}=\left(\mathscr{R}_{1} * \mathscr{V}\right)\langle t\rangle$. Clearly $t^{G} \cap\left(\mathscr{R}_{1} * \mathscr{V}\right) \neq \emptyset$ and $I\left(t\left(\mathscr{R}_{1} * \mathscr{V}\right)\right)=$ $t^{\mathscr{\mathscr { O }}}$. Thus $\mathscr{Z}=\mathscr{Z}_{1}$ and $\mathscr{T}=\left(\mathscr{R}_{1} * \mathscr{V}\right)\langle x, t\rangle$. Hence $X=\Omega_{1}\left(\mathscr{T}^{\prime}\right)$ and $C_{\mathscr{T}}(X)=$ $\mathscr{Z}_{1}$ char $\mathscr{T}$. Since $S \leq \mathscr{T}$, it follows that $\mathscr{T} \in S y l_{2}(G)$ and $|G|_{2}=|\mathscr{T}|=2^{9}$. This contradiction yields Lemma 11.2.

Hence $\mathscr{P}=\langle u, \omega\rangle$ for some involution $\omega, \mathscr{Q}=\langle\omega\rangle \times \mathscr{V}, \mathscr{Q}^{\prime}=\langle u\rangle$, $\boldsymbol{\mho}^{1}(\mathscr{2})=X=\Phi(\mathscr{Q}), \mathscr{W}=\mathscr{2}\langle t\rangle$, and $\mathscr{U}=\mathscr{2}\langle x, t\rangle$. Setting $E=\Omega_{1}(\mathscr{2})=\langle\omega\rangle \times$ $X$, we have $E=Z(\mathscr{Q}) \cong E_{16}$ and hence $t^{G} \cap \mathscr{Q}=\emptyset$. Since $\Omega_{1}\left(\mathscr{U}^{\prime}\right)=X$ char $\mathscr{U}$,
we have $C_{\mathscr{U}}(X)=\mathscr{W}$ char $\mathscr{U}$. Also, if $\tau \in I(\mathscr{W}-\mathscr{2})$, then $C_{\mathscr{W}}(\tau)=\langle\tau, X\rangle$ and hence $E$ char $\mathscr{W}$ and $\mathscr{Q}=C_{\mathscr{W}}(E)$ char $\mathscr{W}$.

Clearly $\omega^{x t} \in \omega\langle u\rangle$. Suppose that $\omega^{x t}=\omega u$. Then
$C_{\mathscr{u}}(x t)=\langle\omega v, t\rangle \times\langle z, x t\rangle \in S y l_{2}\left(C_{G}(x t)\right)$ and $I(x t \mathscr{Q})=x t\langle v y, z\rangle=(x t)^{2}$.
Also $|[E, \mathscr{2} x]|=|[E, x]|=2 \neq|[E, \mathscr{2} x t]|=|[E, x t]|=4$ since $[x, \omega]=1$.
As $\mathscr{U} \notin S y l_{2}(G)$, this is impossible. Thus $\omega^{x t}=\omega$,

$$
C_{\mathscr{U}}(x t)=\mathscr{Y} \times\langle z, x t\rangle \in S y l_{2}\left(C_{G}(x t)\right),
$$

$u \sim z$ in $G$ and $I(x t 2)=x t(\langle\omega\rangle \times\langle v y, z\rangle)=(x t)^{2} \cup(x t \omega)^{2}$. Also $\omega^{x}=\omega u$, $I(x \mathscr{Q})=x\langle v, z\rangle=x^{2}$ and $[E, x]=\langle u, z\rangle$.

Set $N=N_{G}(\mathscr{W}), C=C_{G}(\mathscr{W})$, and $\bar{N}=N / O(N)$. Clearly $\langle\mathscr{U}, \kappa\rangle \leq N \leq$ $N_{G}(\mathscr{Q})$ and $\mathscr{U} \cap C=X$. Let $\mathscr{U} \leq \mathscr{T} \in S y l_{2}(N)$. Then $\mathscr{U} \neq \mathscr{T}$ since $\mathscr{U} \notin S y l_{2}(G)$ and $N_{\mathscr{T}}(A)=\mathscr{U}$. Hence $X=C \cap \mathscr{T} \in \operatorname{Syl}_{2}(C), C=O(N) \times X$, and $\bar{C}=\bar{X}$. Also $N / C \hookrightarrow$ Aut $(\mathscr{W})$ and hence $|N / C|_{2^{\prime}}=3,\langle\bar{\kappa}\rangle \in S y l_{3}(\bar{N}), \bar{N}=O_{2}(\bar{N})$. $\langle\bar{\kappa}, \bar{x}\rangle$, and $\overline{\mathscr{U}}\left\langle\overline{\mathscr{T}}=O_{2}(\bar{N})\langle\bar{x}\rangle\right.$.

From the nature of the remainder of the proof of Lemma 11.1 and in order to simplify the notation, it is clear that, without loss of generality, we may (and shall) assume that $O(N)=1$. Set $\mathscr{Z}=O_{2}(N)$. The $C_{\mathscr{X}}(t)=A, C_{\mathscr{X}}(\kappa, t)=$ $\langle t, u\rangle$, and hence $C_{\mathscr{X}}(\kappa)=\mathscr{Y}=\langle t, \omega\rangle$ since $I(t\langle u, \omega\rangle)=t\langle u\rangle$. Also, since $\mathscr{Q} \triangleleft N$, if $q \in \mathscr{V}-X$, then the four $\mathscr{W}$-conjugacy classes of involutions in $t \mathscr{Q}$ are represented by $t, t \omega q, t \omega q^{\kappa}$, and $t \omega q^{\kappa^{2}}$. Thus $\mathscr{Z}\left|\mathscr{W} \cong E_{4},|\mathscr{Z}|=2^{9}, \kappa\right.$ acts nontrivially on $\mathscr{Z} / \mathscr{W}$, and $\mathscr{Z}$ is transitive on $I(t \mathscr{Q})$. Thus $\Omega_{1}(\mathscr{Q})=E$ is strongly closed in $\mathscr{W}$ with respect to $G$.

Lemma 11.3. Let $\mathscr{U}<\mathscr{R}$ where $\mathscr{R}$ is a 2-group. Then $E \triangleleft \mathscr{R}$ and $E$ is the unique normal element of $\mathscr{E}_{16}(\mathscr{R})$.

Proof. Since $E$ char $\mathscr{U}$, it suffices, by induction, to assume that $E \triangleleft \mathscr{R}$ and to prove that $E$ is unique. Thus let $E \neq Y \triangleleft \mathscr{R}$ with $Y \in \mathscr{E}_{16}(\mathscr{R})$. Since $|\mathscr{U}|=$ $2^{8}<|\mathscr{R}|$, we have $t^{G} \cap Y=\emptyset$. Also $4 \leq\left|C_{Y}(t)\right|$ and if $\tau \in x\langle u, z\rangle$, there is an element $q \in \mathscr{V}-X$ such that $|[q, \tau]|=4$. Hence $C_{Y}(t) \leq X$. Suppose that $Y \leq \mathscr{W}=\mathscr{2}\langle t\rangle$. Then $Y \leq \mathscr{Q}$ and hence $Y=E$. Thus $Y \not \approx \mathscr{W}$. Since $[Y, t] \leq C_{Y}(t) \leq X$ and $\mathscr{Q}$ is transitive on $t X$, it follows that $Y \leq \mathscr{2} C_{\mathscr{R}}(t)=$ $\mathscr{2} S=\mathscr{U}$. Thus there is an involution $\tau \in Y \cap(2 x \cup \mathscr{2} x t)$. Since for any such $\tau$ there is an element $q \in \mathscr{V}-X$ such that $|[q, \tau]|=4$, we have a contradiction and the lemma follows.

Let $\tau \in N_{\mathscr{X}}(\mathscr{U})-\mathscr{W}$. Then $\tau$ normalizes $\{x \mathscr{Q}, x t \mathscr{Q}\}$ and $\tau^{2} \in \mathscr{W}$. Since $|[E, x \mathscr{Q}]| \neq|[E, x t \mathscr{Q}]|$, we conclude that $\langle[x, \tau],[x t, \tau]\rangle \leq \mathscr{Q}$ and hence a Sylow 2-subgroup of $N / \mathscr{Q}$ is not semidihedral. Thus

$$
N / \mathscr{Q} \cong Z_{2} \times \Sigma_{4} \quad \text { where }\langle t \mathscr{2}\rangle=C_{\mathscr{P} / \mathscr{2}}(\kappa), \mathscr{V}<[\mathscr{Z}, \kappa], \text { and } t \notin[\mathscr{Z}, \kappa] .
$$

Note that $\mathscr{T}=\mathscr{Z}\langle x\rangle,|\mathscr{T}|=2^{10}, \mathscr{T} \notin S y l_{2}(G), E$ char $\mathscr{T}, \mathscr{Q} \leq C_{\mathscr{T}}(E)=$ $C_{N}(E)=C_{\mathscr{X}}(E)$ char $\mathscr{T}$, and $C_{\mathscr{X}}(E) \triangleleft N$ since $E=Z(\mathscr{Q})$.

Suppose that $\mathscr{Q}=C_{\mathscr{G}}(E)$. Set $J=N_{G}(E)$ and $\bar{J}=J / O(J)$. Clearly $\langle\mathscr{T}, \kappa\rangle \leq$ $J$. Let $\mathscr{T} \leq \mathscr{S} \in S y l_{2}(J)$. Then $\mathscr{T} \neq \mathscr{S}$ and $\mathscr{S} \in S y l_{2}(G)$ since $E$ char $\mathscr{S}$ by Lemma 11.3. Also
$\mathscr{Q}=C_{G}(E) \cap \mathscr{T} \leq C_{G}(E) \cap \mathscr{S} \unlhd \mathscr{S}$ and $C_{G}(E) \cap \mathscr{S}=C_{\mathscr{S}}(E) \in S y l_{2}\left(C_{G}(E)\right)$. Suppose that $\mathscr{Q} \neq C_{\mathscr{L}}(E)$. Then there is an element $\tau \in C_{\mathscr{C}}(E)-\mathscr{2}$ such that $t^{\tau} \in t \mathscr{Q}$. But $\mathscr{Z}$ is transitive on $I(t \mathscr{2})$ and hence $\tau \in \mathscr{T}$ which is false. Thus $\mathscr{Q}=$ $C_{\mathscr{L}}(E) \in S y l_{2}\left(C_{G}(E)\right.$ ). Also $\mathscr{2} / E \cong E_{4}$ and any element of odd order in $N_{J}(\mathbb{Q}) \cap$ $C_{J}(E)$ centralizes 2. Thus $C_{G}(E)=O(J) \mathscr{Q}$ and $\bar{J}=N_{J}(\overline{\mathscr{2}})=\overline{N_{J}(\mathscr{Q})}$. Also $C_{J}(\overline{\mathscr{Q}})=\bar{E}$ and hence $\bar{J} / \bar{E} \hookrightarrow$ Aut $(\bar{Q})$. Thus $\bar{J}=O_{2}(\bar{J})\langle\bar{\kappa}, \bar{x}\rangle$ and $O_{2}(\bar{J})=$ $C_{J}(\overline{\mathscr{Q}} / \bar{E})$ and hence $O_{2}(\bar{J})$ acts trivially on $\bar{X}=\boldsymbol{J}^{1}(2)$. Since $C_{J}(\bar{E})=\overline{\mathscr{Q}}$, we have $\left|O_{2}(\bar{J}): \overline{\mathscr{Q}}\right| \mid 2^{3}$ and hence $|G|_{2}=|J|_{2}=|\mathscr{S}|=|\mathscr{T}|$ which is a contradiction.

Thus $\mathscr{Q} \neq C_{\mathscr{T}}(E)=C_{\mathscr{Y}}(E)$. Setting $\mathscr{Z}_{1}=C_{\mathscr{Y}}(E)$, we have $\mathscr{Z}=\mathscr{Z}_{1}\langle t\rangle$, $t \notin \mathscr{Z}_{1}$,

$$
\mathscr{Z}_{1}=C_{\mathscr{T}}(E) \text { char } \mathscr{T}=\mathscr{Z}_{1}\langle x, t\rangle .
$$

Also $\mathscr{Z}_{1}=\mathscr{2}[\mathscr{Z}, \kappa] \triangleleft N,\left|\mathscr{Z}_{1}\right|=2^{8}$, and $\mathscr{P}=C_{\mathscr{F}_{1}}(\kappa)=\langle u, \omega\rangle \triangleleft N$. Set $\tilde{N}=N / \mathscr{P}$. Then $\left|\widetilde{\mathscr{Z}}_{1}\right|=2^{6}, C_{\mathscr{\mathscr { Z }}_{1}}(\tilde{\kappa})=1$, and $Z_{4} \times Z_{4} \cong \widetilde{\mathscr{Q}} \triangleleft \tilde{N}$. Clearly $\langle u\rangle=\mathscr{Q}^{\prime} \leq \mathscr{Z}_{1}^{\prime}$. Suppose that $\mathscr{Z}_{1}^{\prime}=\langle u\rangle$. Then $\mathscr{V} \leq[\mathscr{Z}, \kappa]<\mathscr{Z}_{1},[\mathscr{Z}, \kappa] \triangleleft$ $N$, and $\mathscr{Q} \cap[\mathscr{Z}, \kappa]=\mathscr{V}$. Since $I(t \mathscr{V})=t^{\mathscr{V}}$ and $C_{[\mathscr{P}, \kappa]}(t)=X$, this is impossible. Thus $\mathscr{Z}_{1}^{\prime} \neq\langle u\rangle$ and $\widetilde{\mathscr{Z}}_{1}$ is not isomorphic to $Z_{8} \times Z_{8}$.

Suppose that $\tilde{\mathscr{Z}}_{1} \cong Z_{4} \times Z_{4} \times E_{4}$. Let $\mathscr{X}$ denote the inverse image in $\mathscr{Z}_{1}$ of $\Omega_{1}\left(\widetilde{\mathscr{Z}}_{1}\right)$. Then $\mathscr{X} \triangleleft N, \mathscr{X} \cap \mathscr{Q}=E$ and $t$ fixes an element $\mathscr{Y} / E$ which is impossible. Thus $\tilde{\mathscr{Z}}_{1}$ is isomorphic to a Sylow 2-subgroup of $L_{3}(4)$ by Lemma 2.9. Thus $\langle u\rangle<\mathscr{Z}_{1}^{\prime} \leq \Phi\left(\mathscr{Z}_{1}\right) \leq E=Z\left(\mathscr{Z}_{1}\right)$. If $\Phi\left(\mathscr{Z}_{1}\right)=X$, then $\mathscr{V} \leq$ $[\mathscr{Z}, \kappa]<\mathscr{Z}_{1},[\mathscr{Z}, \kappa] \triangleleft N,[\mathscr{Z}, \kappa] \cap \mathscr{Q}=\mathscr{V}$ and we obtain a contradiction as above. Thus, utilizing $\kappa$, we have $E=\Phi\left(\mathscr{Z}_{1}\right)=\mathscr{Z}_{1}^{\prime}=Z\left(\mathscr{Z}_{1}\right)$, $\exp \left(\mathscr{Z}_{1}\right)=$ $4, C_{\mathscr{Q}_{1} / \mathrm{E}}(t)=\mathscr{2} / E$, and $I\left(t \mathscr{Z}_{1}\right)=t^{\mathscr{Q}_{1}}$. Note also that $t^{G} \cap \mathscr{Z}_{1}=\emptyset$. Also $\langle\kappa, x\rangle$ acts faithfully on $\mathscr{Z}_{1} / \mathscr{Q}$; hence $\left(\mathscr{Z}_{1}\langle x\rangle\right) \mathscr{2} \cong D_{8}$ and $I\left(x \mathscr{Z}_{1}\right)=x^{\mathscr{L}_{1}}$ since $I(x \mathscr{Q})=x^{2}$. It follows that $t^{G} \cap\left(\mathscr{Z}_{1}\langle x\rangle\right)=\emptyset$.

Set $J=N_{G}(E), \bar{J}=J / O(J)$, and let $\mathscr{T} \leq \mathscr{S} \in S y l_{2}(J)$. Clearly $\langle\mathscr{T}, \kappa\rangle \leq J$, $\mathscr{S} \in S y l_{2}(J), \mathscr{T} \neq \mathscr{S}$, and $\mathscr{S} \in S y l_{2}(G)$. On the other hand,

$$
\mathscr{Z}_{1}=C_{G}(E) \cap \mathscr{T} \leq \mathscr{S} \cap C_{G}(E) \unlhd \mathscr{S} .
$$

Since $I\left(t \mathscr{Z}_{1}\right)=t^{\mathscr{Q}_{1}}$, we conclude that $\mathscr{Z}_{1}=\mathscr{S} \cap C_{G}(E) \in S y l_{2}\left(C_{G}(E)\right)$. By the same token, $C_{\mathscr{G} \mid \mathscr{L}_{1}}\left(t_{\mathscr{Z}}^{1} 1\right)=\mathscr{T} \mid \mathscr{Z}_{1} \cong E_{4}$ and hence $\mathscr{S} \mid \mathscr{Z}_{1}$ is dihedral or semidihedral. But $\mathscr{S} \mid \mathscr{Z}_{1} \hookrightarrow$ Aut $(E)$ and hence $\mathscr{S} \mid \mathscr{Z}_{1} \cong D_{8}$. Since $\left|\left[E, \mathscr{Z}_{1} x\right]\right| \neq$ $\left|\left[E, \mathscr{Z}_{1} t\right]\right|=\left|\left[E, \mathscr{Z}_{1} x t\right]\right|$, we conclude that $\left\langle x \mathscr{Z}_{1}\right\rangle=\left(\mathscr{S} \mid \mathscr{Z}_{1}\right)^{\prime}$. Since $|\mathscr{S}|=$ $2^{11}=\left|G_{2}\right|$ and $t^{G} \cap\left(\mathscr{Z}_{1}\langle x\rangle\right)=\emptyset$, [17, Lemma 5.38] implies that $\left|O^{2}(G)\right|_{2} \leq$ $2^{10}$. This contradiction completes the proof of Lemma 11.1.

## 12. The case of Lemma 7.4(v)

In this section we shall conclude the proof of Theorem 2 by proving:
Lemma 12.1. If $\mathscr{V}$ satisfies (v) of Lemma 7.4, then $\left|O^{2}(G)\right|_{2} \leq 2^{10}$.
Thus, throughout this section, we assume that $\mathscr{V}$ satisfies (v) of Lemma 7.4 and that $2^{10}<\left|O^{2}(G)\right|_{2}$ and we shall proceed to a contradiction.

Thus $Z(\mathscr{V} A)=Z(\mathscr{U})=Z(\mathscr{V})=\langle u\rangle, \mathscr{V} A=\mathscr{V}\langle t\rangle$ is of type $\mathscr{A}_{8}, \mathscr{V}\langle t, x\rangle \cong$ $D_{8} \vee Z_{2}$ by utilizing the proof of [7, VI, Lemma 2.7(iii)], $\left.\mathscr{V} A, \kappa\right]=\mathscr{V}=$ [ $\mathscr{W}, \kappa]=Q_{1} * Q_{2}$ where $Q_{1}$ and $Q_{2}$ are quaternion of order 8 and $Q_{1}^{t}=Q_{2}$. Also $\mathscr{E}_{16}(\mathscr{V} A)=\{A\}$ and every element of $\mathscr{V} A-\mathscr{V}$ interchanges $Q_{1}$ and $Q_{2}$. Now $\mathscr{Y}=C_{\mathscr{W}}(\kappa)$ acts on $\mathscr{V}=[\mathscr{W}, \kappa]$ and hence $\mathscr{Y}$ contains a maximal subgroup $\mathscr{P}$ normalizing both $Q_{1}$ and $Q_{2}$. Since $\mathscr{P} \leq C_{\mathscr{W}}(\kappa)$, we have $\left[\mathscr{P}, Q_{1}\right]=$ $\left[\mathscr{P}, Q_{2}\right]=1$. Then $\langle\mathscr{U}, \kappa\rangle \leq N_{G}(\mathscr{P}) \cap N_{G}(\mathscr{V})$ and $\mathscr{P} \cap \mathscr{V}=\langle u\rangle$. Set $\mathscr{Q}=$ $\mathscr{P} \mathscr{V}=\mathscr{P} * \mathscr{V}$. Then $\mathscr{W}=\mathscr{2}\langle t\rangle, \mathscr{Q} \triangleleft \mathscr{U}=\mathscr{Q}\langle x, t\rangle, Z(\mathscr{U})=\langle u\rangle, Z(\mathscr{Q})=\mathscr{P}$, and $\mathscr{2}^{\prime}=\Phi(\mathscr{2})=\langle u\rangle$.

Lemma 12.2. $\mathscr{P} \cong Z_{4}$.
Proof. Assume that $\mathscr{P}=\langle u, \omega\rangle$ where $\omega^{2}=1$. Then $\mathscr{Q}=\langle\omega\rangle \times \mathscr{V}$, $I(t \mathscr{Q})=t X=t^{2}$, and $\mathscr{U}=\mathscr{Q}\langle x, t\rangle \notin S y l_{2}(G)$. Note also that $Z(\bar{M})=\langle\bar{u}\rangle$ and set $\tilde{M}=\bar{M} \mid\langle\bar{u}\rangle$. Then it is easy to see that $\mathscr{E}_{32}(\tilde{\mathscr{U}})=\{\tilde{\mathscr{Q}}\}$. Since $Z(\mathscr{U})=\langle u\rangle$ it follows that $\mathscr{E}_{32}(\mathscr{U} \mid\langle u\rangle)=\{\mathscr{Q} \mid\langle u\rangle\}$ and hence $\mathscr{Q}$ char $\mathscr{U}$ and $\mathscr{P}=Z(\mathscr{Q})$ char $\mathscr{U}$.

Set $N=N_{G}(\mathscr{2}), C=C_{G}(\mathscr{Q})$, and $\bar{N}=N / O(N)$. Thus $\langle\mathscr{U}, \kappa\rangle \leq N$. Also let $\mathscr{U}=\mathscr{Q}\langle x, t\rangle \leq \mathscr{T} \in \operatorname{Syl}_{2}(N)$. Clearly $\mathscr{U} \neq \mathscr{T}, \mathscr{U} \cap C=\mathscr{P}$, and $I(t \mathscr{P})=$ $t\langle u\rangle=t^{\mathscr{P}}$. Hence $C=O(N) \times \mathscr{P}, \bar{C}=\overline{\mathscr{P}}$, and $\bar{N} / \bar{P} \hookrightarrow$ Aut (2). Also $C_{2}(t)=$ $X$ and hence $C_{N}(t)=C_{N}(t) \cap N_{H}(A)$. Thus $C_{N}(t)=\left(O(N) \cap C_{N}(t)\right) A(\kappa, x\rangle$ and $C_{\bar{N}}(\bar{t})=\bar{A}\langle\bar{\kappa}, \bar{x}\rangle$. Moreover $I(t \overline{\mathscr{Q}})=t^{\overline{\mathscr{I}}}$ and hence $C_{\overline{\mathscr{T}} / \overline{\mathscr{Q}}}(\bar{\tau} \overline{\mathscr{Q}})=\overline{\mathscr{U}} \mid \overline{\mathscr{Q}} \cong E_{4}$. Thus $\overline{\mathscr{T}} \mid \overline{\mathscr{Q}}$ is dihedral or semidihedral. But $\overline{\mathscr{U}}|\overline{\mathscr{Q}} \neq \overline{\mathcal{T}}| \overline{\mathscr{Q}}$. Hence $t \mathscr{Q} \sim x t \mathscr{Q}$ in $\mathscr{T}$, $Z(\mathscr{T} \mid \mathscr{Q})=\langle x \mathscr{Q}\rangle$, and $O_{2}(\bar{N})=\overline{\mathscr{Q}}$ since $\bar{x} \notin O_{2}(\bar{N})$.

On the other hand, $\mathscr{Q}=\langle\omega\rangle \times \mathscr{V}, \mathscr{Q}^{\prime}=\langle u\rangle, Z(\mathscr{Q})=\langle\omega, u\rangle, \mathscr{V}=Q_{1} * Q_{2}$ and $\bar{N} / \bar{C} \hookrightarrow$ Aut ( $\overline{\mathcal{Q}}$ ). Hence every Sylow $p$-subgroup of $\bar{N} / \bar{C}$ with $p$ odd acts on $\overline{\mathscr{Q}} \mid\langle\bar{\omega}\rangle \cong \overline{\mathscr{V}}$. Thus $|\bar{N}|_{2^{\prime}}=3^{2}$,

$$
O(\bar{N} / \bar{C}) \cong Z_{3} \times Z_{3}, \quad \mathscr{V}=\left[\mathscr{2}, O_{2^{\prime}, 2,2^{\prime}}(N)\right] \triangleleft N,
$$

and

$$
C_{N}(\mathscr{V})=O(N) \times \mathscr{P}
$$

Thus $\bar{N} / \overline{\mathscr{P}} \hookrightarrow$ Aut $(\overline{\mathscr{V}}) \cong \Sigma_{4} 乙 Z_{2}$ and hence $\mathscr{T} \mid \mathscr{U} \cong D_{8}$. Since $|\mathscr{T}|=2^{9}, \mathscr{T}$ is a maximal subgroup of some 2-subgroup $\mathscr{S}$ of $G$. Clearly $Z(\mathscr{S})=Z(\mathscr{T})=$ $\langle u\rangle$ and $\mathscr{2} \not \mathscr{S}$. Let $\alpha \in \mathscr{S}-\mathscr{T}$ and set $\mathscr{S}=\mathscr{S} \mid\langle u\rangle$ and $\mathscr{Q}_{1}=\mathscr{Q}^{\alpha}$. Then $\mathscr{Q} \neq \mathscr{Q}_{1} \triangleleft \mathscr{T}$ and hence $\mathscr{2}\langle x\rangle \leq \mathscr{Q 2}_{1}$. Since $C_{\overline{\boldsymbol{v}} /\langle\bar{u}\rangle}(\bar{\kappa})=1$, we have $\left|C_{\tilde{\tilde{v}}}(\tilde{x})\right|=4$ and $\left|C_{\tilde{2}}(\tilde{x})\right|=8$. Thus $|\mathscr{Q} \cap \widetilde{\mathscr{Q}}|=8, \mathscr{Q}_{1} \mathscr{Q} / \mathscr{Q} \cong E_{4}$, and

$$
I(\mathscr{T})=I\left(\mathscr{Q}_{1}\right) \cup I(t \mathscr{Q}) \cup I(x t \mathscr{Q})
$$

Since $\alpha$ leaves $\mathscr{Q Q}_{1}$ invariant and $t \mathscr{Q} \sim x t \mathscr{Q}$ in $\mathscr{T}$, we may assume that $\alpha$ leaves $I(t \mathscr{Q})=t^{2}$ invariant. As $S=C_{\mathscr{C}}(t) \leq \mathscr{T}$, this is a contradiction and the proof of Lemma 12.2 is complete.

Let $\mathscr{P}=\langle\omega\rangle$ where $\omega^{2}=u$. Then $I(t \mathscr{Q})=t^{\mathscr{Q}} \cup(t \omega)^{2}, \mathscr{2}$ char $\mathscr{U}$, and $\mathscr{P}$ char $\mathscr{U}$, as in the preceding lemma.

Suppose that $x t$ normalizes $Q_{1}$ and $Q_{2}$. Then there is an element $q_{1} \in Q_{1}-$ $\langle u\rangle$ such that $q_{1}^{x t}=q_{1}^{-1}$. Setting $q_{2}=q_{1}^{t}$, we have $C_{r}(x t)=C_{r}(x, t)=$ $\langle u, z\rangle=\left\langle u, q_{1} q_{2}^{\prime}\right\rangle$. If $\omega^{x t}=\omega$, then

$$
C_{\mathscr{U}}(x t)=\mathscr{Y} \times\langle z, x t\rangle \in S y l_{2}\left(C_{G}(x t)\right)
$$

and $u \sim z$ in $G$. If $\omega^{x t}=\omega^{-1}$, then $C_{\vartheta u}(x t)=C_{2}(x t)\langle x, t\rangle \in S y l_{2}\left(C_{G}(x t)\right)$ where $C_{2}(x t)=\left\langle u, z, \omega q_{1}\right\rangle \cong E_{8}$.

Suppose that $Q_{1}^{x t}=Q_{2}$. Then $x \in N_{G}\left(Q_{1}\right) \cap N_{G}\left(Q_{2}\right)$ and there is an element $q_{1} \in Q_{1}-\langle u\rangle$ such that $q_{1}^{x}=q_{1}^{-1}$ and $C_{\mathscr{r}}(x)=C_{r}(x, t)=\langle u, z\rangle=\left\langle u, q_{1} q_{2}\right\rangle$. Also $\langle u, z\rangle<C_{\mathscr{V}}(x t) \cong E_{8}$ and hence $\omega^{x t}=\omega^{-1}$ and $C_{q u}(x t)=C_{\mathscr{V}}(x t)\langle x, t\rangle \in$ $S y l_{2}\left(C_{G}(x t)\right)$.

Set $N=N_{G}(2), C=C_{G}(2)$, and $\bar{N}=N / O(N)$. Clearly $\langle\mathscr{U}, \kappa\rangle \leq N$ and $\kappa^{3} \in C$. Let $\mathscr{U} \leq \mathscr{T} \in S y l_{2}(N)$, so that $\mathscr{U} \neq \mathscr{T}$. As in the proof of Lemma 12.2, we have $C_{N}(t)=\left(O\left(C_{N}(t)\right) \cap C\right) A(\kappa, x\rangle$.

Lemma 12.3. (i) $C=O(N)(C \cap \mathscr{T})$ where $\bar{C}=\overline{C \cap \mathscr{T}}$ is cyclic, $C \cap$ $\mathscr{T} \triangleleft \mathscr{T},(C \cap \mathscr{T})\langle t\rangle$ is dihedral or semidihedral and $\mathscr{P} \leq(C \cap \mathscr{T}) \cap Z(C)$.
(ii) $(C \cap \mathscr{T}) \mathscr{Q}=(C \cap \mathscr{T}) * \mathscr{V}$ and $t^{\boldsymbol{G}} \cap((C \cap \mathscr{T}) * \mathscr{V})=\emptyset$.
(iii) $\bar{N} /(\bar{C} \bar{V}) \hookrightarrow Z_{2} \times \Sigma_{6}$.
(iv) $C_{\bar{N}}(\bar{t})=\bar{A}\langle\bar{\kappa}, \bar{x}\rangle$.

Proof. Clearly $C \cap \mathscr{T} \triangleleft \mathscr{T},(C \cap \mathscr{T})\langle t\rangle \in S y l_{2}(C\langle t\rangle)$, and $C_{(C \cap \mathscr{T}}(t)=$ $\langle u\rangle$. Since $\mathscr{P} \leq(C \cap \mathscr{T}) \cap Z(C)$, (i) and (iv) hold. Since

$$
((C \cap \mathscr{T}) \mathscr{V})^{\prime}=((C \cap \mathscr{T}) * \mathscr{V})^{\prime}=\mathscr{V}^{\prime}=\langle u\rangle
$$

$|((C \cap \mathscr{T}) * \mathscr{V})| \geq 2^{6}$ and $Z((C \cap \mathscr{T}) * \mathscr{V})=C \cap \mathscr{T}$ is cyclic of order at least 4, (ii) holds. Finally, since $\bar{N} / \bar{C} \hookrightarrow$ Aut (2), we have (iii) by [10, Section 1] and we are done.

From the nature of the remainder of the proof of this lemma and in order to simplify the notation, it is clear that, without loss of generality, we may (and shall) assume that $O(N)=1$. Then $C=C \cap \mathscr{T},(C * \mathscr{V})\langle x, t\rangle=C \mathscr{U} \leq \mathscr{T}$, and $C \mathscr{Q}=C * \mathscr{V} \leq O_{2}(N)$. Let $C=\langle\gamma\rangle$ and $|C|=2^{a}$ for some integer $a \geq 2$.

Lemma 12.4. (i) $C * \mathscr{V}$ char $C \mathscr{U}=(C * \mathscr{V})\langle x, t\rangle$ and $\mathscr{Q}$ char $C \mathscr{U}$.
(ii) $\mathscr{T} \neq \boldsymbol{C} \mathscr{U}$.

Proof. If $\mathscr{P}=C$, then $C \mathscr{U}=\mathscr{U}$, and $C * \mathscr{V}=\mathscr{2}$ char $\mathscr{U}$. Suppose that $\mathscr{P}<C$. Clearly $Z(C \mathscr{U})=\langle u\rangle$. Setting $(C \mathscr{U})^{\sim}=(C \mathscr{U}) /\langle u\rangle$, we have

$$
(C \mathscr{U})^{\sim}=(\tilde{C} \times \tilde{\mathscr{V}})\langle\tilde{x}, \tilde{t}\rangle .
$$

Since $a \geq 3$, it is clear that $J_{0}\left((C \mathscr{U})^{\sim}\right)=\widetilde{C} \times \mathscr{V}$ and hence $C * \mathscr{V}$ char $C \mathscr{U}$. Since $\Omega_{2}(C * \mathscr{V})=\mathscr{2}$, (i) holds. Suppose that $\mathscr{T}=C \mathscr{U}$. Then $\mathscr{T} \in S y l_{2}(G)$ and $|\gamma|=2^{a} \geq 2^{5}$ and $x t$ acts dihedrally or semidihedrally on $C=\langle\gamma\rangle$. Hence $\left\langle\gamma^{2}\right\rangle \leq C_{\mathscr{F}}(x)$. Thus $\left\langle\gamma^{4}\right\rangle \leq C_{\mathscr{F}}(x)^{\prime} \leq \mathscr{T}^{\prime} \leq C * \mathscr{V}$. Since $\left|\gamma^{4}\right| \geq 2^{3}$ and $Z(\mathscr{T})=\langle u\rangle$, we have $x \sim u$ in $G$. This contradiction shows that (ii) holds.

Lemma 12.5. (i) $\left|C_{N /(C * \mathscr{V})}(t):((C * \mathscr{V})(\langle t\rangle \times\langle\kappa, x\rangle) /(C * \mathscr{V}))\right|=2$.
(ii) $C\langle t\rangle$ is dihedral.

Proof. Assume that $N_{N}((C * \mathscr{V})\langle t\rangle)=(C * \mathscr{V})(\langle t\rangle \times\langle\kappa, x\rangle)$. If $O_{2}(N) \neq$ $C * \mathscr{V}$, then $O_{2}(N)=(C * \mathscr{V})\langle t\rangle$ and hence $N=(C * \mathscr{V})(\langle t\rangle \times\langle\kappa, x\rangle)$ which is false by Lemma 12.4(ii). Thus $O_{2}(N)=C * \mathscr{V}$ and $\mathscr{T} / O_{2}(N)$ is dihedral or semidihedral. Then Lemma 12.3 (iii) implies that $\mathscr{T} / O_{2}(N) \cong D_{8}$.

Suppose that $\mathscr{T} \in S y l_{2}(G)$. Then $|C|=|\gamma| \geq 2^{4}$ and $\mathscr{T}^{\prime}(C * \mathscr{V})$ centralizes $C=\langle\gamma\rangle$. Hence $\mathscr{T}^{\prime}(C * \mathscr{V})=(C * \mathscr{V})\langle x\rangle$ and we obtain a contradiction as in the proof of Lemma 12.4(ii). Thus $\mathscr{T}$ is a maximal subgroup of some 2subgroup $\mathscr{S}$ of $G$. Let $\alpha \in \mathscr{S}-\mathscr{T}$, set $Y=C * \mathscr{V}$, and $Y_{1}=Y^{\alpha}$. Clearly $Y_{1} \neq Y$ since $\mathscr{Q}=\Omega_{2}(Y)$ and hence $N_{\mathscr{Y}}(Y)=N_{\mathscr{\mathscr { C }}}\left(Y_{1}\right)=\mathscr{T}$. Also $Z(\mathscr{S})=$ $\langle u\rangle$. Setting $\tilde{\mathscr{S}}=\mathscr{S} \mid\langle u\rangle$, we have $\tilde{Y}=\widetilde{C} \times \tilde{\mathscr{V}} \cong Z_{2^{a-1}} \times E_{16} \cong \tilde{Y}_{1}$. Also $C_{\widetilde{Y}}(\tilde{x})=C_{\tilde{c}}(\tilde{x}) \times C_{\tilde{\gamma}}(\tilde{x})$ where $C_{\tilde{\gamma}}(\tilde{x}) \cong E_{4}$; similarly for $C_{\tilde{\gamma}}(\tilde{x} \tilde{t})$. Since $\tilde{Y}_{1}$ is abelian, we have $\mathscr{T} \neq Y Y_{1}$. Thus $\left|Y_{1} Y / Y\right|=4$ and $\left|\tilde{Y}_{1} \cap \tilde{Y}\right|=2^{a+1}$. Since $x \in Y_{1} Y$ or $x t \in Y_{1} Y,\left|C_{\tilde{Y}}(\tilde{x} \tilde{Y})\right|=4\left|C_{\tilde{c}}(\tilde{x})\right|$ and $\left|C_{\tilde{Y}}(\tilde{x} \tilde{Y} \tilde{Y})\right|=4\left|C_{\tilde{c}}(\tilde{x} \tilde{t})\right|$, we have $\tilde{C} \leq \tilde{Y}_{1}, \tilde{Y}_{1} \cap \tilde{Y}=\tilde{C} \times\left(\tilde{\mathscr{V}} \cap \tilde{Y}_{1}\right)$ and $\tilde{t} \notin \tilde{Y}_{1}$ since $t^{G} \cap Y=\emptyset$. Since $\alpha$ leaves $Y Y_{1}$ invariant, it follows that we may assume that $t^{\alpha} \in t C$. Thus, since $C_{\mathscr{C}}(t)=S \leq \mathscr{T}$, it follows that $C\langle t\rangle$ is dihedral and that we may assume that $t^{\alpha}=t \gamma$. Hence $C_{G}(t, u)^{\alpha}=C_{G}(t \gamma, u)$. However

$$
\langle y, z, \kappa\rangle \leq O^{2}\left(C_{G}(t, u)\right) \cap O^{2}\left(C_{G}(t \gamma, u)\right)
$$

and

$$
\left(\mathscr{T} \cap O^{2}\left(C_{G}(t, u)\right)\right)^{\alpha}=\mathscr{T} \cap O^{2}\left(C_{G}(t \gamma, u)\right) .
$$

Thus $\langle y, z\rangle^{\alpha}=\langle y, z\rangle$ by (4.12). Since $[y, x]=z=[y, x t]$ and $x Y \cap Y_{1} \neq \emptyset$ or $x t Y \cap Y_{1} \neq \emptyset$, we have $y \notin Y_{1}$. This contradiction shows that

$$
\left.N_{N}(C * \mathscr{V})\langle t\rangle\right) \neq(C * \mathscr{V})(\langle t\rangle \times\langle\kappa, x\rangle)
$$

But $I(t(C * \mathscr{V}))=t^{(C * \mathscr{V})}$ if $C\langle t\rangle$ is semihidedral and $I(t(C * \mathscr{V}))=t^{c * \mathscr{V}} \cup$ $(t \gamma)^{C^{*} \vartheta}$ if $C\langle t\rangle$ is dihedral. Then $C_{N}(t)=A\langle\kappa, x\rangle$ implies Lemma 12.5.

Let $Y=N_{N}((C * \mathscr{V})\langle t\rangle)$. Then $(C * \mathscr{V})\langle t\rangle$ is of index 2 in $O_{2}(Y), Y=$ $O_{2}(Y)\langle\kappa, x\rangle, C\langle t\rangle$ is of index 2 in $C_{O_{2}(Y)}(\kappa),\left[O_{2}(Y), \kappa\right]=\mathscr{V} \triangleleft Y$, $C_{O_{2}(Y)}(\kappa, t)=\langle t, u\rangle$ and $C_{O_{2}(Y)}(\kappa)$ is dihedral or semidihedral. Set

$$
\mathscr{R}=C_{O_{2}(Y)}(\kappa) \cap N_{Y}\left(Q_{1}\right) \cap N_{Y}\left(Q_{2}\right)
$$

Then $\mathscr{R}$ is of index 2 in $C_{O_{2}(Y)}(\kappa),[\mathscr{R}, \mathscr{V}]=1, t \notin \mathscr{R}, C$ is a maximal subgroup of $\mathscr{R}$, and hence $\mathscr{R}$ is not abelian. Thus $\mathscr{R}$ is dihedral or generalized quaternion, $\mathscr{R} \mathscr{V}=\mathscr{R} \mathscr{Q}=\mathscr{R} * \mathscr{V}, \mathscr{R} \cap \mathscr{V}=\langle u\rangle, Y=(\mathscr{R} * \mathscr{V})(\langle t\rangle \times\langle\kappa, x\rangle)$, and $\mathscr{R}\langle t\rangle=C_{O_{2}(Y)}(\kappa)$.

Clearly $t^{\boldsymbol{G}} \cap(\mathscr{R} * \mathscr{V})=\emptyset$ by Lemma 2.12 and $I(t(\mathscr{R} * \mathscr{V}))=t^{(\mathscr{R} * \mathscr{V})}$. Also

$$
(\mathscr{R} * \mathscr{V}) / C \triangleleft N / C
$$

by $\left[10\right.$, Section 1] and hence $R * \mathscr{V} \leq O_{2}(N)$. Thus $O_{2}(N)=\mathscr{R} * \mathscr{V}$ or $O_{2}(N)$ $=(\mathscr{R} * \mathscr{V})\langle t\rangle=O_{2}(Y)$.

Lemma 12.6. $\quad O_{2}(N)=\mathscr{R} * \mathscr{V}$ and $\mathscr{T} \neq(\mathscr{R} * \mathscr{V})\langle x, t\rangle$.
Proof. Assume that $O_{2}(N)=(\mathscr{R} * \mathscr{V})\langle t\rangle$. Then, since $t^{G} \cap(\mathscr{R} * \mathscr{V})=\emptyset$, $\Omega_{1}(\mathscr{R} * \mathscr{V})=\mathscr{R} * \mathscr{V}$ and $I(t(\mathscr{R} * \mathscr{V}))=t^{(\mathscr{R} * \mathscr{V})}$, we have $N=O_{2}(N)\langle\kappa, x\rangle=Y$ where $\mathscr{R} \triangleleft N$ and $\mathscr{V} \triangleleft Y$. Also $\mathscr{R}\langle t\rangle$ is dihedral or semidihedral, $|\mathscr{R}| \geq 8$, and $(\mathscr{R}\langle t\rangle)^{\prime}=C$. Hence we may assume that $\mathscr{T}=(\mathscr{R} * \mathscr{V})\langle t, x\rangle$. Then $Z(\mathscr{T})=\langle u\rangle$ and $\langle u\rangle \leq \mho^{1}\left(\mathscr{T}^{\prime}\right)=\mho^{1}(C)$. Setting $\tilde{\mathscr{T}}=\mathscr{T} / \mho^{1}\left(\mathscr{T}^{\prime}\right)$, we have $(\mathscr{R} \mathscr{V})^{\sim}=\widetilde{\mathscr{R}} \times \tilde{\mathscr{V}}$ and $\mathscr{E}_{64}(\tilde{\mathscr{T}})=\left\{(\mathscr{R} \mathscr{V})^{\sim}\right\}$. Thus $\mathscr{R} * \mathscr{V}$ char $\mathscr{T}$.

Suppose that $|\mathscr{R}| \geq 2^{4}$. Then $\mathscr{P}=\Omega_{2}\left((\mathscr{R} * \mathscr{V})^{\prime}\right)$ char $\mathscr{T}, C_{\mathscr{R} * \mathscr{V}}(\mathscr{P})=$ $C * \mathscr{V}$ char $\mathscr{T}, \mathscr{Q}$ char $\mathscr{T}$, and $\mathscr{T} \in \operatorname{Syl}_{2}(G)$. Since the cyclic maximal subgroup of $\mathscr{R}\langle t\rangle$ is $\langle x, t\rangle$-invariant and $|C| \geq 8$, we have $[x, C]=1$. Thus $\mho^{1}(C) \leq$ $C_{\mathscr{T}}(x)^{\prime} \leq C * \mathscr{V}$ where $\mho^{1}(C)$ is cyclic of order at least 4. Since $x \sim u$ in $G$, this is impossible. Thus $|\mathscr{R}|=2^{3}, C=\mathscr{P},|\mathscr{T}|=2^{9}, \mathscr{R} * \mathscr{V}$ is extraspecial of order $2^{7}$, and $\mathscr{R} * \mathscr{V}$ char $\mathscr{T}$.

Let $J=N_{G}(\mathscr{R} * \mathscr{V}), \bar{J}=J / O(J)$ and let $\mathscr{T} \leq \mathscr{S} \in S y l_{2}(J)$. Clearly $\mathscr{T} \neq \mathscr{S}$ and $Z(\mathscr{S})=\langle u\rangle$. Set $\tilde{\mathscr{S}}=\mathscr{S} \mid(\mathscr{R} * \mathscr{V})$. Then $C_{\tilde{\mathscr{S}}}(\tilde{t})=\langle\tilde{x}, \tilde{t}\rangle$ and $\tilde{\mathscr{S}}$ is dihedral or semidihedral with $Z(\widetilde{\mathscr{S}})=\langle\tilde{x}\rangle$ and $\tilde{t} \sim \tilde{\tau} \tilde{x}$ in $\mathscr{\mathscr { S }}$ since $I(t(\mathscr{R} * \mathscr{V}))=$ $t^{(\mathscr{R} * \mathscr{V})}$. Thus $\mathscr{\mathscr { S }}$ acts faithfully on $\mathscr{R} \mathscr{V} \mid\langle u\rangle$ and hence $\exp (\widetilde{\mathscr{S}}) \leq 8$.

Suppose that $\tilde{\mathscr{S}} \cong D_{8}$. Then $|\mathscr{S}|=2^{10}$ and $\mathscr{S} \notin S y l_{2}(G)$. Thus there is a 2-element $\beta \in N_{G}(\mathscr{S})-\mathscr{S}$ such that $\beta^{2} \in \mathscr{S}$. Set $\mathscr{X}=\mathscr{R} * \mathscr{V}$ and $\mathscr{X}_{1}=\mathscr{X}^{\beta}$. Then $\mathscr{X} \neq \mathscr{X}_{1} \triangleleft \mathscr{S}$ and $1 \neq \widetilde{\mathscr{X}}_{1} \triangleleft \mathscr{S}$. Since $\tilde{x} \in \tilde{\mathscr{X}}_{1}$, it follows that $\tilde{\mathscr{X}}_{1} \cong E_{4}$ and $\tilde{t} \notin \tilde{X}_{1}$. Then $\beta$ leaves $I(t \mathscr{X}) \cup I(x t \mathscr{X})$ invariant. Since $t \mathscr{X} \sim x t \mathscr{X}$ in $\mathscr{S}$ and $I(t \mathscr{X})=t^{\mathscr{X}}$, this is impossible.

Assume that $|\widetilde{\mathscr{S}}|=16$. Then $\mathscr{S} \in S y l_{2}(G)$ since no element of $\mathscr{E}_{4}(\mathscr{\mathscr { S }})$ is normal in $\mathscr{\mathscr { S }}$. Hence $|\mathscr{S}|=2^{11}$ and $O^{2}(G)=G$. Thus $t^{G} \cap x(\mathscr{R} * \mathscr{V}) \neq \emptyset$ by [17, Lemma 5.38]. Since $\langle\tilde{x}\rangle=\mho^{2}(\tilde{\mathscr{P}})$, it follows that $x$ acts trivially on $\mathscr{R} \mid\langle u\rangle$. Since $\left|C_{\mathscr{V} \mid\langle u\rangle}(\tilde{x})\right|=4$, it follows that every element of $I(x(\mathscr{R} * \mathscr{V}))$ is conjugate via $\mathscr{R} * \mathscr{V}$ into an element of $\mathscr{R}\langle x\rangle$.

Let $\tau \in I(\mathscr{R} x)$ and let $\mathscr{Z}$ be the inverse image in $\mathscr{R} * \mathscr{V}$ of $C_{(\mathscr{R} * \mathscr{V}) /\langle u\rangle}(\tilde{x})$. Then $\mathscr{Z}\left|\langle u\rangle \cong E_{16}, \mathscr{Z}=\mathscr{R} *(\mathscr{V} \cap \mathscr{Z}),|\mathscr{Z}|=2^{5}, \tau\right.$ normalizes $\mathscr{Z}$, and $\mathscr{Z}$ normalizes $\langle\tau, u\rangle$. Hence $\left|C_{\mathscr{Q}\langle\tau\rangle}(\tau)\right| \geq 2^{5}$. Also Lemmas 2.2 and 2.3 imply that $\mathscr{R}\langle x\rangle=\mathscr{R} * Z(\mathscr{R}\langle x\rangle)$ where $u \in Z(\mathscr{R}\langle x\rangle)$ and $|Z(\mathscr{R}\langle x\rangle)|=4$. Note that there is an involution $\mu \in t^{G} \cap(\mathscr{R}\langle x\rangle-\mathscr{R})$.

Suppose that $Z(\mathscr{R}\langle x\rangle)$ is cyclic. Then $\mathscr{R}\langle x\rangle \cong Z_{4} * Q_{8}$ and $\mathscr{R}\langle x\rangle$ has four conjugacy classes of involutions. If $Z(\mathscr{R}\langle x\rangle) \cong E_{4}$, then $\mathscr{R}\langle x\rangle-\mathscr{R}$ contains
two or four conjugacy classes of involutions. Since $x$ and $\mu$ are not conjugate in $\mathscr{S},(\mathscr{R} * \mathscr{V})\langle x\rangle \triangleleft \mathscr{S}$, and $|\mathscr{S} /((\mathscr{R} * \mathscr{V})\langle x\rangle)|=8$, it follows that $\left|C_{\mathscr{L}}(\mu)\right| \geq 2^{7}$, which is impossible. This establishes Lemma 12.6.

Since $N /(C * \mathscr{V})$ has 2 -exponent at most 4 and

$$
N_{N}((\mathscr{R} * \mathscr{V})\langle t\rangle)=(\mathscr{R} * \mathscr{V})(\langle t\rangle \times\langle\kappa, x\rangle),
$$

we have $\mathscr{T} / O_{2}(N) \cong D_{8}$. Also $t O_{2}(N) \sim x t O_{2}(N), t \sim x t$ in $\mathscr{T}$, and $Z\left(\mathscr{T} / O_{2}(N)\right)=\left\langle x O_{2}(N)\right\rangle$.

Assume that $|\mathscr{R}|=2^{3}$. Then $|\mathscr{T}|=2^{10}, \mathscr{T} \notin S y l_{2}(G)$, and $O_{2}(N)=\mathscr{R} * \mathscr{V}$ is extraspecial or order $2^{7}$. Let $\mathscr{T}$ be of index 2 in the 2 -subgroup $\mathscr{T}_{1}$ of $G$. Then $Z\left(\mathscr{T}_{1}\right)=\langle u\rangle$ and $\mathscr{R} * \mathscr{V} \triangleleft \mathscr{T}_{1}$ since $I\left(t O_{2}(N) \cup x t O_{2}(N)\right)=t^{\mathscr{T}}$ by the usual argument. Letting

$$
\mathscr{T}_{1} \leq \mathscr{S} \in S y l_{2}\left(N_{G}\left(O_{2}(N)\right)\right)
$$

we have $z(\mathscr{S})=\langle u\rangle, \mathscr{T} \neq \mathscr{S}$, and $C_{\mathscr{S} / O_{2}(N)}(t) \cong E_{4}$. Also $\mathscr{S} \mid O_{2}(N)$ acts faithfully on $O_{2}(N) /\langle u\rangle$ and hence $\mathscr{S} / O_{2}(N)$ has exponent $8, \mathscr{S}=\mathscr{T}_{1}$, and $\mathscr{S} \mid O_{2}(N)$ is dihedral or semidihedral or order 16. Also $|\mathscr{S}|=2^{11}$, $Z\left(\mathscr{S} \mid O_{2}(N)\right)=\left\langle x O_{2}(N)\right\rangle$ and hence $\mathscr{R} * \mathscr{V}$ char $\mathscr{S}$. Thus $\mathscr{S} \in S y l_{2}(G)$ and the argument at the end of Lemma 12.6 applies to yield a contradiction.

Consequently, letting $|\mathscr{R}|=2^{a}$, we have $a \geq 4$. Then $\mathscr{P} \leq O_{2}(N)^{\prime}=R^{\prime}$ and $\mathscr{P}=\Omega_{2}\left(O_{2}(N)^{\prime}\right)$ char $O_{2}(N), C_{O_{2}(N)}(\mathscr{P})=C * \mathscr{V}$ char $O_{2}(N)$, and hence $\mathscr{2}$ char $O_{2}(N)$. Also $\langle x, t\rangle$ normalizes the cyclic maximal subgroup of $\mathscr{R}\langle t\rangle$. Hence $[C, x]=1$ and $x$ stabilizes the chain $\mathscr{R}>\mathscr{R}^{\prime}>1$.

Clearly $O_{2}(N)\langle x\rangle \triangleleft \mathscr{T}$ and $t^{G} \cap O_{2}(N)=\emptyset$. Let $\tilde{\mathscr{T}}=\mathscr{T} / O_{2}(N)^{\prime}$. Then $\left(O_{2}(N)\right)^{\sim}=\widetilde{\mathscr{R}} \times \tilde{\mathscr{V}}$ where $\widetilde{\mathscr{R}} \cong E_{4}$ and $\tilde{\mathscr{V}} \cong E_{16}$. Clearly every involution of $x O_{2}(N)$ is conjugate via $O_{2}(N)$ to an involution of $\mathscr{R} x$. Also if $\tau \in I\left(x O_{2}(N)\right)$ and $\mathscr{Z}$ is the inverse image of $C_{\left(O_{2}(N)\right) \sim}(\tilde{x})$ in $O_{2}(N)$, then $\mathscr{R} \leq \mathscr{Z}, \mathscr{Z}=$ $\mathscr{R} *(\mathscr{V} \cap \mathscr{Z}), \tau$ normalizes $\mathscr{Z},|\mathscr{Z}|=2^{a+2},|\mathscr{Z}\langle\tau\rangle|=2^{a+3}$, and $\mathscr{Z}$ normalizes $\left\langle\tau, \mathscr{R}^{\prime}\right\rangle$.

Since $[x, C]=1$, it follows from Lemmas 2.2 and 2.3 that $|Z(\mathscr{R}\langle x\rangle)|=4$. Suppose that $\mu \in t^{G} \cap \mathscr{R} x$. If $Z(\mathscr{R}\langle x\rangle)$ is cyclic, then $\left|C_{\mathscr{R}\langle x\rangle}(\mu)\right|=2^{3},\left|C_{\mathscr{X}}(\mu)\right|=$ $2^{5}$, and $t^{G} \cap(\mathscr{R}\langle x\rangle)$ consists of one or two $\mathscr{R}\langle x\rangle$ conjugacy classes. Hence $\left|C_{\mathscr{T}}(\mu)\right| \geq 2^{6}$ which is impossible.

If $Z(\mathscr{R}\langle x\rangle)=\langle\mu, \lambda\rangle$ where $\lambda^{2}=1$, then $\langle x, u\rangle=Z(\mathscr{R}\langle x\rangle), \mathscr{R}\langle x\rangle=$ $\mathscr{R} \times\langle x\rangle$, and $\mathscr{R}$ is dihedral since $t^{G} \cap\{x, x u\}=\emptyset$. Also, since $t^{G} \cap \mathscr{R}=\emptyset$, $t^{G} \cap \mathscr{R}\langle x\rangle$ consists of at most two $\mathscr{R}\langle x\rangle$ conjugacy classes and again we have a contradiction. Thus $t^{G} \cap\left(O_{2}(N)\langle x\rangle\right)=\emptyset$.

Suppose that $\mathscr{T} \in S y l_{2}(G)$. Then $t \notin O^{2}(G)$ by [17, Lemma 5.38], $|\mathscr{T}| \geq 2^{12}$, and $|C| \geq 2^{4}$. Since $C \leq C_{\mathscr{T}}(x)$, we conclude that $\mho^{1}(C) \leq C_{\mathscr{F}}(x)^{\prime} \leq \mathscr{T}^{\prime} \leq$ $O_{2}(N)\langle x\rangle$ and we obtain a contradiction from the fact that $x \sim u$ in $G$. Hence $\mathscr{T} \notin S y l_{2}(G)$.

Let $\mathscr{T}$ be a maximal subgroup of the 2 -subgroup $\mathscr{S}$ of $\mathscr{T}$ and let $\alpha \in \mathscr{S}-\mathscr{T}$. Then $\tau=t^{\alpha} \in \mathscr{T}-\left(O_{2}(N)\langle x, t\rangle\right), S^{\alpha} \in S y l_{2}\left(C_{G}(\tau)\right)$, and $\langle u\rangle \neq\left(S^{\alpha}\right)^{\prime}$. Moreover, since $t^{G} \cap\left(O_{2}(N)\langle x\rangle\right)=\emptyset$, we conclude that $N / O_{2}(N)$ has a normal 2-complement. Also $3\left|\left|O_{2,2^{\prime}}(N) / O_{2}(N)\right|\right.$ and $O_{2,2^{\prime}}(N) / O_{2}(N) \hookrightarrow \mathscr{A}_{6}$. Thus

$$
O_{2,2^{\prime}}(N) / O_{2}(N) \cong Z_{3} \times Z_{3} \text { and } N / O_{2}(N) \cong \Sigma_{3} 乙 Z_{2}
$$

Choose $\mathscr{N} \in \operatorname{Syl}_{3}(N)$ such that $\kappa \in \mathscr{N}$. Then $C_{O_{2(N)}}(\kappa)=\mathscr{R}$ and $\left[O_{2}(N), \kappa\right]=$ $\mathscr{V}$ are $\mathscr{N}$-invariant. Then $O^{2}\left(O_{2,2^{\prime}}(N)\right)=\mathscr{V N} \triangleleft N, \mathscr{V} \triangleleft N, C_{O_{2(N)}}(\mathscr{V N})=$ $\mathscr{R} \triangleleft N$, and $O_{2}(N) \mathscr{T}^{\prime}$ normalizes $Q_{1}$ and $Q_{2}$. Thus $x$ normalizes $Q_{1}$ and $Q_{2}$. Set $\tilde{N}=N / O_{2}(N)$. Then $\tilde{N}=C_{\widetilde{\mathcal{N}}}(\tilde{\tau}) \times[\widetilde{\mathcal{N}}, \tilde{\tau}]$ where $\left|C_{\tilde{\mathcal{N}}}(\tilde{\tau})\right|=|[\tilde{\mathcal{N}}, \tilde{\tau}]|=3$. Let $\delta, \omega \in \mathscr{N}$ be such that $C_{\tilde{\mathcal{N}}}(\tilde{\tau})=\langle\tilde{\delta}\rangle$ and $[\widetilde{\mathscr{N}}, \tilde{\tau}]=\langle\tilde{\omega}\rangle$. Thus $\tau$ normalizes $\mathscr{V}\langle\delta\rangle$ and $\mathscr{V}\langle\omega\rangle$. By choice of notation, we may assume that $C_{\mathscr{V}}(\delta)=Q_{1}$ and $\boldsymbol{C}_{\mathscr{V}}(\omega)=Q_{2}$. Then $\tau$ normalizes $[\mathscr{V}, \mathscr{V}\langle\delta\rangle]=Q_{2}$ and $Q_{1}$. But $[\delta, \tau] \in \mathscr{V}$ and hence $[\delta, \tau] \in C_{\mathscr{r}}\left(Q_{1}\right)=Q_{2}$. Thus $\delta$ acts nontrivially on $Q_{2}\langle\tau\rangle$. Applying Lemma 2.2 and noting that $S$ has no subgroup isomorphic to $Q_{2}$, it follows that $Q_{2}\langle\tau\rangle \cong Z_{4} * Q_{8}$. Thus $C_{Q_{2}}(\tau)=\left\langle q_{2}\right\rangle$ where $q_{2}^{2}=u$. Hence $C_{\mathscr{T}}(\tau)^{\prime}=$ $\left(S^{\alpha}\right)^{\prime}=\langle u\rangle$ which is the final contradiction. Thus the proofs of Lemma 12.1 and Theorem 2 are complete.

## References

1. J. L. Alperin, R. Brauer, and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., vol. 151 (1970), pp. 1-260.
2. M. Aschbacher, On finite groups of component type, Illinois J. Math., vol. 19 (1975), pp. 87-115.
3. -_, A Characterization of the Chevalley groups over finite fields of odd order, to appear.
4. M. Aschbacher and G. M. Seitz, On groups with a standard component of known type, to appear.
5. B. Beisiegel and V. Stingl, The finite simple groups with Sylow 2-subgroups of order at most $2^{10}$, to appear.
6. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
7. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4-elements, Mem. Amer. Math. Soc., no. 147, Amer. Math. Soc., Providence, R.I. 1974.
8. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, J. Algebra, vol. 2 (1965), pp. 85-151.
9. -, Balance and generation in finite groups, J. Algebra, vol. 33 (1975), pp. 224-287.
10. R. L. Griess, Automorphisms of extra special groups and nonvanishing degree 2 cohomology, Pacific J. Math., vol. 48 (1973), pp. 403-422.
11. J. I. Hall, Fusion and dihedral 2-subgroups, J. Algebra, vol. 40 (1976), pp. 203-228.
12. K. Harada, On finite groups having a self-centralizing 2-subgroup of small order, J. Algebra, vol. 33 (1975), pp. 144-160.
13. M. Harris, Finite groups with Sylow 2-subgroups of type $\operatorname{PSp}(6, q), q$ odd, Comm. Alg., vol. 2 (1974), pp. 181-232.
14. B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin/New York, 1968.
15. P. Landrock and R. Solomon, A characterization of the Sylow 2-subgroups of $\operatorname{PSU}\left(3,2^{n}\right)$ and $\operatorname{PSL}\left(3,2^{n}\right)$, to appear.
16. A. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, and their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc., vol. 150 (1970), pp. 345-408.
17. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Sections 1-6, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-438.
18. J. G. Thompson, Notes on the B-conjecture, unpublished.

University of Minnesota
Minneapolis, Minnesota
Ohio State University
Columbus, Оhio


[^0]:    Received November 26, 1975.
    ${ }^{1}$ Each author was supported by a National Science Foundation grant.

