QUASI-REGULAR IDEALS OF SOME ENDOMORPHISM RINGS

JUTTA HAUSEN¹

1. Introduction

If α is an endomorphism of the abelian *p*-group *G* such that $x\alpha = x$ for all *x* in *G* of order *p* then α is one-to-one and onto [5; 13.1, p. 279]. It follows that the set Ann *G*[*p*] of all endomorphisms of *G* annihilating *G*[*p*] is a quasi-regular (two-sided) ideal of the endomorphism ring End *G* of *G*. In general, not every element of Ann *G*[*p*] is nilpotent which shows that the Jacobson radical *J*(End *G*) of End *G* need not be nil. It is an easy exercise in ring theory to verify that an ideal *J* of a ring *R* with identity is quasi-regular if there exists a quasi-regular ideal *L* of *R* such that (J + L)/L is nil. Thus, for endomorphism rings of abelian *p*-groups, the famous problem whether the Jacobson radical needs to be nil reduces to the question whether *J*(End *G*) is a nil extension of the quasi-regular ideal *L* = Ann *G*[*p*].

In this article we show that the answer to this question is affirmative if G is totally projective. In general, this is not the case: if G is unbounded and torsion-complete, then J(End G) contains elements no power of which annihilate G[p] [5; 14.6, p. 287].

Throughout the following, G denotes a totally projective abelian p-group, where p is some fixed prime. A complete description of J(End G) is given in 3.8: if λ denotes the length of G then J(End G) consists of all ε in End G for which there exists a finite sequence of ordinals

$$0 = \beta_0 < \beta_1 < \cdots < \beta_n < \beta_{n+1} = \lambda$$

such that $p^{\beta_i}G[p] \in \leq p^{\beta_{i+1}}G$ for i = 0, 1, ..., n. It follows that an ideal of End G is quasi-regular if and only if its restriction to G[p] is a nil ring.

The proof largely depends on a strong decomposition theorem for totally projective p-groups (2.3) which may be of independent interest.

2. Tools

Notation and terminology will follow [2], [3], [4] unless explained otherwise. The word "ideal" will always mean two-sided ideal. A ring is called nil if all of its elements are nilpotent. Given fully invariant subgroups $A \leq B$ of G, the set

Copyright © Board of Trustees, University of Illinois

Received May 24, 1976.

¹ This research was supported in part by a University of Houston Faculty Development Leave Grant.

of all ε in End G such that $B\varepsilon \leq A$ is denoted by Ann (B/A). Clearly, Ann (B/A) is an ideal of End G. We shall make frequent use of the following result.

2.1. If J is an ideal of End G such that J | G[p] is nil then J is quasi-regular.

Let σ be an ordinal. Since G is totally projective, every endomorphism of $p^{\sigma}G$ can be extended to an endomorphism of G [7; 3.9, p. 252]. Thus, the restriction of J(End G) to $p^{\sigma}G$ is a quasi-regular ideal of End $p^{\sigma}G$, and [5; 14.2 and 14.4, pp. 284, 286] implies the following fact.

2.2. If $\varepsilon \in J(\text{End } G)$ then $p^{\sigma}G[p]\varepsilon \leq p^{\sigma+1}G$ for every ordinal σ .

In order to construct certain endomorphisms, the following decomposition theorem will be needed. If Σ is a set of ordinals, sup Σ denotes the smallest ordinal that is greater than or equal to every σ in Σ . As customary, $\tau = \{\sigma : \sigma < \tau\}$.

2.3. THEOREM. Let G be a totally projective p-group of length λ , let $\tau \leq \lambda$ be a limit ordinal, and let T be a set of ordinals such that $T \subseteq \tau$ and $\tau = \sup T$. Then there exist $\Sigma \subseteq T$ and subgroups A and B of G satisfying the following: (i) $\tau = \sup \Sigma$; (ii) A has length τ and B has length λ ; (iii) $G = A \oplus B$; (iv) For all $\sigma \in \Sigma$, $p^{\sigma}G[p] = p^{\sigma}A[p] \oplus p^{\sigma+1}B[p]$.

Proof. If $\lambda = \omega = \tau$ then G is a direct sum of cyclic groups [7; 3.5, p. 251] and 2.3 holds with Σ any infinite subset of T such that $T \setminus \Sigma$ is infinite. Suppose that $\lambda > \omega$ and let f be the Ulm-Kaplansky function of G, i.e.,

$$f(\mu) = rk(p^{\mu}G[p]/p^{\mu+1}G[p])$$

for every μ . It suffices to construct $\Sigma \subseteq T$ such that $\tau = \sup \Sigma$ and functions g and h from the ordinals to the cardinals satisfying the following conditions

(2.4)
$$f(\mu) = g(\mu) + h(\mu)$$
 for every μ .
(2.5) $\tau = \sup \{\mu + 1: g(\mu) \neq 0\}$.
(2.6) $\lambda = \sup \{\mu + 1: h(\mu) \neq 0\}$.
(2.7) For each limit ordinal $\rho < \tau$ such that $\rho + \omega < \tau$ and for each $t < \omega$,
 $\sum_{\substack{\rho+\omega \leq \mu < \tau \ g(\mu) \leq \sum_{t \leq n < \omega} g(\rho + n)}$.
(2.8) For each limit ordinal $\rho < \lambda$ such that $\rho + \omega < \lambda$ and for each $t < \omega$,
 $\sum_{\substack{\rho+\omega \leq \mu < \lambda \ h(\mu) \leq \sum_{t \leq n < \omega} h(\rho + n)}$.
(2.9) $h(\sigma) = 0$ for all $\sigma \in \Sigma$.

In fact, by [3; 83.6, p. 100], there exist totally projective groups A and B whose Ulm-Kaplansky functions are g and h respectively. By (2.4), the Ulm-Kaplansky function of $A \oplus B$ is f, so that $G \simeq A \oplus B$ by [3; 83.3, p. 98]. Property (iv) is a direct consequence of (2.9). Since f is the Ulm-Kaplansky function of G,

(2.10) $\sum_{\rho+\omega\leq\mu<\lambda} f(\mu) \leq \sum_{t\leq n<\omega} f(\rho+n)$, for each limit ordinal ρ such that $\rho+\omega<\lambda$ and all $t<\omega$;

furthermore,

(2.11) $\sup \{\mu + 1: f(\mu) \neq 0, \mu < \sigma\} = \sigma$ if $\sigma = \lambda$ or $\sigma < \lambda$ is a limit ordinal [3; 83.6, p. 100].

For convenience, let $I_{\rho} = \{\mu : \rho \le \mu < \rho + \omega\}$ and put $T_{\rho} = T \cap I_{\rho}$. For the construction of Σ , we distinguish two cases.

Case 1. $\tau = v + \omega$ for some $v < \tau$. We may assume, without loss of generality, that either v = 0 or v is a limit ordinal [6; pp. 295f, 271f]. Let $t < \omega$ and consider the cardinals

$$k_t = \sum_{\nu + t \le \mu \in T_{\nu}} f(\mu)$$
 and $l_t = \sum_{\nu + t \le \mu \in I_{\nu} \setminus T_{\nu}} f(\mu)$.

Let $m = \min \{k_t + l_t: t < \omega\}$. Since $v < v + \omega = \tau \le \lambda$, (2.11) implies

$$k_t + l_t = \sum_{\nu + t \le \mu \in I_{\nu}} f(\mu) \ge \aleph_0,$$

for each $t < \omega$. Hence, $m \ge \aleph_0$. If $k_t < m$ for some $t < \omega$, put $\Sigma = T_v$. Suppose that $k_t \ge m$ for all $t < \omega$. Then T_v contains an infinite subset T' such that, for all $t < \omega$, $\sum_{v+t \le \mu \in T'} f(\mu) \ge m$. In this case, pick any subset Σ of T' such that both Σ and $T' \setminus \Sigma$ are infinite. In either case, sup $\Sigma = \tau$ and

(2.12)
$$\sum_{\nu+t\leq \mu\in I_{\nu}\setminus\Sigma}f(\mu)=\sum_{\nu+t\leq \mu\in I_{\nu}}f(\mu)\geq\aleph_{0} \text{ for all } t<\omega.$$

Case 2. $\rho < \tau$ implies $\rho + \omega < \tau$. Let $\Delta = \{\rho < \tau: T_{\rho} \neq \emptyset, \rho \text{ limit}\}$. For each $\rho \in \Delta$, pick $\sigma_{\rho} \in T_{\rho}$ and let $\Sigma = \{\sigma_{\rho}: \rho \in \Delta\}$. Then sup $\Sigma = \tau$ [6; pp. 295, 296] as desired. In either case, the set Σ has been constructed. In order to define the functions g and h, consider an ordinal ρ such that either $\rho = 0$ or ρ is a limit ordinal for which $\rho + \omega \leq \tau$. Let

$$M_{\rho} = \{ \mu \in I_{\rho} : 0 \neq f(\mu) < \aleph_0, \ \mu \in \Sigma \}.$$

If M_{ρ} is finite, put $P_{\rho} = \emptyset$; otherwise, pick $P_{\rho} \subseteq M_{\rho}$ such that both P_{ρ} and $M_{\rho} \setminus P_{\rho}$ are infinite. Let

$$M = \bigcup \{ M_{\rho} : \rho + \omega \le \tau, \rho = 0 \text{ or } \rho \text{ limit} \},$$
$$P = \bigcup \{ P_{\rho} : \rho + \omega \le \tau, \rho = 0 \text{ or } \rho \text{ limit} \},$$

and define g and h by

$$g(\mu) = \begin{cases} 0 & \text{if } \tau \leq \mu, \\ 0 & \text{if } \mu \in M \setminus P, \\ f(\mu) & \text{if } \mu \in P \cup (\tau \setminus M), \end{cases}$$
$$h(\mu) = \begin{cases} f(\mu) & \text{if } \tau \leq \mu, \\ f(\mu) & \text{if } \mu \in \tau \setminus (P \cup \Sigma) \\ 0 & \text{if } \mu \in P \cup \Sigma. \end{cases}$$

Then (2.9) is satisfied. The fact that $f(\mu) = f(\mu) + f(\mu)$ whenever $\mu \in \tau \setminus (M \cup \Sigma)$ implies (2.4); (2.5) and (2.6) follow from (2.11) and (2.12), recalling that either both M_{ρ} and P_{ρ} are infinite or both are finite. The same argument implies

$$\aleph_0 + \sum_{\rho + t \le \mu \in M_\rho} f(\mu) \le \sum_{\rho + t \le \mu \in I_\rho \setminus M_\rho} f(\rho)$$

for all $t < \omega$, whenever ρ is a limit ordinal such that $\rho + \omega < \tau$ or $\rho = 0$. Thus, (2.7) follows from (2.10). It remains to verify (2.8). Let ρ be a limit ordinal such that $\rho + \omega < \lambda$. Because of (2.11), we may assume $\rho < \tau$. If $\rho + \omega < \tau$, (2.8) is a consequence of (2.10), (2.11), and the properties of M_{ρ} and N_{ρ} ; if $\rho = v$ where $v + \omega = \tau$, observe (2.12).

The following easy set theoretical result will be needed.

2.13. LEMMA. Let $\tau = \{\sigma : \sigma < \tau\}$ be a limit ordinal and let $f: \tau \to \tau$ be a function such that $f(\sigma) > \sigma$ for all $\sigma \in \tau$. Then there exists a subset $T \subseteq f(\tau)$ such that sup $T = \tau$ and, for every $\Sigma \subseteq T$, sup $\Sigma = \tau$ implies sup $[f^{-1}(\Sigma)] = \tau$.

Proof. Enlarge the domain of f by setting $f(\tau) = \tau$, ignoring the abuse of notation. Define ordinals η_{σ} inductively by $\eta_0 = 0$ and $\eta_{\mu} = f(\sup \{\eta_{\sigma}: \sigma < \mu\})$. Then there exists $\nu \le \tau$ such that $\eta_{\nu} = \tau$. Let ν be minimal with respect to this property. One verifies that the set $T = \{\eta_{\sigma}: \sigma < \nu\}$ meets the requirements.

2.14. LEMMA. Let G be totally projective of length λ and let $\tau \leq \lambda$ be a limit ordinal. Let $\varepsilon \in \text{End } G$ such that, for all $\sigma < \tau$, $p^{\sigma}G[p]\varepsilon \not\equiv p^{\tau}G$ and $p^{\sigma}G[p]\varepsilon \leq p^{\sigma+1}G$. Then, for all $k < \omega$, there are $A_k \leq G$, $w_k \in A_k$ and ordinals τ_k satisfying the following.

- (i) $G = \bigoplus_{k < \omega} A_k \oplus C$ for some $C \le G$.
- (ii) For each $k < \omega$, $p^{\tau_k} A_k = \langle w_k \rangle = \mathbb{Z}(p)$ and $\tau_k < \tau_{k+1} < \tau$.
- (iii) There exist $\phi, \psi \in \text{End } G$ such that, for all $k < \omega, w_k \phi \epsilon \psi = w_{k+1}$.

Proof. By hypothesis, for each $\sigma < \tau$, there exists $y_{\sigma} \in p^{\sigma}G[p]$ such that $y_{\sigma} \varepsilon \notin p^{\tau}G$. Define $f: \tau \to \tau$ by $f(\sigma) = h(y_{\sigma}\varepsilon)$. Then f satisfies the hypothesis of 2.13 and there exists $T \subseteq \tau$ as described in 2.13. In particular, sup $T = \tau$ and 2.3 is applicable. Hence, there are $A, B \leq G$ of length τ and λ , respectively, and $\Sigma \subseteq T$ such that $G = A \oplus B$, sup $\Sigma = \tau$ and, for all $\mu \in \Sigma$,

$$p^{\mu}G[p] = p^{\mu}A[p] \oplus p^{\mu+1}B[p].$$

Let $\Delta = \{\sigma < \tau : h(y_{\sigma}\varepsilon) \in \Sigma\}$ and let $\pi : G \to A$ be the natural projection annihilating B. Then $\Delta = f^{-1}(\Sigma)$, hence, by 2.13,

(2.15)
$$\tau = \sup \Delta,$$

and
$$0 \neq y_{\sigma} \in \pi \in A$$
 for all $\sigma \in \Delta$.

Since A is totally projective [3; (A), p. 89] of length τ and τ is a limit ordinal,

there exist $H_{\sigma} \leq A$ such that $A = \bigoplus_{\sigma < \tau} H_{\sigma}$, $p^{\sigma+1}H_{\sigma} = 0$ for all $\sigma < \tau$ [3; (e), p. 97]. Clearly, every $a \in A$ has finite support. Thus, for each $\sigma \in \Delta$, there exist ordinals η_{σ} , ρ_{σ} such that $\sigma < \eta_{\sigma} \leq \rho_{\sigma} < \tau$ and $0 \neq y_{\sigma} \varepsilon \pi \in \bigoplus_{\eta_{\sigma} \leq \mu \leq \rho_{\sigma}} H_{\mu}$. By (2.15), we may select countably many $\sigma_k \in \Delta$, $k < \omega$, such that $\sigma_{k+1} \geq \rho_{\sigma_k}$ for all $k < \omega$. Simplifying our notation without going through a formal renaming process, we write y_k instead of y_{σ_k} and ρ_k instead of ρ_{σ_k} . Let $v_k = h(y_k)$ and $\mu_k = h(y_k \varepsilon \pi)$. Then $\sigma_k \leq v_k < \mu_k \leq \rho_k \leq \sigma_{k+1}$, and

(2.16)
$$y_k \varepsilon \pi \in L_k$$
 where $L_k = \bigoplus_{\mu_k \le \mu \le \rho_k} H_{\mu}$.

Clearly,

$$(2.17) G = \bigoplus_{k < \omega} L_k \oplus H$$

for some $H \leq G$. By [1; 3.3, p. 15], every totally projective *p*-group *L* is a direct sum of subgroups each of which has a *p*-basis with exactly one minimal element; and the lengths of those summands cannot exceed the length of *L*. Using the fact that L_k has length $\rho_k + 1$ it follows that, for each $k < \omega$, L_k has a decomposition of the form $L_k = A_k \oplus B_k$, where $p^{\tau_k}A_k = \mathbb{Z}(p)$ for some ordinal τ_k such that $\mu_k \leq \tau_k \leq \rho_k$. Since $\rho_k \leq \sigma_{k+1} < \mu_{k+1}$, we have $\tau_k < \tau_{k+1}$ for all $k < \omega$. Let $w_k \in A_k$ such that $p^{\tau_k}A_k = \langle w_k \rangle$. Then $\tau_k = h(w_k) \leq \rho_k \leq \sigma_{k+1} \leq$ $v_{k+1} = h(y_{k+1})$. Thus, for each $k < \omega$, there is a homomorphism from A_k to *G* mapping w_k to y_{k+1} [7; 3.9, p. 252]. Since, for suitable $C \leq G$, $G = \bigoplus_{k < \omega} A_k \oplus C$, there exists $\phi \in$ End *G* such that $w_k \phi = y_{k+1}$ for all $k < \omega$ [2; 8.1, p. 40]. Likewise, $h(y_k \varepsilon \pi) = \mu_k \leq \tau_k = h(w_k)$, and, recalling (2.16) and (2.17), the same argument implies the existence of $\psi' \in$ End *G* such that $y_k \varepsilon \pi \psi' = w_k$ and thus, $w_k \phi \varepsilon \pi \psi' = y_{k+1} \varepsilon \pi \psi' = w_{k+1}$ for all $k < \omega$. Setting $\pi \psi' = \psi$, the conclusion follows.

3. Main results

In the following proposition, G need not be totally projective.

3.1. PROPOSITION. Let $\varepsilon \in$ End G and assume the validity of (i), (ii), (iii) of 2.14. Then $\varepsilon \notin J(\text{End } G)$.

Proof. Assume, by way of contradiction, that $\varepsilon \in J(\text{End } G)$. Let $\pi \in \text{End } G$ be the natural projection of G onto $\bigoplus_{k < \omega} A_k$ corresponding to the decomposition (i). Put $\beta = \phi \varepsilon \psi \pi$. Then

(3.2)
$$w_k \beta = w_{k+1} \quad \text{for all } k < \omega,$$

 $C\beta = 0$, and $\beta \in J(\text{End } G)$. Hence $1 - \beta$ is an automorphism and there exists $\gamma \in \text{End } G$ such that $(1 - \beta)^{-1} = 1 - \gamma$. A straightforward computation shows that

(3.3)
$$\beta = \beta \gamma - \gamma, \ \beta \gamma = \gamma \beta,$$

and (3.2) implies

(3.4)
$$w_{k+1} = w_{k+1}\gamma - w_k\gamma \text{ for all } k < \omega.$$

Let $y = w_0(1 - \gamma)$ and let $z_n = w_0 + w_1 + \dots + w_n$. Then, by (3.4),

$$z_n = w_0 + (w_1 \gamma - w_0 \gamma) + (w_2 \gamma - w_1 \gamma) + \dots + (w_n \gamma - w_{n-1} \gamma),$$

= w_0(1 - \gamma) + w_n \gamma.

Thus, $y - z_n = (-w_n)y$ has height at least τ_n which implies that, for all $k < \omega$, the component of y in the kth summand of the decomposition 2.14 (i) is w_k . This is plainly impossible and the proof is completed.

3.5. THEOREM. Let G be totally projective of length λ and let $\varepsilon \in J(\text{End } G)$. Then, for each $0 < \tau \leq \lambda$, there exists $\sigma < \tau$ such that $p^{\sigma}G[p]\varepsilon \leq p^{\tau}G$.

Proof. Assume, by way of contradiction, that, for all $\sigma < \tau$, $p^{\sigma}G[p] \in \not\leq p^{t}G$. Then, by 2.2, ε satisfies the hypothesis of 2.14 and (i), (ii), (iii) hold. Apply 3.1.

3.6. THEOREM. Let G be totally projective of length λ and let $\varepsilon \in J(\text{End } G)$. Then there exist finitely many ordinals

$$0 = \beta_0 < \beta_1 < \cdots < \beta_n < \beta_{n+1} = \lambda$$

such that, for i = 0, ..., n, $p^{\beta_i}G[p] \varepsilon \leq p^{\beta_{i+1}}G$.

Proof. Use 3.5 together with the fact that every properly decreasing sequence of ordinals terminates after finitely many steps [6; p. 270].

If ε has the properties stated in 3.6 then $\varepsilon \in \bigcap_{i=0}^{n} \operatorname{Ann}(p^{\beta_i}G[p]/p^{\beta_{i+1}}G[p])$, and $\varepsilon \mid G[p]$ is nilpotent. Recalling 2.1, we have the following result.

3.7. COROLLARY. Let G be a totally projective p-group and let J be an ideal of End G. Then J is quasi-regular if and only if J induces in G[p] a nil ring of endomorphisms.

The description of the Jacobson radical of End G is now complete.

3.8. THEOREM. If G is a totally projective p-group of length λ then

$$J(\operatorname{End} G) = \bigcup_{n < \omega} \left(\bigcup_{0 = \beta_0 < \beta_1 < \cdots < \beta_{n+1} = \lambda} \left[\bigcap_{i=0}^n \operatorname{Ann} \left(p^{\beta_i} G[p] / p^{\beta_{i+1}} G[p] \right) \right] \right).$$

Proof. Let J denote the right hand side of this equation. Then $\varepsilon | G[p]$ is nilpotent for every $\varepsilon \in J$. Thus, using 3.6 and 3.7, it remains to show that J is an ideal. This follows from the fact that, if

$$0 = \beta_0 < \beta_1 < \cdots < \beta_{n+1} = \lambda$$
 and $0 = \gamma_0 < \gamma_1 < \cdots < \gamma_{m+1} = \lambda$

are ordinals such that $\{\beta_i\}_{i \le n+1} \subseteq \{\gamma_i\}_{i \le m+1}$ and $p^{\beta_i}G[p] \ge p^{\beta_{i+1}}G$ for $0 \le i \le n$, then $p^{\gamma_i}G[p] \ge p^{\gamma_{i+1}}G$ for $0 \le i \le m$.

References

- 1. P. CRAWLEY AND A. W. HALES, The structure of abelian p-groups given by certain presentations, J. Algebra, vol. 12 (1969), pp. 10–23.
- 2. L. FUCHS, Infinite abelian groups, vol. I, Academic Press, New York, 1970.
- 3. , Infinite abelian groups, vol. II, Academic Press, New York, 1973.
- 4. N. JACOBSON, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Revised Edition, Amer. Math. Soc., Providence, R.I., 1968.
- 5. R. S. PIERCE, "Homomorphisms of primary abelian groups" in *Topics in abelian groups*, Scott, Foresman, Chicago, 1963, pp. 215-310.
- 6. W. SIERPINSKI, Cardinal and ordinal numbers, Warszawa, 1958.
- 7. E. A. WALKER, The groups P_{β} , Symposia Math., vol. 13, Academic Press, New York, 1974, pp. 245-255.

University of Houston Houston, Texas