QUASI-REGULAR IDEALS OF SOME ENDOMORPHISM RINGS

Jutta Hausen ${ }^{1}$

1. Introduction

If α is an endomorphism of the abelian p-group G such that $x \alpha=x$ for all x in G of order p then α is one-to-one and onto [5;13.1, p. 279]. It follows that the set Ann $G[p]$ of all endomorphisms of G annihilating $G[p]$ is a quasi-regular (two-sided) ideal of the endomorphism ring End G of G. In general, not every element of Ann $G[p]$ is nilpotent which shows that the Jacobson radical $J($ End $G)$ of End G need not be nil. It is an easy exercise in ring theory to verify that an ideal J of a ring R with identity is quasi-regular if there exists a quasi-regular ideal L of R such that $(J+L) / L$ is nil. Thus, for endomorphism rings of abelian p-groups, the famous problem whether the Jacobson radical needs to be nil reduces to the question whether $J($ End $G)$ is a nil extension of the quasi-regular ideal $L=$ Ann $G[p]$.

In this article we show that the answer to this question is affirmative if G is totally projective. In general, this is not the case: if G is unbounded and torsioncomplete, then $J($ End $G)$ contains elements no power of which annihilate $G[p]$ [5; 14.6, p. 287].

Throughout the following, G denotes a totally projective abelian p-group, where p is some fixed prime. A complete description of $J($ End $G)$ is given in 3.8: if λ denotes the length of G then $J($ End G) consists of all ε in End G for which there exists a finite sequence of ordinals

$$
0=\beta_{0}<\beta_{1}<\cdots<\beta_{n}<\beta_{n+1}=\lambda
$$

such that $p^{\beta_{i}} G[p] \varepsilon \leq p^{\beta_{i+1}} G$ for $i=0,1, \ldots, n$. It follows that an ideal of End G is quasi-regular if and only if its restriction to $G[p]$ is a nil ring.

The proof largely depends on a strong decomposition theorem for totally projective p-groups (2.3) which may be of independent interest.

2. Tools

Notation and terminology will follow [2], [3], [4] unless explained otherwise. The word "ideal" will always mean two-sided ideal. A ring is called nil if all of its elements are nilpotent. Given fully invariant subgroups $A \leq B$ of G, the set

[^0]of all ε in End G such that $B \varepsilon \leq A$ is denoted by Ann (B / A). Clearly, Ann (B / A) is an ideal of End G. We shall make frequent use of the following result.
2.1. If J is an ideal of End G such that $J \mid G[p]$ is nil then J is quasi-regular.

Let σ be an ordinal. Since G is totally projective, every endomorphism of $p^{\sigma} G$ can be extended to an endomorphism of $G[7 ; 3.9, p$. 252]. Thus, the restriction of $J($ End $G)$ to $p^{\sigma} G$ is a quasi-regular ideal of End $p^{\sigma} G$, and [5; 14.2 and 14.4, pp. 284, 286] implies the following fact.
2.2. If $\varepsilon \in J($ End $G)$ then $p^{\sigma} G[p] \varepsilon \leq p^{\sigma+1} G$ for every ordinal σ.

In order to construct certain endomorphisms, the following decomposition theorem will be needed. If Σ is a set of ordinals, sup Σ denotes the smallest ordinal that is greater than or equal to every σ in Σ. As customary, $\tau=\{\sigma: \sigma<\tau\}$.
2.3. Theorem. Let G be a totally projective p-group of length λ, let $\tau \leq \lambda$ be a limit ordinal, and let T be a set of ordinals such that $T \subseteq \tau$ and $\tau=\sup T$. Then there exist $\Sigma \subseteq T$ and subgroups A and B of G satisfying the following: (i) $\tau=\sup \Sigma$; (ii) A has length τ and B has length λ; (iii) $G=A \oplus B$; (iv) For all $\sigma \in \Sigma, p^{\sigma} G[p]=p^{\sigma} A[p] \oplus p^{\sigma+1} B[p]$.

Proof. If $\lambda=\omega=\tau$ then G is a direct sum of cyclic groups [7; 3.5, p. 251] and 2.3 holds with Σ any infinite subset of T such that $T \backslash \Sigma$ is infinite. Suppose that $\lambda>\omega$ and let f be the Ulm-Kaplansky function of G, i.e.,

$$
f(\mu)=r k\left(p^{\mu} G[p] / p^{\mu+1} G[p]\right)
$$

for every μ. It suffices to construct $\Sigma \subseteq T$ such that $\tau=\sup \Sigma$ and functions g and h from the ordinals to the cardinals satisfying the following conditions
(2.4) $f(\mu)=g(\mu)+h(\mu)$ for every μ.
(2.5) $\tau=\sup \{\mu+1: g(\mu) \neq 0\}$.
(2.6) $\lambda=\sup \{\mu+1: h(\mu) \neq 0\}$.
(2.7) For each limit ordinal $\rho<\tau$ such that $\rho+\omega<\tau$ and for each $t<\omega$, $\sum_{\rho+\omega \leq \mu<\tau} g(\mu) \leq \sum_{t \leq n<\omega} g(\rho+n)$.
(2.8) For each limit ordinal $\rho<\lambda$ such that $\rho+\omega<\lambda$ and for each $t<\omega$, $\sum_{\rho+\omega \leq \mu<\lambda} h(\mu) \leq \sum_{i \leq n<\omega} h(\rho+n)$.
(2.9) $h(\sigma)=0$ for all $\sigma \in \Sigma$.

In fact, by [3;83.6, p. 100], there exist totally projective groups A and B whose Ulm-Kaplansky functions are g and h respectively. By (2.4), the UlmKaplansky function of $A \oplus B$ is f, so that $G \simeq A \oplus B$ by [3; 83.3, p. 98]. Property (iv) is a direct consequence of (2.9). Since f is the Ulm-Kaplansky function of G,
(2.10) $\sum_{\rho+\omega \leq \mu<\lambda} f(\mu) \leq \sum_{t \leq n<\omega} f(\rho+n)$, for each limit ordinal ρ such that $\rho+\omega<\lambda$ and all $t<\omega$;
furthermore,
(2.11) $\sup \{\mu+1: f(\mu) \neq 0, \mu<\sigma\}=\sigma$ if $\sigma=\lambda$ or $\sigma<\lambda$ is a limit ordinal [3; 83.6, p. 100].

For convenience, let $I_{\rho}=\{\mu: \rho \leq \mu<\rho+\omega\}$ and put $T_{\rho}=T \cap I_{\rho}$. For the construction of Σ, we distinguish two cases.

Case 1. $\quad \tau=v+\omega$ for some $v<\tau$. We may assume, without loss of generality, that either $v=0$ or v is a limit ordinal [6; pp. 295f, 271f]. Let $t<\omega$ and consider the cardinals

$$
k_{t}=\sum_{v+t \leq \mu \in T_{v}} f(\mu) \text { and } l_{t}=\sum_{v+t \leq \mu \in I_{v} \backslash T_{v}} f(\mu) .
$$

Let $m=\min \left\{k_{t}+l_{t}: t<\omega\right\}$. Since $v<v+\omega=\tau \leq \lambda$, (2.11) implies

$$
k_{t}+l_{t}=\sum_{v+t \leq \mu \in I_{v}} f(\mu) \geq \aleph_{0}
$$

for each $t<\omega$. Hence, $m \geq \boldsymbol{\aleph}_{0}$. If $k_{t}<m$ for some $t<\omega$, put $\Sigma=T_{v}$. Suppose that $k_{t} \geq m$ for all $t<\omega$. Then T_{v} contains an infinite subset T^{\prime} such that, for all $t<\omega, \sum_{v+t \leq \mu \in T^{\prime}} f(\mu) \geq m$. In this case, pick any subset Σ of T^{\prime} such that both Σ and $T^{\prime} \mid \Sigma$ are infinite. In either case, sup $\Sigma=\tau$ and

$$
\begin{equation*}
\sum_{v+t \leq \mu \in I_{v} \backslash \Sigma} f(\mu)=\sum_{v+t \leq \mu \in I_{v}} f(\mu) \geq \aleph_{0} \quad \text { for all } t<\omega . \tag{2.12}
\end{equation*}
$$

Case 2. $\rho<\tau$ implies $\rho+\omega<\tau$. Let $\Delta=\left\{\rho<\tau: T_{\rho} \neq \emptyset, \rho\right.$ limit $\}$. For each $\rho \in \Delta$, pick $\sigma_{\rho} \in T_{\rho}$ and let $\Sigma=\left\{\sigma_{\rho}: \rho \in \Delta\right\}$. Then sup $\Sigma=\tau$ [6; pp. 295, 296] as desired. In either case, the set Σ has been constructed. In order to define the functions g and h, consider an ordinal ρ such that either $\rho=0$ or ρ is a limit ordinal for which $\rho+\omega \leq \tau$. Let

$$
M_{\rho}=\left\{\mu \in I_{\rho}: 0 \neq f(\mu)<\aleph_{0}, \mu \in \Sigma\right\}
$$

If M_{ρ} is finite, put $P_{\rho}=\emptyset$; otherwise, pick $P_{\rho} \subseteq M_{\rho}$ such that both P_{ρ} and $M_{\rho} \backslash P_{\rho}$ are infinite. Let

$$
\begin{aligned}
M & =\bigcup\left\{M_{\rho}: \rho+\omega \leq \tau, \rho=0 \text { or } \rho \text { limit }\right\} \\
P & =\bigcup\left\{P_{\rho}: \rho+\omega \leq \tau, \rho=0 \text { or } \rho \text { limit }\right\}
\end{aligned}
$$

and define g and h by

$$
\begin{aligned}
& g(\mu)= \begin{cases}0 & \text { if } \tau \leq \mu, \\
0 & \text { if } \mu \in M \backslash P \\
f(\mu) & \text { if } \mu \in P \cup(\tau \backslash M),\end{cases} \\
& h(\mu)= \begin{cases}f(\mu) & \text { if } \tau \leq \mu, \\
f(\mu) & \text { if } \mu \in \tau \backslash(P \cup \Sigma) \\
0 & \text { if } \mu \in P \cup \Sigma .\end{cases}
\end{aligned}
$$

Then (2.9) is satisfied. The fact that $f(\mu)=f(\mu)+f(\mu)$ whenever $\mu \in \tau \backslash(M \cup \Sigma)$ implies (2.4); (2.5) and (2.6) follow from (2.11) and (2.12), recalling that either both M_{ρ} and P_{ρ} are infinite or both are finite. The same argument implies

$$
\aleph_{0}+\sum_{\rho+t \leq \mu \in M_{\rho}} f(\mu) \leq \sum_{\rho+t \leq \mu \in I_{\rho} \backslash M_{\rho}} f(\rho)
$$

for all $t<\omega$, whenever ρ is a limit ordinal such that $\rho+\omega<\tau$ or $\rho=0$. Thus, (2.7) follows from (2.10). It remains to verify (2.8). Let ρ be a limit ordinal such that $\rho+\omega<\lambda$. Because of (2.11), we may assume $\rho<\tau$. If $\rho+\omega<\tau$, (2.8) is a consequence of (2.10), (2.11), and the properties of M_{ρ} and N_{ρ}; if $\rho=v$ where $v+\omega=\tau$, observe (2.12).

The following easy set theoretical result will be needed.
2.13. Lemma. Let $\tau=\{\sigma: \sigma<\tau\}$ be a limit ordinal and let $f: \tau \rightarrow \tau$ be a function such that $f(\sigma)>\sigma$ for all $\sigma \in \tau$. Then there exists a subset $T \subseteq f(\tau)$ such that $\sup T=\tau$ and, for every $\Sigma \subseteq T$, sup $\Sigma=\tau$ implies sup $\left[f^{-1}(\Sigma)\right]=\tau$.

Proof. Enlarge the domain of f by setting $f(\tau)=\tau$, ignoring the abuse of notation. Define ordinals η_{σ} inductively by $\eta_{0}=0$ and $\eta_{\mu}=f\left(\sup \left\{\eta_{\sigma}: \sigma<\mu\right\}\right.$). Then there exists $v \leq \tau$ such that $\eta_{v}=\tau$. Let v be minimal with respect to this property. One verifies that the set $T=\left\{\eta_{\sigma}: \sigma<\nu\right\}$ meets the requirements.
2.14. Lemma. Let G be totally projective of length λ and let $\tau \leq \lambda$ be a limit ordinal. Let $\varepsilon \in$ End G such that, for all $\sigma<\tau, p^{\sigma} G[p] \varepsilon \nsubseteq p^{\tau} G$ and $p^{\sigma} G[p] \varepsilon \leq p^{\sigma+1} G$. Then, for all $k<\omega$, there are $A_{k} \leq G, w_{k} \in A_{k}$ and ordinals τ_{k} satisfying the following.
(i) $G=\oplus_{k<\omega} A_{k} \oplus C$ for some $C \leq G$.
(ii) For each $k<\omega, p^{\tau_{k}} A_{k}=\left\langle w_{k}\right\rangle=\mathbf{Z}(p)$ and $\tau_{k}<\tau_{k+1}<\tau$.
(iii) There exist $\phi, \psi \in$ End G such that, for all $k<\omega, w_{k} \phi \varepsilon \psi=w_{k+1}$.

Proof. By hypothesis, for each $\sigma<\tau$, there exists $y_{\sigma} \in p^{\sigma} G[p]$ such that $y_{\sigma} \varepsilon \notin p^{\tau} G$. Define $f: \tau \rightarrow \tau$ by $f(\sigma)=h\left(y_{\sigma} \varepsilon\right)$. Then f satisfies the hypothesis of 2.13 and there exists $T \subseteq \tau$ as described in 2.13. In particular, sup $T=\tau$ and 2.3 is applicable. Hence, there are $A, B \leq G$ of length τ and λ, respectively, and $\Sigma \subseteq T$ such that $G=A \oplus B, \sup \Sigma=\tau$ and, for all $\mu \in \Sigma$,

$$
p^{\mu} G[p]=p^{\mu} A[p] \oplus p^{\mu+1} B[p]
$$

Let $\Delta=\left\{\sigma<\tau: h\left(y_{\sigma} \varepsilon\right) \in \Sigma\right\}$ and let $\pi: G \rightarrow A$ be the natural projection annihilating B. Then $\Delta=f^{-1}(\Sigma)$, hence, by 2.13 ,

$$
\begin{equation*}
\tau=\sup \Delta \tag{2.15}
\end{equation*}
$$

and

$$
0 \neq y_{\sigma} \varepsilon \pi \in A \quad \text { for all } \sigma \in \Delta
$$

Since A is totally projective [3; (A), p. 89] of length τ and τ is a limit ordinal,
there exist $H_{\sigma} \leq A$ such that $A=\oplus_{\sigma<\tau} H_{\sigma}, p^{\sigma+1} H_{\sigma}=0$ for all $\sigma<\tau[3$; (e), p. 97]. Clearly, every $a \in A$ has finite support. Thus, for each $\sigma \in \Delta$, there exist ordinals $\eta_{\sigma}, \rho_{\sigma}$ such that $\sigma<\eta_{\sigma} \leq \rho_{\sigma}<\tau$ and $0 \neq y_{\sigma} \varepsilon \pi \in \oplus_{\eta_{\sigma} \leq \mu \leq \rho_{\sigma}} H_{\mu}$. By (2.15), we may select countably many $\sigma_{k} \in \Delta, k<\omega$, such that $\sigma_{k+1} \geq \rho_{\sigma_{k}}$ for all $k<\omega$. Simplifying our notation without going through a formal renaming process, we write y_{k} instead of $y_{\sigma_{k}}$ and ρ_{k} instead of $\rho_{\sigma_{k}}$. Let $v_{k}=h\left(y_{k}\right)$ and $\mu_{k}=h\left(y_{k} \varepsilon \pi\right)$. Then $\sigma_{k} \leq v_{k}<\mu_{k} \leq \rho_{k} \leq \sigma_{k+1}$, and

$$
\begin{equation*}
y_{k} \varepsilon \pi \in L_{k} \quad \text { where } \quad L_{k}=\underset{\mu_{k} \leq \mu \leq \rho_{k}}{\oplus} H_{\mu} \tag{2.16}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
G=\underset{k<\omega}{\oplus} L_{k} \oplus H \tag{2.17}
\end{equation*}
$$

for some $H \leq G$. By $[1 ; 3.3$, p. 15], every totally projective p-group L is a direct sum of subgroups each of which has a p-basis with exactly one minimal element; and the lengths of those summands cannot exceed the length of L. Using the fact that L_{k} has length $\rho_{k}+1$ it follows that, for each $k<\omega, L_{k}$ has a decomposition of the form $L_{k}=A_{k} \oplus B_{k}$, where $p^{\tau_{k}} A_{k}=\mathbf{Z}(p)$ for some ordinal τ_{k} such that $\mu_{k} \leq \tau_{k} \leq \rho_{k}$. Since $\rho_{k} \leq \sigma_{k+1}<\mu_{k+1}$, we have $\tau_{k}<\tau_{k+1}$ for all $k<\omega$. Let $w_{k} \in A_{k}$ such that $p^{\tau_{k}} A_{k}=\left\langle w_{k}\right\rangle$. Then $\tau_{k}=\dot{h}\left(w_{k}\right) \leq \rho_{k} \leq \sigma_{k+1} \leq$ $v_{k+1}=h\left(y_{k+1}\right)$. Thus, for each $k<\omega$, there is a homomorphism from A_{k} to G mapping w_{k} to $y_{k+1}[7 ; 3.9$, p. 252]. Since, for suitable $C \leq G$, $G=\oplus_{k<\omega} A_{k} \oplus C$, there exists $\phi \in$ End G such that $w_{k} \phi=y_{k+1}$ for all $k<\omega$ [2; 8.1, p. 40]. Likewise, $h\left(y_{k} \varepsilon \pi\right)=\mu_{k} \leq \tau_{k}=h\left(w_{k}\right)$, and, recalling (2.16) and (2.17), the same argument implies the existence of $\psi^{\prime} \in$ End G such that $y_{k} \varepsilon \pi \psi^{\prime}=w_{k}$ and thus, $w_{k} \phi \varepsilon \pi \psi^{\prime}=y_{k+1} \varepsilon \pi \psi^{\prime}=w_{k+1}$ for all $k<\omega$. Setting $\pi \psi^{\prime}=\psi$, the conclusion follows.

3. Main results

In the following proposition, G need not be totally projective.
3.1. Proposition. Let $\varepsilon \in$ End G and assume the validity of (i), (ii), (iii) of 2.14. Then $\varepsilon \notin J($ End $G)$.

Proof. Assume, by way of contradiction, that $\varepsilon \in J$ (End $G)$. Let $\pi \in$ End G be the natural projection of G onto $\oplus_{k<\omega} A_{k}$ corresponding to the decomposition (i). Put $\beta=\phi \varepsilon \psi \pi$. Then

$$
\begin{equation*}
w_{k} \beta=w_{k+1} \quad \text { for all } k<\omega \tag{3.2}
\end{equation*}
$$

$C \beta=0$, and $\beta \in J($ End $G)$. Hence $1-\beta$ is an automorphism and there exists $\gamma \in$ End G such that $(1-\beta)^{-1}=1-\gamma$. A straightforward computation shows that

$$
\begin{equation*}
\beta=\beta \gamma-\gamma, \beta \gamma=\gamma \beta \tag{3.3}
\end{equation*}
$$

and (3.2) implies

$$
\begin{equation*}
w_{k+1}=w_{k+1} \gamma-w_{k} \gamma \quad \text { for all } k<\omega \tag{3.4}
\end{equation*}
$$

Let $y=w_{0}(1-\gamma)$ and let $z_{n}=w_{0}+w_{1}+\cdots+w_{n}$. Then, by (3.4),

$$
\begin{aligned}
z_{n} & =w_{0}+\left(w_{1} \gamma-w_{0} \gamma\right)+\left(w_{2} \gamma-w_{1} \gamma\right)+\cdots+\left(w_{n} \gamma-w_{n-1} \gamma\right) \\
& =w_{0}(1-\gamma)+w_{n} \gamma .
\end{aligned}
$$

Thus, $y-z_{n}=\left(-w_{n}\right) \gamma$ has height at least τ_{n} which implies that, for all $k<\omega$, the component of y in the k th summand of the decomposition 2.14 (i) is w_{k}. This is plainly impossible and the proof is completed.
3.5. Theorem. Let G be totally projective of length λ and let $\varepsilon \in J$ (End G). Then, for each $0<\tau \leq \lambda$, there exists $\sigma<\tau$ such that $p^{\sigma} G[p] \varepsilon \leq p^{\tau} G$.

Proof. Assume, by way of contradiction, that, for all $\sigma<\tau, p^{\sigma} G[p] \varepsilon \npreceq p^{\tau} G$. Then, by $2.2, \varepsilon$ satisfies the hypothesis of 2.14 and (i), (ii), (iii) hold. Apply 3.1.
3.6. Theorem. Let G be totally projective of length λ and let $\varepsilon \in J$ (End G). Then there exist finitely many ordinals

$$
0=\beta_{0}<\beta_{1}<\cdots<\beta_{n}<\beta_{n+1}=\lambda
$$

such that, for $i=0, \ldots, n, p^{\beta_{i}} G[p] \varepsilon \leq p^{\beta_{i+1}} G$.
Proof. Use 3.5 together with the fact that every properly decreasing sequence of ordinals terminates after finitely many steps [6; p. 270].

If ε has the properties stated in 3.6 then $\varepsilon \in \bigcap_{i=0}^{n}$ Ann ($p^{\beta_{i}} G[p] / p^{\beta_{i}+1} G[p]$), and $\varepsilon \mid G[p]$ is nilpotent. Recalling 2.1, we have the following result.
3.7. Corollary. Let G be a totally projective p-group and let J be an ideal of End G. Then J is quasi-regular if and only if J induces in $G[p]$ a nil ring of endomorphisms.

The description of the Jacobson radical of End G is now complete.
3.8. Theorem. If G is a totally projective p-group of length λ then

$$
J(\text { End } G)=\bigcup_{n<\omega}\left(\bigcup_{0=\beta_{0}<\beta_{1}<\cdots<\beta_{n+1}=\lambda}\left[\bigcap_{i=0}^{n} \operatorname{Ann}\left(p^{\beta_{i}} G[p] / p^{\beta_{i+1}} G[p]\right)\right]\right)
$$

Proof. Let J denote the right hand side of this equation. Then $\varepsilon \mid G[p]$ is nilpotent for every $\varepsilon \in J$. Thus, using 3.6 and 3.7 , it remains to show that J is an ideal. This follows from the fact that, if

$$
0=\beta_{0}<\beta_{1}<\cdots<\beta_{n+1}=\lambda \quad \text { and } \quad 0=\gamma_{0}<\gamma_{1}<\cdots<\gamma_{m+1}=\lambda
$$

are ordinals such that $\left\{\beta_{i}\right\}_{i \leq n+1} \subseteq\left\{\gamma_{i}\right\}_{i \leq m+1}$ and $p^{\beta_{i}} G[p] \varepsilon \leq p^{\beta_{i+1}} G$ for $0 \leq i \leq n$, then $p^{\gamma_{i}} G[p] \varepsilon \leq p^{\gamma_{i+1}} G$ for $0 \leq i \leq m$.

References

1. P. Crawley and A. W. Hales, The structure of abelian p-groups given by certain presentations, J. Algebra, vol. 12 (1969), pp. 10-23.
2. L. Fuchs, Infinite abelian groups, vol. I, Academic Press, New York, 1970.
3. ——, Infinite abelian groups, vol. II, Academic Press, New York, 1973.
4. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Revised Edition, Amer. Math. Soc., Providence, R.I., 1968.
5. R. S. Pierce, "Homomorphisms of primary abelian groups" in Topics in abelian groups, Scott, Foresman, Chicago, 1963, pp. 215-310.
6. W. Sierpinski, Cardinal and ordinal numbers, Warszawa, 1958.
7. E. A. Walker, The groups P_{β}, Symposia Math., vol. 13, Academic Press, New York, 1974, pp. 245-255.

University of Houston
Houston, Texas

[^0]: Received May 24, 1976.
 ${ }^{1}$ This research was supported in part by a University of Houston Faculty Development Leave Grant.

