RECURSION IN THE EXTENDED SUPERJUMP

BY
Philip Lavori ${ }^{1}$

The history of the investigation into recursion in the superjump is a long and complicated one, with many people contributing pieces of information. The final word on the type three object defined first by R. O. Gandy [3],

$$
S(F, \alpha . e) \simeq \begin{cases}0 & \text { if }\{e\}(\alpha, F) \text { converges } \\ 1 & \text { otherwise }\end{cases}
$$

was had by Leo Harrington [4], [5] after Peter Aczel and Peter Hinman obtained partial results. The results obtained were:
(A) The first ordinal not recursive in the superjump, ω_{1}^{S}, equals ρ_{0}, the first recursively Mahlo ordinal.
(B) 1 -sc $S=L \rho_{0} \cap 2^{\omega}$ where $L \rho_{0}$ is the collection of sets constructible before ρ_{0}.

The basic interest in the superjump stems from the fact that, unlike the normal type three objects, which involve ineluctibly uncountable computations, the superjump applied to a type two object can be viewed as a countable computation. This can be seen more clearly by replacing the superjump by the equivalent

$$
\mathscr{E}(F) \simeq \begin{cases}0 & \text { if } \exists \alpha \varepsilon 1-\operatorname{sc} F[F(\alpha)=0] \\ 1 & \text { otherwise }\end{cases}
$$

Then, of course, we see that the value of \mathscr{E} applied to F only depends on 1 -sc F. The fact that S (and \mathscr{E}) are strictly weaker than ${ }^{3} E$ makes it impossible to apply the techniques of Shoenfield and Sacks without alteration, and it is the reason that the analysis of recursion based S has been so difficult.

After result (B) above, the situation remained unsatisfactory, because of the fact that 1-env $S=\Pi_{2}^{1}$. As has been noted by Harrington, and others, this fact arises because some computations from the superjump may diverge for "the wrong reasons." For example, if a λ-term which defines a partial type two object \dot{F} arises and is taken as an argument for S, the computation will diverge because \dot{F} is not total, even though \dot{F} may be defined at all "relevant" objects, for example, on 1 -sc \dot{F}.

[^0]Harrington, in [5] has eliminated this pathology by introducing the notion of "reindexing," a procedure by which the 1-env S is "shrunk" by casting out all computation which diverge for "avoidable" reasons.

The result of these manipulations of the notion of 1-envelope is to obtain a collection which will serve as an appropriate substitute for that notion, and which is a Spector class Γ, whose self dual class Δ is the 1 -section of S.

We will show in the following that the same end can be accomplished by replacing the object \mathscr{E} by the extended object \mathscr{E}^{*}, which we claim is the correct generalization to type three of the ordinary jump.

$$
\mathscr{E}^{*}(\dot{F}) \simeq \begin{cases}0 & \text { if } \dot{F} \text { is defined on its } 1 \text {-section and } \exists \alpha \varepsilon 1-\operatorname{sc} \dot{F}[\dot{F}(\alpha) \simeq 0] \\ 1 & \text { if } \dot{F} \text { is defined on its } 1 \text {-section and } \forall \alpha \varepsilon 1-\operatorname{sc} \dot{F}[\dot{F}(\alpha)>0] \\ & \text { undefined otherwise. }\end{cases}
$$

Section 1

Definition. For a possibly partial type two object \dot{F}, \dot{F} is acceptable if \dot{F} is defined on its 1 -section.

Then, if recursion in \mathscr{E}^{*} is defined à la Kleene, with the alteration of clause S8 to a clause which represents the application of \mathscr{E}^{*}; we will obtain:
(C) 1-env \mathscr{E}^{*} is a Spector class Γ and $\Delta=1$-sc $\mathscr{E}^{*}=1$-sc $\mathscr{E}=1$-sc $S=$ $L \rho_{0} \cap 2^{\omega}$.
(D) 1-env $\mathscr{E}^{*}=\Sigma_{1}\left(L \rho_{0}\right) \cap 2^{\omega}$.

We emphasize that the proof of (C) and (D) above will consist in large part of a compendium of results from Aczel, Hinman, and Harrington, and that our own addition is basically a trick which elucidates the starred situation.

We will begin by recapitulating Harrington's definition of the hierarchy for S. A set of notations η, a set H_{u} for each $u \in \eta$, and a map | $\mid: \eta \rightarrow O N$ are defined.
(a) $1 \in \eta ;|1|=0 ; H_{1}=\omega$.
(b) If $x \in \eta$ then $2^{x} \in \eta ;\left|2^{x}\right|=|x|+1$ and $H_{2} x=\left\{e \mid\{e\}^{H_{x}}\right.$ is total $\}$.
(c) If $n \in \eta$ and for all $i \in \omega,\{e\}^{H_{n}}(i) \in \eta$, then $3^{n} \cdot 5^{e} \in \eta ;\left|3^{n} \cdot 5^{e}\right|$ is the first limit ordinal greater than $|n|$ and $\left|\{e\}^{H_{n}}(i)\right|$ for all i, and

$$
H_{3^{n .5}}=\left\{\langle m, 0\rangle| | m|\nless| 3^{n} \cdot 5^{e} \mid\right\}\left\{\langle m, a+1\rangle| | m\left|<\left|3^{n} \cdot 5^{e}\right| \text { and } a \in H_{m}\right\} .\right.
$$

(d) If σ is an ordinal and e is a recursive index such that
(i) σ is a limit,
(ii) $\sigma \neq 3^{a} \cdot 5^{b}$ for all a, b, and
(iii) for all n, if $|n|<\sigma$ then $|\{e\}(n)|<\sigma$,
then $7^{e} \in \eta ;\left|7^{e}\right|$ is the least σ satisfying (i), (ii), (iii);

$$
H_{7} e=\left\{\langle m, 0\rangle| | m|\nless| 7^{e} \mid\right\} U\left\{\langle m, a+1\rangle| | m\left|<\left|7^{e}\right| \text { and } a \in H_{m}\right\} .\right.
$$

For an ordinal σ, let $\eta_{\sigma}=\{n \in \eta| | n \mid<\sigma\}$. For $n \notin \eta$, let $|n|=\infty$, let $|\eta|=\sup _{n \in \eta}|\eta|$.

Definition. An ordinal σ is η-admissible if $\sigma=\left|7^{e}\right|$ for some $7^{e} \in \eta ; \sigma$ is η-inaccessible if σ is η-admissible and a limit of η-admissibles.

Harrington makes some remarks which we reproduce below:
(1) For $n, m \in \eta$, if $|n| \leq|m|$, then η_{n} and H_{n} are both recursive in H_{m} uniformly in n, m; further, if $|n|<|m|$, then oj $\left(H_{n}\right) \leq_{T} H_{m}$, uniformly.
(2) For $n \in \eta$, if $|n|$ is η-admissible, then there is a real I_{n}, recursive in H_{n}, which codes $M_{|n|}=\left\langle L_{|n|}, \varepsilon\right\rangle$.
(3) For any ordinal $\sigma,\left\{\langle n, a\rangle \mid n \in \eta_{\sigma}\right.$ and $\left.a \in H_{n}\right\}$ is Σ_{1} over M_{σ}.
(4) Then by (2) and (3) we have

$$
\left\{X \mid X \leq_{T} H_{n} \text { for some } n \in \eta\right\}=2^{\omega} \cap L_{|\eta|}
$$

Harrington then makes the following definitions.
$[e]^{\eta_{\beta}}(x) \simeq y$ means $e=\left\langle e_{0}, e_{1}\right\rangle$ and $\left\{e_{0}\right\}(x) \in \eta_{\beta}$ and
$\left\{e_{1}\right\}\left(x, H_{\left\{e_{0}\right\}(x)}\right) \simeq y$
$[e]^{\eta_{\beta}}(x) \downarrow$ means $[e]^{\eta_{\beta}}(x) \simeq y$ for some y.
If $[e]^{\eta_{\beta}}(x) \downarrow,\left|[e]^{\eta_{\beta}}(x)\right|=\left|\left\{e_{0}\right\}(x)\right|$; otherwise, $\left|\{e\}^{\eta_{\beta}}(x)\right|=\infty$.
A partial function ϕ is partial η_{β}-recursive if for some e, all $x,(x) \simeq[e]^{\eta_{\rho}}(x)$. In the above, β is either η-inaccessible or $|\eta|$. Harrington asserts that one can find f, g recursive such that for all e, x, y :
(a) $[e]^{\eta}(x) \simeq y \Leftrightarrow\{f(e)\}(x, \mathscr{E}) \simeq y$.
(b) $\{e\}(x, \mathscr{E}) \simeq y \Rightarrow[g(e)]^{\eta}(x) \simeq y$.

We will produce a g such that the implication in (b) can be made into an equivalence with \mathscr{E} replaced by \mathscr{E}^{*} :

$$
\begin{equation*}
\{e\}\left(x, \mathscr{E}^{*}\right) \simeq y \Leftrightarrow[g(e)]^{\eta}(x) \simeq y \tag{b'}
\end{equation*}
$$

This, together with the preceding remarks, will give the required characterization of $1-\mathrm{env} \mathscr{E}^{*}$. We will use the fact that $\rho_{0}=|\eta|$, and other facts from [4], [8], []. (b^{\prime}) will be established in the customary manner by showing the existence of a recursive h, such that if $\left[e_{0}\right]^{\eta}$ is total, then for all x, y,

$$
\left\{e_{1}\right\}\left(x,\left[e_{0}\right]^{\eta}, \mathscr{E}^{*}\right) \simeq y \Leftrightarrow[h(e)]^{\eta}(x) \simeq y
$$

We will define h by effective transfinite induction on the length of the left-hand side computation. Of course, there is no new case, except S8:

$$
\{e\}\left(x,[j]^{\eta}, \mathscr{E}^{*}\right) \simeq \mathscr{E}^{*}\left(\lambda \alpha\left\{e_{3}\right\}\left(x, \alpha^{\cap}[j]^{\eta}, \mathscr{E}^{*}\right)\right)
$$

where $\alpha^{n}[j]^{n}$ is a primitive recursive join operation applied to the two functions $\alpha,[j]^{\eta}$.

Let δ be primitive recursive such that for all a, b,

$$
[\delta(a, b)]^{\eta}=[a]^{\eta n}[b]^{\eta}
$$

Let $\dot{F}=\lambda \alpha\left\{e_{3}\right\}\left(x, \alpha^{\wedge}[j]^{\eta}, \mathscr{E}^{*}\right)$.
H1. It will be assumed that h is defined and correct so far.
We will produce an ordinal $\tau=\left|7^{p}\right|, 7^{p} \in \eta$; such that if \dot{F} is acceptable, then $\alpha \in 1-\mathrm{sc} \dot{F} \Rightarrow \alpha$ is η_{τ}-recursive. The index p will depend on e, x, j. This will be called "bounding \dot{F} ".

To do this, it suffices to find a τ such that:
H2. If $\lambda x, y \phi(x, y)$ is η_{τ}-recursive and \dot{F}-recursive, then $\lambda \times \dot{F}(\lambda y \phi(x, y))$ is (uniformly) η_{τ}-recursive.

If this is done, then we can define by induction a recursive θ such that for all $a, m,\{a\}(m, \dot{F}) \simeq[\theta(a)]^{\eta_{\tau}}(m)$. The only nontrivial case follows:

$$
\{a\}(m, \dot{F}) \simeq \dot{F}(\lambda p\{b\}(p, m, \dot{F})) \simeq \dot{F}\left(\lambda p\{\theta(b)\}^{\eta \tau}(p, m)\right)
$$

(by the induction hypothesis).
Since \dot{F} is, by assumption, acceptable, \dot{F} will be defined on the indicated argument exactly when $\lambda p[\theta(b)]^{n_{*}}(p, m)$ is total. Since (by hypothesis) $\lambda p, m[\theta(b)]^{\eta_{\tau}}(p, m)$ is \dot{F}-recursive and η_{τ}-recursive, then $\lambda m \dot{F}\left(\lambda p[\theta(b)]_{\tau}^{\eta_{\tau}}(p, m)\right)$ is η_{τ}-recursive, by H 2 , say with index c; then we can let $\theta(a)=c$. So H 2 will suffice to obtain the "bounding of \dot{F}." We now obtain τ as a witness to H 2 . Let Π be recursive such that for all $a, m,\{a\}(m, \dot{F}) \simeq[\Pi(a)]^{\eta}(m)$; this follows from the "master" induction hypothesis, H1, that F is η-effective on η-recursive functions. The purpose of τ is to bound $1-s c \dot{F}$ below $|\eta|$. Informally, we will then be able to search (effectively) through 1 -sc \dot{F} for an α such that $\dot{F}(\alpha) \simeq 0$. If \dot{F} is acceptable, then the entire search will be η-bounded (below τ); otherwise, the computation is allowed to diverge. Compare this with the intuitive situation in the case that $\mathscr{E}(F) \downarrow \Leftrightarrow F$ is defined on all of ω^{ω}. There is no possible way of bounding this search below a countable ordinal. Consider the following map. Given $d \in \omega$, let

$$
A_{d}=\left\{a \mid \forall m\left\{\Pi(a)_{0}\right\}(m) \in \eta_{|d|} \text { and }\left\{\Pi(a)_{1}\right\}\left(m, H_{\left\{\Pi\left(a_{0}\right)\right\}(m)}\right) \downarrow\right\} .
$$

If $d \in \eta, A_{d}$ is certainly $\mathrm{H}_{2^{d}}$-recursive (uniformly). $A_{d}=\{a \mid a$ is an index of an \dot{F}-recursive (total) α such that α is $\eta_{|d|}$-recursive via $\left.\Pi(a)\right\}$. As d runs through η, A_{d} runs through a complete set of indices for 1 -sc \dot{F}.

For $a \in A_{d}, \alpha=[\Pi(a)]^{\eta|a|}$,

$$
\begin{aligned}
\dot{F}_{x}(a) & \simeq\left\{e_{3}\right\}\left(x, \alpha^{\cap}[j]^{\eta}, \mathscr{E}^{*}\right) \\
& \simeq\left\{e_{3}\right\}\left(x,[\Pi(a)]^{\eta|a| \cap}[j]^{\eta}, \mathscr{E}^{*}\right) \\
& \simeq\left[h\left(e_{3}, \delta(\Pi(a), j)\right)\right]^{\eta}(x)
\end{aligned}
$$

Let $\{q\}^{H_{2 d}}$ enumerate A_{d}. Then

$$
T=\lambda s\left\{h\left(e_{3}, \delta\left(\Pi\left(\{q\}\left(s, H_{2} d\right), j\right)\right)\right)_{0}\right\}(x)
$$

enumerates the notations for ordinals of the computations of $\dot{F}_{x}(\alpha)$ for $\alpha=$ $[\Pi(a)]^{\eta|a|}$ as a runs through A_{d}, that is, as α runs through 1 -sc $\dot{F} . T$ is an $H_{2^{d}}$-(total) recursive function with index t, obtainable effectively from d, h, e, x, etc. Then $\left|3^{2^{d}} \cdot 5^{t}\right|$ is a bound for the ordinals of computations $\dot{F}_{x}(\alpha)$, for $\alpha=$ $[\Pi(a)]^{\eta \mid d 1}$ and $a \in A_{d}$. This map $d \mapsto 3^{2^{d}} \cdot 5^{t}$ is recursive with index w obtainable from x, h, e; therefore, $7^{w} \in \eta \tau=\left|7^{w}\right|$ is such that $|\{w\}(d)|<\left|7^{w}\right|=\tau$ for all $|d|<\left|7^{w}\right|$. Then, if $a \in A_{7} w$, the ordinal of the computation $\dot{F}(\alpha)$ is less then $\{w\}(d)$, where $\alpha=[\Pi(a)]^{\eta}\left|7^{w}\right|$; therefore, it is less than $\left|7^{w}\right|$. This is the necessary τ. (τ is η-admissible; this fact is of some importance in clearing up details.) Now we can see that if $\alpha \in 1$-sc F with index a, then $\Pi(a) \in A_{7} w$. So we need only to search through $A_{7} w$ for the value of $\mathscr{E}^{*}(\dot{F})$:

$$
\begin{aligned}
& \mathscr{E}^{*}(\dot{F}) \simeq 0 \Leftrightarrow \exists a\left[\Pi(a) \in A_{7} w \text { and } \dot{F}\left([\Pi(a)]^{\eta}\right) \simeq 0\right] \\
& \mathscr{E}^{*}(\dot{F}) \simeq 1 \Leftrightarrow \forall a\left[\Pi(a) \notin A_{7} w \text { or } \dot{F}\left([\Pi(a)]^{\eta}\right)>1\right]
\end{aligned}
$$

where $\dot{F}\left([\Pi(a)]^{\eta}\right)$ is $\eta_{7} d$-computable. So, $h(e, j)$ can be defined accordingly; $[h(e, j)]^{\eta}(x)$ will diverge just in case \dot{F}_{x} is unacceptable; in this case, either for some $s ;|T(s)|=\infty$ or $T(s) \in \eta$ and $\{k\}^{H_{T(S)}}(x)$ diverges, where

$$
k=h\left(e_{3}, \delta\left(\Pi\left(\{q\}\left(s, H_{2} d\right), j\right)\right)\right)_{1}
$$

(either case can be made to force $[h(e, j)]^{\eta}(x)$ to diverge).
From the properties of η-recursion derived in [4] we can conclude that the \mathscr{E}^{*}-recursion theory inherits selection operators from η-recursion theory, and 1 -env \mathscr{E}^{*} is a Spector 1 -point class. It is also clear that 1 -env \mathscr{E}^{*} is Mahlo. It is in fact the smallest Mahlo Spector 1-point class. Of course, we have $\omega_{1}^{\delta^{*}}=$ $\omega^{S},=\rho_{0}<\left|\Pi_{1}^{0}\right|<\left|\Delta_{1}^{1}\right|$ and since Gandy has shown $\left|\Delta_{1}^{1}\right| \leq \mid \Sigma^{\prime},-$ mon, , we have $\omega_{1}^{\delta^{*}}<\omega_{1}^{E \#}=\left|\Sigma^{\prime},-\operatorname{mon}\right|$ (Aczel). See [8] for terminology and a proof of the first inequality.

Section 2

In [4], the hierarchy is related to an arbitrary ${ }^{2} F$ by amending the definition of $H_{2} x$ (in clause b) to read

$$
H_{\alpha^{x}}^{F}=\left\{\langle e, n\rangle \mid\{e\}^{H_{x}{ }^{F}} \text { is a total function } \alpha \text { and }{ }^{2} F(\alpha)=n\right\}
$$

The resulting system is labeled $\eta^{F}, H_{a}^{F},|\quad|{ }^{F} ;$ and yields a hierarchy for $1-\mathrm{sc} S, F$. Indeed, the proof in Section 1, upon suitable modification, yields the fact that 1-env $\mathscr{E}^{*}, F=\Sigma_{1}\left(L_{\rho_{0} F}[F]\right) \cap 2^{\omega}$, where $\rho_{0}^{F}=\left|\eta^{F}\right|$ is the first F-recursively Mahlo ordinal.

Upon inspection of the relevant clause, we remark that the value of F is required only at functions α which arise as $\alpha=\lambda x\{e\}^{H_{a} F}(x)$ for some e and
$a \in \eta^{F} ;$ i.e., $\alpha \in 1$-sc \mathscr{E}^{*}, F. Call a partial $\dot{F} \mathscr{E}^{*}$-acceptable if 1 -sc $\dot{F}, \mathscr{E}^{*} \subseteq$ domain \dot{F}.

The diagonal of \mathscr{E}^{*} is

$$
D\left(\mathscr{E}^{*}\right)\left(e,{ }^{2} F\right)= \begin{cases}0 & \text { if }\{e\}\left(e,{ }^{2} F, \mathscr{E}^{*}\right) \mid \\ 1 & \text { otherwise }\end{cases}
$$

Then to compute $D\left(\mathscr{E}^{*}\right)\left(e,{ }^{2} F\right)$, we need only develop η^{F} and check

$$
\exists_{y}\left([g(e)]^{\eta^{F}}(e) \simeq y\right)
$$

where g is as in Section 1, modified to (uniformly) accommodate the relativization to F.

By the above remark we can extend $D\left(\mathscr{E}^{*}\right)$ to \mathscr{E}_{1}^{*}, defined at (possibly partial) \dot{F} by

$$
\mathscr{E}_{1}^{*}(e, \dot{F}) \simeq \begin{cases}0 & \text { if } \dot{F} \text { is } \mathscr{E}^{*} \text {-acceptable and } \exists_{y}\left([g(e)]^{\eta \dot{F}}(e) \simeq y\right) \\ 1 & \text { if } \dot{F} \text { is } \mathscr{E}^{*} \text {-acceptable and } 7 \exists_{y}\left([g(e)]^{\eta^{\prime}}(e) \simeq y\right) \\ & \text { undefined if } \dot{F} \text { is not } \mathscr{E}^{*} \text {-acceptable. }\end{cases}
$$

Let ρ_{1} be the first ordinal k such that
(1) k is admissible and
(2) for every $f: k \rightarrow k$ such that f is Δ, over L_{K} there is $\delta<k, \delta$ recursively Mahlo with $f^{\prime \prime} \delta-\delta$.

Then we can show that
(E) 1-sc $\mathscr{E}_{1}^{*}=1$-sc $D\left(\mathscr{E}^{*}\right)=L_{\rho_{1}} \cap 2^{\omega}$ and
(F) 1-env $\mathscr{E}_{1}^{*}=\Sigma_{1}\left(L_{\rho_{1}}\right) \cap 2^{\omega}$.

The key step is again to show that if F is \mathscr{E}^{*}-acceptable and arises as a λ-term; $\dot{F}=\lambda \alpha\{e\}\left(\alpha,-, \mathscr{E}_{1}^{*}\right)$; then $|\eta \dot{F}|=\delta<\rho_{1}$ and δ is uniform in $(e,-) . \delta$ will be the (recursively Mahlo) fixed point of a function which takes $\gamma<\rho_{1}$ into the supremum (over all $\alpha \in L_{\gamma} ; \alpha: \omega \rightarrow \omega$) of the ordinals required to compute $\{e\}\left(\alpha,-, \mathscr{E}_{1}^{*}\right)$. (This is best done using notations for ordinals $<\rho_{1}$.)

Because δ is recursively Mahlo, we have no trouble with clause d of $\eta \dot{F}$, and because it is a fixed point of the above function the \dot{F}-applications of clause b are possible.

We can now diagonalize again and extend again to get \mathscr{E}_{2}^{*}, etc. In each case, selection operators and hierarchies will follow from the "countable computation" feature of the extended object.

Bibliography

1. Peter Aczel, Representability in some systems of second order arithmetic, Israel J.Math., vol. 8 (1970), pp. 309-328.
2. ——, Quantifiers, games, and inductive definitions, for the proceedings of the 3rd SLS.
3. Robin O. Gandy, General recursive functionals of finite type and hierarchies of functions, Symposium on Math. Logic, University of Clermont Ferrand, June 1962.
4. Leo Harrington, The superjump and the first recursively Mahlo ordinal, preprint.
5. ———Contributions to recursion theory on higher types, Ph.D. thesis, M.I.T., 1973.
6. Peter Hinman, Hierarchies of effective descriptive set theory, August 1969. Trans. Amer. Math. Soc., vol. 135 (1969), pp. 111-140.
7. R. A. Platek, Foundations of recursion theory, Ph.D. thesis, Stanford Univ., 1966.
8. W. Richter, Recursively Mahlo ordinals and inductive definitions, Logic Colloquium, Manchester, 1969.
9. G. Sacks, The 1 -section of a type n object, Generalized recursion theory, edited by P. Hinman and J. Fenstad, North Holland, 1972, pp. 83-97.
10. J. Shoenfield, A hierarchy based on a type two object, Trans. Amer. Math. Soc., vol. 134 (1968), pp. 103-108.
11. Alexander Kechris, Notes, M.I.T. Logic Seminar.

Massachusetts Institute of Technology
Cambridge, Massachusetts

[^0]: Received March 15, 1976.
 ${ }^{1}$ This paper is taken from the author's doctoral dissertation, Cornell University, August 1974.

