RECURSION IN THE EXTENDED SUPERJUMP

BY

PHILIP LAVORI¹

The history of the investigation into recursion in the superjump is a long and complicated one, with many people contributing pieces of information. The final word on the type three object defined first by R. O. Gandy [3],

 $S(F, \alpha, e) \simeq \begin{cases} 0 & \text{if } \{e\}(\alpha, F) \text{ converges} \\ 1 & \text{otherwise,} \end{cases}$

was had by Leo Harrington [4], [5] after Peter Aczel and Peter Hinman obtained partial results. The results obtained were:

(A) The first ordinal not recursive in the superjump, ω_1^s , equals ρ_0 , the first recursively Mahlo ordinal.

(B) 1-sc $S = L\rho_0 \cap 2^{\omega}$ where $L\rho_0$ is the collection of sets constructible before ρ_0 .

The basic interest in the superjump stems from the fact that, unlike the *normal* type three objects, which involve ineluctibly uncountable computations, the superjump applied to a type two object can be viewed as a countable computation. This can be seen more clearly by replacing the superjump by the equivalent

$$\mathscr{E}(F) \simeq \begin{cases} 0 & \text{if } \exists \alpha \varepsilon \text{ 1-sc } F[F(\alpha) = 0] \\ 1 & \text{otherwise.} \end{cases}$$

Then, of course, we see that the value of \mathscr{E} applied to F only depends on 1-sc F. The fact that S (and \mathscr{E}) are strictly weaker than ³E makes it impossible to apply the techniques of Shoenfield and Sacks without alteration, and it is the reason that the analysis of recursion based S has been so difficult.

After result (B) above, the situation remained unsatisfactory, because of the fact that 1-env $S = \Pi_2^1$. As has been noted by Harrington, and others, this fact arises because some computations from the superjump may diverge for "the wrong reasons." For example, if a λ -term which defines a partial type two object \vec{F} arises and is taken as an argument for S, the computation will diverge because \vec{F} is not total, even though \vec{F} may be defined at all "relevant" objects, for example, on 1-sc \vec{F} .

Copyright © Board of Trustees, University of Illinois

Received March 15, 1976.

¹ This paper is taken from the author's doctoral dissertation, Cornell University, August 1974.

Harrington, in [5] has eliminated this pathology by introducing the notion of "reindexing," a procedure by which the 1-env S is "shrunk" by casting out all computation which diverge for "avoidable" reasons.

The result of these manipulations of the notion of 1-envelope is to obtain a collection which will serve as an appropriate substitute for that notion, and which is a Spector class Γ , whose self dual class Δ is the 1-section of S.

We will show in the following that the same end can be accomplished by replacing the object \mathscr{E} by the extended object \mathscr{E}^* , which we claim is the correct generalization to type three of the ordinary jump.

 $\mathscr{E}^*(\dot{F}) \simeq \begin{cases} 0 & \text{if } \dot{F} \text{ is defined on its 1-section and } \exists \alpha \varepsilon 1 \text{-sc } \dot{F}[\dot{F}(\alpha) \simeq 0] \\ 1 & \text{if } \dot{F} \text{ is defined on its 1-section and } \forall \alpha \varepsilon 1 \text{-sc } \dot{F}[\dot{F}(\alpha) > 0] \\ & \text{undefined otherwise.} \end{cases}$

Section 1

DEFINITION. For a possibly partial type two object \dot{F} , \dot{F} is acceptable if \dot{F} is defined on its 1-section.

Then, if recursion in \mathscr{E}^* is defined à la Kleene, with the alteration of clause S8 to a clause which represents the application of \mathscr{E}^* ; we will obtain:

(C) 1-env \mathscr{E}^* is a Spector class Γ and $\Delta = 1-\operatorname{sc} \mathscr{E}^* = 1-\operatorname{sc} \mathscr{E} = 1-\operatorname{sc} \mathscr{E} = L\rho_0 \cap 2^{\omega}$.

(D) 1-env $\mathscr{E}^* = \Sigma_1(L\rho_0) \cap 2^{\omega}$.

We emphasize that the proof of (C) and (D) above will consist in large part of a compendium of results from Aczel, Hinman, and Harrington, and that our own addition is basically a trick which elucidates the starred situation.

We will begin by recapitulating Harrington's definition of the hierarchy for S. A set of notations η , a set H_u for each $u \in \eta$, and a map $| : \eta \to ON$ are defined.

(a) $1 \in \eta; |1| = 0; H_1 = \omega.$

(b) If $x \in \eta$ then $2^x \in \eta$; $|2^x| = |x| + 1$ and $H_2 x = \{e \mid \{e\}^{H_x} \text{ is total}\}$.

(c) If $n \in \eta$ and for all $i \in \omega$, $\{e\}^{H_n}(i) \in \eta$, then $3^n \cdot 5^e \in \eta$; $|3^n \cdot 5^e|$ is the first limit ordinal greater than |n| and $|\{e\}^{H_n}(i)|$ for all *i*, and

 $H_{3^n \cdot 5^e} = \{ \langle m, 0 \rangle \mid |m| \neq |3^n \cdot 5^e| \} \{ \langle m, a+1 \rangle \mid |m| < |3^n \cdot 5^e| \text{ and } a \in H_m \}.$

(d) If σ is an ordinal and e is a recursive index such that

- (i) σ is a limit,
- (ii) $\sigma \neq 3^a \cdot 5^b$ for all a, b, and
- (iii) for all n, if $|n| < \sigma$ then $|\{e\}(n)| < \sigma$,

then $7^e \in \eta$; $|7^e|$ is the least σ satisfying (i), (ii), (iii);

 $H_7e = \{ \langle m, 0 \rangle \mid |m| \not\leq |7^e| \} U\{ \langle m, a+1 \rangle \mid |m| < |7^e| \text{ and } a \in H_m \}.$

For an ordinal σ , let $\eta_{\sigma} = \{n \in \eta \mid |n| < \sigma\}$. For $n \notin \eta$, let $|n| = \infty$, let $|\eta| = \sup_{n \in \eta} |\eta|$.

DEFINITION. An ordinal σ is η -admissible if $\sigma = |7^e|$ for some $7^e \in \eta$; σ is η -inaccessible if σ is η -admissible and a limit of η -admissibles.

Harrington makes some remarks which we reproduce below:

(1) For $n, m \in \eta$, if $|n| \le |m|$, then η_n and H_n are both recursive in H_m uniformly in n, m; further, if |n| < |m|, then oj $(H_n) \le T_m$, uniformly.

(2) For $n \in \eta$, if |n| is η -admissible, then there is a real I_n , recursive in H_n , which codes $M_{|n|} = \langle L_{|n|}, \varepsilon \rangle$.

(3) For any ordinal σ , $\{\langle n, a \rangle \mid n \in \eta_{\sigma} \text{ and } a \in H_n\}$ is Σ_1 over M_{σ} .

(4) Then by (2) and (3) we have

 $\{X \mid X \leq_T H_n \text{ for some } n \in \eta\} = 2^{\omega} \cap L_{|\eta|}.$

Harrington then makes the following definitions.

 $\begin{bmatrix} e \end{bmatrix}^{\eta_{\beta}}(x) \simeq y \text{ means } e = \langle e_0, e_1 \rangle \text{ and } \{e_0\}(x) \in \eta_{\beta} \text{ and } \\ \{e_1\}(x, H_{\{e_0\}(x)}) \simeq y \\ \begin{bmatrix} e \end{bmatrix}^{\eta_{\beta}}(x) \downarrow \text{ means } \begin{bmatrix} e \end{bmatrix}^{\eta_{\beta}}(x) \simeq y \text{ for some } y. \\ \text{ If } \begin{bmatrix} e \end{bmatrix}^{\eta_{\beta}}(x) \downarrow, \|\begin{bmatrix} e \end{bmatrix}^{\eta_{\beta}}(x)\| = \|\{e_0\}(x)\|; \text{ otherwise, } \|\{e\}^{\eta_{\beta}}(x)\| = \infty.$

A partial function ϕ is partial η_{β} -recursive if for some e, all x, $(x) \simeq [e]^{\eta_{\beta}}(x)$. In the above, β is either η -inaccessible or $|\eta|$. Harrington asserts that one can find f, g recursive such that for all e, x, y:

- (a) $[e]^{\eta}(x) \simeq y \Leftrightarrow \{f(e)\}(x, \mathscr{E}) \simeq y.$
- (b) $\{e\}(x, \mathscr{E}) \simeq y \Rightarrow [g(e)]^{\eta}(x) \simeq y.$

We will produce a g such that the implication in (b) can be made into an equivalence with \mathscr{E} replaced by \mathscr{E}^* :

(b')
$$\{e\}(x, \mathscr{E}^*) \simeq y \Leftrightarrow [g(e)]^{\eta}(x) \simeq y.$$

This, together with the preceding remarks, will give the required characterization of 1-env \mathscr{E}^* . We will use the fact that $\rho_0 = |\eta|$, and other facts from [4], [8], [3]. (b') will be established in the customary manner by showing the existence of a recursive h, such that if $[e_0]^{\eta}$ is total, then for all x, y,

$$\{e_1\}(x, [e_0]^n, \mathscr{E}^*) \simeq y \Leftrightarrow [h(e)]^n(x) \simeq y.$$

We will define h by effective transfinite induction on the length of the left-hand side computation. Of course, there is no new case, except S8:

$$\{e\}(x, [j]^{\eta}, \mathscr{E}^*) \simeq \mathscr{E}^*(\lambda \alpha \{e_3\}(x, \alpha^{\cap}[j]^{\eta}, \mathscr{E}^*))$$

where $\alpha^{[j]^n}$ is a primitive recursive join operation applied to the two functions α , $[j]^n$.

754

Let δ be primitive recursive such that for all a, b,

$$[\delta(a, b)]^{\eta} = [a]^{\eta} [b]^{\eta}.$$

Let $\dot{F} = \lambda \alpha \{e_3\}(x, \alpha^{n}[j]^{\eta}, \mathscr{E}^*).$

H1. It will be assumed that h is defined and correct so far.

We will produce an ordinal $\tau = |7^p|$, $7^p \in \eta$; such that if \vec{F} is acceptable, then $\alpha \in 1$ -sc $\vec{F} \Rightarrow \alpha$ is η_{τ} -recursive. The index p will depend on e, x, j. This will be called "bounding \vec{F} ".

To do this, it suffices to find a τ such that:

H2. If λx , $y\phi(x, y)$ is η_{τ} -recursive and \dot{F} -recursive, then $\lambda \times \dot{F}(\lambda y\phi(x, y))$ is (uniformly) η_{τ} -recursive.

If this is done, then we can define by induction a recursive θ such that for all $a, m, \{a\}(m, \dot{F}) \simeq [\theta(a)]^{\eta_e}(m)$. The only nontrivial case follows:

$$\{a\}(m, \dot{F}) \simeq \dot{F}(\lambda p\{b\}(p, m, \dot{F})) \simeq \dot{F}(\lambda p\{\theta(b)\}^{\eta}(p, m))$$

(by the induction hypothesis).

Since \dot{F} is, by assumption, acceptable, \dot{F} will be defined on the indicated argument exactly when $\lambda p[\theta(b)]^{\eta_{e}}(p, m)$ is total. Since (by hypothesis) $\lambda p, m[\theta(b)]^{\eta_{e}}(p, m)$ is \dot{F} -recursive and η_{\bullet} -recursive, then $\lambda m \dot{F}(\lambda p[\theta(b)]^{\eta_{e}}(p, m))$ is η_{τ} -recursive, by H2, say with index c; then we can let $\theta(a) = c$. So H2 will suffice to obtain the "bounding of \dot{F} ." We now obtain τ as a witness to H2. Let Π be recursive such that for all $a, m, \{a\}(m, \dot{F}) \simeq [\Pi(a)]^{\eta}(m)$; this follows from the "master" induction hypothesis, H1, that \dot{F} is η -effective on η -recursive functions. The purpose of τ is to bound 1-sc \dot{F} below $|\eta|$. Informally, we will then be able to search (effectively) through 1-sc \dot{F} for an α such that $\dot{F}(\alpha) \simeq 0$. If \dot{F} is acceptable, then the entire search will be η -bounded (below τ); otherwise, the computation is allowed to diverge. Compare this with the intuitive situation in the case that $\mathscr{E}(F)\downarrow \Leftrightarrow F$ is defined on all of ω^{ω} . There is no possible way of bounding this search below a countable ordinal. Consider the following map. Given $d \in \omega$, let

$$A_{d} = \{a \mid \forall m\{\Pi(a)_{0}\}(m) \in \eta_{|d|} \text{ and } \{\Pi(a)_{1}\}(m, H_{\{\Pi(a_{0})\}(m)}) \downarrow \}$$

If $d \in \eta$, A_d is certainly H_{2^d} -recursive (uniformly). $A_d = \{a \mid a \text{ is an index of an } \vec{F}$ -recursive (total) α such that α is $\eta_{|d|}$ -recursive via $\Pi(a)\}$. As d runs through η , A_d runs through a complete set of indices for 1-sc \vec{F} .

For $a \in A_d$, $\alpha = [\Pi(a)]^{\eta|a|}$,

$$\begin{split} \dot{F}_{x}(a) &\simeq \{e_{3}\}(x, \alpha^{\lceil}[j]^{\eta}, \mathscr{E}^{*}) \\ &\simeq \{e_{3}\}(x, [\Pi(a)]^{\eta_{\lfloor a \rfloor}} \cap [j]^{\eta}, \mathscr{E}^{*}) \\ &\simeq [h(e_{3}, \delta(\Pi(a), j))]^{\eta}(x). \end{split}$$

Let $\{q\}^{H_2d}$ enumerate A_d . Then

$$T = \lambda s\{h(e_3, \delta(\Pi(\{q\}(s, H_2d), j)))_0\}(x)$$

enumerates the notations for ordinals of the computations of $\dot{F}_x(\alpha)$ for $\alpha = [\Pi(\alpha)]^{\eta_1 d_1}$ as a runs through A_d , that is, as α runs through 1-sc \dot{F} . T is an H_{2^d} -(total) recursive function with index t, obtainable effectively from d, h, e, x, etc. Then $|3^{2^d} \cdot 5^t|$ is a bound for the ordinals of computations $\dot{F}_x(\alpha)$, for $\alpha = [\Pi(\alpha)]^{\eta_1 d_1}$ and $a \in A_d$. This map $d \mapsto 3^{2^d} \cdot 5^t$ is *recursive* with index w obtainable from x, h, e; therefore, $7^w \in \eta \tau = |7^w|$ is such that $|\{w\}(d)| < |7^w| = \tau$ for all $|d| < |7^w|$. Then, if $a \in A_7 w$, the ordinal of the computation $\dot{F}(\alpha)$ is less then $\{w\}(d)$, where $\alpha = [\Pi(\alpha)]^{\eta}|7^w|$; therefore, it is less than $|7^w|$. This is the necessary τ . (τ is η -admissible; this fact is of some importance in clearing up details.) Now we can see that if $\alpha \in 1$ -sc F with index a, then $\Pi(a) \in A_7 w$. So we need only to search through $A_7 w$ for the value of $\mathscr{E}^*(\dot{F})$:

$$\mathscr{E}^*(\dot{F}) \simeq 0 \Leftrightarrow \exists a [\Pi(a) \in A_7 w \text{ and } \dot{F}([\Pi(a)]^n) \simeq 0]$$
$$\mathscr{E}^*(\dot{F}) \simeq 1 \Leftrightarrow \forall a [\Pi(a) \notin A_7 w \text{ or } \dot{F}([\Pi(a)]^n) > 1]$$

where $\dot{F}([\Pi(a)]^n)$ is $\eta_7 d$ -computable. So, h(e, j) can be defined accordingly; $[h(e, j)]^n(x)$ will diverge just in case \dot{F}_x is *unacceptable*; in this case, either for some s; $|T(s)| = \infty$ or $T(s) \in \eta$ and $\{k\}^{H_T(s)}(x)$ diverges, where

$$k = h(e_3, \,\delta(\Pi(\{q\}(s, H_2d), j)))_1$$

(either case can be made to force $[h(e, j)]^n(x)$ to diverge).

From the properties of η -recursion derived in [4] we can conclude that the \mathscr{E}^* -recursion theory inherits selection operators from η -recursion theory, and 1-env \mathscr{E}^* is a Spector 1-point class. It is also clear that 1-env \mathscr{E}^* is *Mahlo*. It is in fact the *smallest* Mahlo Spector 1-point class. Of course, we have $\omega_i^{\mathscr{E}^*} = \omega_i^S = \rho_0 < |\Pi_1^0| < |\Delta_1^1|$ and since Gandy has shown $|\Delta_1^1| \leq |\Sigma_i' - \text{mon}|$, we have $\omega_i^{\mathscr{E}^*} < \omega_i^{\mathscr{E}^*} = |\Sigma_i' - \text{mon}|$ (Aczel). See [8] for terminology and a proof of the first inequality.

Section 2

In [4], the hierarchy is related to an arbitrary ${}^{2}F$ by amending the definition of $H_{2}x$ (in clause b) to read

$$H_{\alpha^{x}}^{F} = \{ \langle e, n \rangle \mid \{e\}^{H_{x}^{F}} \text{ is a total function } \alpha \text{ and } {}^{2}F(\alpha) = n \}$$

The resulting system is labeled η^F , H_a^F , ||F; and yields a hierarchy for 1-sc S, F. Indeed, the proof in Section 1, upon suitable modification, yields the fact that 1-env \mathscr{E}^* , $F = \Sigma_1(L_{\rho_0 F}[F]) \cap 2^{\omega}$, where $\rho_0^F = |\eta^F|$ is the first F-recursively Mahlo ordinal.

Upon inspection of the relevant clause, we remark that the value of F is required only at functions α which arise as $\alpha = \lambda x \{e\}^{H_{\alpha}F}(x)$ for some e and

756

 $a \in \eta^F$; i.e., $\alpha \in 1$ -sc \mathscr{E}^* , F. Call a partial $\dot{F} \mathscr{E}^*$ -acceptable if 1-sc \dot{F} , $\mathscr{E}^* \subseteq$ domain \dot{F} .

The diagonal of \mathscr{E}^* is

$$D(\mathscr{E}^*)(e, {}^2F) = \begin{cases} 0 & \text{if } \{e\}(e, {}^2F, \mathscr{E}^*) \\ 1 & \text{otherwise.} \end{cases}$$

Then to compute $D(\mathscr{E}^*)(e, {}^2F)$, we need only develop η^F and check

$$\exists_{y}([g(e)]^{\eta^{F}}(e) \simeq y)$$

where g is as in Section 1, modified to (uniformly) accommodate the relativization to F.

By the above remark we can extend $D(\mathscr{E}^*)$ to \mathscr{E}_1^* , defined at (possibly partial) \vec{F} by

$$\mathscr{E}_1^*(e, \dot{F}) \simeq \begin{cases} 0 & \text{if } \dot{F} \text{ is } \mathscr{E}^*\text{-acceptable and } \exists_y([g(e)]^{\eta \dot{F}}(e) \simeq y) \\ 1 & \text{if } \dot{F} \text{ is } \mathscr{E}^*\text{-acceptable and } \neg \exists_y([g(e)]^{\eta \dot{F}}(e) \simeq y) \\ & \text{undefined if } \dot{F} \text{ is not } \mathscr{E}^*\text{-acceptable.} \end{cases}$$

Let ρ_1 be the first ordinal k such that

(1) k is admissible and

(2) for every $f: k \to k$ such that f is Δ , over L_K there is $\delta < k$, δ recursively Mahlo with $f''\delta - \delta$.

Then we can show that

(E) 1-sc
$$\mathscr{E}_1^* = 1$$
-sc $D(\mathscr{E}^*) = L_{\rho_1} \cap 2^{\omega}$ and

(F) 1-env
$$\mathscr{E}_1^* = \Sigma_1(L_{\rho_1}) \cap 2^{\omega}$$
.

The key step is again to show that if F is \mathscr{E}^* -acceptable and arises as a λ -term; $\dot{F} = \lambda \alpha \{e\}(\alpha, \dots, \mathscr{E}_1^*)$; then $|\eta^{\dot{F}}| = \delta < \rho_1$ and δ is uniform in (e, \dots) . δ will be the (recursively Mahlo) fixed point of a function which takes $\gamma < \rho_1$ into the supremum (over all $\alpha \in L_{\gamma}$; $\alpha: \omega \to \omega$) of the ordinals required to compute $\{e\}(\alpha, \dots, \mathscr{E}_1^*)$. (This is best done using notations for ordinals $< \rho_1$.)

Because δ is recursively Mahlo, we have no trouble with clause d of $\eta^{\dot{r}}$, and because it is a fixed point of the above function the \dot{F} -applications of clause b are possible.

We can now diagonalize again and extend again to get \mathscr{E}_2^* , etc. In each case, selection operators and hierarchies will follow from the "countable computation" feature of the extended object.

BIBLIOGRAPHY

- 1. PETER ACZEL, Representability in some systems of second order arithmetic, Israel J.Math., vol. 8 (1970), pp. 309-328.
- 2. ——, Quantifiers, games, and inductive definitions, for the proceedings of the 3rd SLS.
- 3. ROBIN O. GANDY, General recursive functionals of finite type and hierarchies of functions, Symposium on Math. Logic, University of Clermont Ferrand, June 1962.

PHILIP LAVORI

- 4. LEO HARRINGTON, The superjump and the first recursively Mahlo ordinal, preprint.
- 5. ——, Contributions to recursion theory on higher types, Ph.D. thesis, M.I.T., 1973.
- 6. PETER HINMAN, Hierarchies of effective descriptive set theory, August 1969. Trans. Amer. Math. Soc., vol. 135 (1969), pp. 111–140.
- 7. R. A. PLATEK, Foundations of recursion theory, Ph.D. thesis, Stanford Univ., 1966.
- 8. W. RICHTER, Recursively Mahlo ordinals and inductive definitions, Logic Colloquium, Manchester, 1969.
- 9. G. SACKS, The 1-section of a type n object, Generalized recursion theory, edited by P. Hinman and J. Fenstad, North Holland, 1972, pp. 83-97.
- 10. J. SHOENFIELD, A hierarchy based on a type two object, Trans. Amer. Math. Soc., vol. 134 (1968), pp. 103–108.
- 11. ALEXANDER KECHRIS, Notes, M.I.T. Logic Seminar.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS