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RECURSION IN THE EXTENDED SUPERJUMP

BY

PHILIP LAVORI

The history of the investigation into recursion in the superjump is a long and
complicated one, with many people contributing pieces of information. The
final word on the type three object defined first by R. O. Gandy [3],

S(F, . e) - {01 ifotherwise,{e}(,F)converges

was had by Leo Harrington C4], [5] after Peter Aczel and Peter Hinman
obtained partial results. The results obtained were"

(A) The first ordinal not recursive in the superjump, os, equals Po, the first
recursively Mahlo ordinal.

(B) 1-sc S= Lpo ra 2 where Lpo is the collection of sets constructible
before Po.

The basic interest in the superjump .stems from the fact that, unlike the normal
type three objects, which involve ineluctibly uncountable computations, the
superjump applied to a type two object can be viewed as a countable computa-
tion. This can be seen more clearly by replacing the superjump by the equivalent

8(F)- {01 ift0eotherwise.l-sc F[F(00 0]

Then, of course, we see that the value of applied to F only depends on 1-sc F.
The fact that S (and $’) are strictly weaker than 3E makes it impossible to apply
the techniques of Shoenfield and Sacks without alteration, and it is the reason
that the analysis of recursion based S has been so difficult.

After result (B) above, the situation remained unsatisfactory, because of the
fact that 1-env S II. As has been noted by Harrington, and others, this fact
arises because some computations from the superjump may diverge for "the
wrong reasons." For example, if a A-term which defines a partial type two object
b’ arises and is taken as an argument for S, the computation will diverge because

is not total, even though/ may be defined at all "relevant" objects, for ex-
ample, on 1-sc b.
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Harrington, in [5] has eliminated this pathology by introducing the notion
of "reindexing," a procedure by which the 1-env S is "shrunk" by casting out all
computation which diverge for "avoidable" reasons.
The result of these manipulations of the notion of 1-envelope is to obtain a

collection which will serve as an appropriate substitute for that notion, and
which is a Spector class F, whose self dual class A is the 1-section of S.
We will show in the following that the same end can be accomplished by

replacing the object f by the extended object $’*, which we claim is the correct
generalization to type three of the ordinary jump.

10 if/ is defined on its 1-section and e 1-sc P[() - O]
$*(P)

_
if/ is defined on its 1-section and 1-so 1 [b() > O]
undefined otherwise.

Section 1

DEFINITION. For a possibly partial type two object b, ’ is acceptable if/
is defined on its 1-section.

Then, if recursion in * is defined t la Kleene, with the alteration of clause $8

to a clause which represents the application of #*; we will obtain"

(C) 1-env * is a Spector class F and A 1-sc $’* 1-so $’ 1-so S
Lpo c 2.

(D) 1-env f* ,I(Lpo) c 2’.

We emphasize that the proof of (C) and (D) above will consist in large part
of a compendium of results from Aczel, Hinman, and Harrington, and that our
own addition is basically a trick which elucidates the starred situation.
We will begin by recapitulating Harrington’s definition of the hierarchy for S.

A set ofnotations r/, a set Hu for each u e r/, and a map [: t/ ONare defined.

(a) ; Ill 0; H1 o.
(b) If x e r/then 2 e r/; 12Xl Ixl + and H2x {e {e}n’ is total}.
(c) If n e r/and for all o, {e}n"(i) 1, then 3n. 5 e r/;13. 51 is the first

limit ordinal greater than Inl and [{e}n"(i)l for all i, and

H3..5o {(m, 0) lml " 13" 5l}{(m, a + 1) lml < 13"" 5el and a Hm}.

(d) If a is an ordinal and e is a recursive index such that

(i) a is a limit,
(ii) a # 3a.5b for all a, b, and
(iii) for all n, if Inl < r then I{e}(n)[ < a,

then 7 e r/; 171 is the least a satisfying (i), (ii), (iii);

H7e {(m, O) lml t 17l)U{(m, a + 1) lml < 17"1 and a H,}.
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For an ordinal a, let r/ {n r Inl < r}. For n r/, let Inl oo, let
I/I sup., Ir/I.

DEFINITION. An ordinal a is -admissible if a [7el for some 7e r/; a is
l-inaccessible if a is r/-admissible and a limit of r/-admissibles.

Harrington makes some remarks which we reproduce below"

(1) For n, rn e r/, if Inl _< Iml, then r/ and H. are both recursive in Hs
uniformly in n, m; further, if Inl < Iml, then oj (H) < r Hm, uniformly.

(2) For n e r/, if Inl is r/-admissible, then there is a real In, recursive in H.,
which codes MI (LII, e).

(3) For any ordinal a, ((n, a) n e r/. and a 6 H} is Z1 over Mo.
(4) Then by (2) and (3) we have

{XI X < r H. for some n r/} 2 c LII.

Harrington then makes the following definitions.
[e]"P(x) - y means e (eo, el) and (eo)(X) It and
{e)(x, Htot) = y
[e]"P(x) means [e]"(x) - y for some y.
If I,e]"(x), I[e]"(x)l I{eo}(X)l; otherwise, I(ep’(x)l .
A partial function ff is partial r/a-recursive if for some e, all x, (x) - [e]*(x).

In the above, fl is either q-inaccessible or Iql. Harrington asserts that one can
find f, g recursive such that for all e, x, y"

(a)
(b)

[el"(x) - y .... {f(e)}(x, ) - y.
{e}(x, ) y = [g(e)]’(x) y.

We will produce a g such that the implication in (b) can be made into an equiv-
alence with d’ replaced by

(b’) {e}(x, ,*) y , [g(e)]’(x) - y.

This, together with the preceding remarks, will give the required characteriza-
tion of 1-env d’*. We will use the fact that Po Irtl, and other facts from [41,
[8], [ ]. (b’) will be established in the customary manner by showing the
existence of a recursive h, such that if Ieo]" is total, then for all x, y,

{el}(x, [eo]’, g*) y . [h(e)]’(x) - y.

We will define h by effective transfinite induction on the length of the left-hand
side computation. Of course, there is no new case, except $8:

{e}(x, [j]’, d’*) - $’*({ea}(x, =[j]’,

where [j]" is a primitive recursive join operation applied to the two functions
[j]".
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Let 6 be primitive recursive such that for all a, b,

Idi(a, b)]n Ea]Eb]".

Let/ A0{e3}(x [j]’, d’*).

HI. It will be assumed that h is defined and correct so far.

We will produce an ordinal x 17l, 7p e r/; such that if/ is acceptable, then
e 1-so P = is r/,-recursive. The index p will depend on e, x, j. This will be

called "bounding b’’.
To do this, it suffices to find a x such that"

H2. If 2x, y(x, y) is rh-recursive and P-recursive, then 2 x /(2yb(x, y))
is (uniformly) r/,-recursive.

If this is done, then we can define by induction a recursive 0 such that for all
a, m, {a}(m, P) - [O(a)]’’(m). The only nontrivial case follows"

{a}(m,/) - l(p{b}(p, m, I)) l(2p{O(b)}’’(p, m))

(by the induction hypothesis).
Since " is, by assumption, acceptable, P will be defined on the indicated

argument exactly when Zp[O(b)]’’(p, m) is total. Since (by hypothesis)
2p, m[O(b)]’’(p, m) is P-’recursive and r/,-recursive, then 2m/(2p[O(b)]’’(p, m))
is r/,-recursive, by H2, say with index c; then we can let O(a) c. So H2 will
suffice to obtain the "bounding of/." We now obtain x as a witness to H2.
Let 1"I be recursive such that for all a, m, {a}(m, P) - [:rI(a)]"(m); this follows
from the "master" induction hypothesis, HI, that is r/-effective on r/-recursive
functions. The purpose of x is to bound 1-so P below !1. Informally, we will
then be able to search (effectively) through 1-so P for an such that () - 0.
If " is acceptable, then the entire search will be g-bounded (below x); otherwise,
the computation is allowed to diverge. Compare this with the intuitive situation
in the case that d’(F) , F is defined on all of o. There is no possible way of
bounding this search below a countable ordinal. Consider the following map.
Given d e 09, let

Aa {a m{II(a)o}(m) e r/l and {II(a)}(m,

If d r/, Aa is certainly H-recursive (uniformly). Aa {a a is an index of an
/-recursive (total) such that is r/ll-recursive via II(a)}. As d runs through
Aa runs through a complete set of indices for 1-so/.

For a Aa, 0 I,II(a)]"’r,_
{e}(x, [II(a)]’"[j]",

[h(e3, i(I!(a), j))]"(x).



756 PHILIP LAVORI

Let {q }tt enumerate A. Then

T As{h(e3, 6(II({q }(s, H2d), J)))o }(x)

enumerates the notations for ordinals of the computations of ,ex( for
[l-l(a)]"l’t as a runs through An, that is, as runs through 1-sc ’. T is an
H2-(total) recursive function with index t, obtainable effectively from d, h, e, x,
etc. Then 132d. 5’1 is a bound for the ordinals of computations/x(), for
[I-l(a)]’d’ and a e An. This map d 32d. 5 is recursive with index w obtainable
from x, h, e; therefore, 7w e r/z 17w[ is such that I{w}(d)[ < 17Wl z for all
[d[ < 171. Then, if a ATW, the ordinal of the computation P(a) is less then
{w}(d), where [l-l(a)]"17w[ therefore, it is less than 17"1. This is the neces-
sary x. (x is q-admissible; this fact is of some importance in clearing up details.)
Now we can see that if 1-sc F with index a, then H(a) e ATw. So we need
only to search through ATW for the value of $’*(1)

d’*(/) = 0 ,**, 3a[H(a) ATw and l’([l-I(a)]) - O]
tf*(/) - .**. Va[I’l(a) ATw or ig’([l-I(a)]") > 1]

where /’([1-l(a)]") is r/Td-computable. So, h(e, j) can be defined accordingly;
[h(e, j)]"(x) will diverge just in case tex is unacceptable; in this case, either for
some s; T(s)l or T(s) r/and {k}nrtS(x) diverges, where

k h(e3, 6(H({q }(s, Hd),

(either case can be made to force [h(e, j)](x) to diverge).
From the properties of r/-recursion derived in [4] we can conclude that the

d’*-recursion theory inherits selection operators from r/-recursion theory, and
1-env $’* is a Spector 1-point class. It is also clear that l-env d* is Mahlo. It
is in fact the smallest Mahlo Spector 1-point class. Of course, we have to,

$o, po < IrIl < IAIl and since Gandy has shown IAI -< IZ’, monl, we
* to#have to, < IZ’, monl (Aczel). See [8] for terminology and a proof

of the first inequality.

Section 2

In [41, the hierarchy is related to an arbitrary 2F by amending the definition
of H2x (in clause b) to read

Hr {<e, n> {e}nr is a total function a and 2F(a) n}

The resulting system is labeled t/r, Hr, r; and yields a hierarchy for 1-sc S, F.
Indeed, the proof in Section 1, upon suitable modification, yields the fact that
1-env if*, F Z(L,orI-F]) c 2’, where pff Irl is the first F-recursively
Mahlo ordinal.
Upon inspection of the relevant clause, we remark that the value of F is

required only at functions a which arise as 2x{e}n*r(x) for some e and
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a e r/v; i.e., e l-sc g*, F. Call a partial g*-acceptable if 1-sc/, g*

_
domain/.
The diagonal of * is

D(g*)(e, 2F) 0 if {e}(e, 2F, g*)l
otherwise.

Then to compute D(g*)(e, 2F), we need only develop qe and check

zl([g(e)] (e) - y)

where g is as in Section 1, modified to (uniformly) accommodate the relativiza-
tion to F.
By the above remark we can extend D(g*) to g, defined at (possibly partial)

/ by

10 if/+ is g*-acceptable and 3([g(e)]"(e) y)
g*(e,/) if/ is g*-acceptable and -1 ([g(e)]’i(e) y)

undefined if/ is not d’*-acceptable.

Let P be the first ordinal k such that

(I) k is admissible and
(2) for every f: k - k such thatfis A, over Lr there is 6 < k, 6 recursively

Mahlo with f"6 6.

Then we can show that

(E) 1-sc g]’ 1-sc D(d’*) Lp, c 2 and
(F) 1-env ]’ EI(Lp,) c 2.

The key step is again to show that if F is g*-acceptable and arises as a 2-term;
/+ 2{e}(,--, ’); then ]q] 6 < Pl and 6 is uniform in (e,--). 6 will
be the (r’ecursively Mahlo) fixed point of a function which takes y < p into
the supremum (over all L; : to to) of the ordinals required to compute
{e}(,--, ). (This is best done using notations for ordinals < Px.)
Because 6 is recursivety Mahlo, we have no trouble with clause d of t/, and

because it is a fixed point of the above function the -applications of clause b
are possible.
We can now diagonalize again and extend again to get , etc. In each case,

selection operators and hierarchies will follow from the "countable computa-
tion" feature of the extended object.
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