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LEFT THICK SUBSETS OF A TOPOLOGICAL SEMIGROUP

BY

H. KHARAGHANI

In this paper we will characterize the left X-thick subsets of an X-amenable
topological semigroup S. Our result extends a result of T. Mitchell in [12] and
Wilde and Witz [15].

1. Preliminaries

Let S be a topological semigroup with separately continuous multiplication
and X a subalgebra (under pointwise multiplication) of CB(S), the space of all
continuous bounded functions on S, containing constant functions. A mean m
(see [5] for the definition)on X is multiplicative if m(fg)= m(f)m(t) for all f
and in X. We denote by M, the set of all means on X and by S 1, the subspace
of M consisting of all multiplicative means on X.

Let X be a left translation invariant and left introverted subspace of CB(S)
containing the constant functions. Let m and n be in M. We define the Arens
product of m and n, denoted by m C)n to be the functional defined by
m n(f)= m(n(f)) for f in X, where r/1 is the left introversion of n. Arens
product makes M into a semigroup with the following properties. For s in S let
Q(s) denote the evaluation functional at X; then for fixed n in M and s in S the
linear mappings m m C) n and m Q(s) (D m are continuous on M, and the
map Q is a continuous homomorphism of the semigroup S into M, where M
has the weak* topology. If in addition X is a subalgebra of CB(S), it is easy to
see that $1 is a subsemigroup of M. For more details see Day [5] and Rao [14].
Following Wilde and Witz [15], the symbols k(T), K(T) will indicate the
convex hull and the weak* closed convex hull of any subset T of M. In partic-
ular when A

_
S, we write kA for k(QA) and KA for K(QA). Let L be the set of

all left invariant means on X. If L is nonempty we call S X-amenable. In this
case every element in L is a right zero of M (see [5] and [14]). Hence
L Ker M, where Ker M denotes the smallest two sided ideal of M (see [4,
Problem 6, p. 6]).

2. The support of a left invariant mean

In this section we shall prove that the support of a left invariant mean on a
left translation invariant left introverted closed subalgebra X of CB(S) is a left
ideal of S 1. We first define the support of a mean, for this purpose we need the
following lemmas.
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LEMMA 2.1. Let X be a closed subaloebra of CB(S) containino the constant

functions. Let S be the set of all multiplicative means on X with weak* topology
($1 is called the maximal ideal space of X).

(i) The map Q: S--,S is continuous and Q(S) is dense in S.
(ii) The induced map .: CB(S)--,X defined by (f) f Q is an isome-

tric isomorphism.

Proof. (i) This follows from [7, Theorem 19, p. 276].
(ii) It is shown in [7, Theorem 18, pp. 274-275] that the map U: X-

CB(S) defined by Uf=f where f(x*)= x*(f) for all x* in S, is a linear
isometry from X onto CB(S1). We observe that our map ( is exactly U-.
Hence (ii) follows from [7, Theorem 18, pp. 274-275].

LEMMA 2.2. Let X be a closed subaltebra of CB(S) containint the constant

functions. Let m be a mean on X. Then the functional m .*m is a mean on
CB(S). If in addition X is left translation invariant, then m is left invariant iff
ml(f L) m(f)for allf in CB(S ) and s in S, where L is the restriction of
operator l* to S.

Proof. It is easy to see that m is a mean on CB(S ). To see the second
assertion we observe that L is a continuous map from S into S . Hencef L
is in CB(S). Since

l,(A Q)(t)=A(Q(st))=A(L,(Q(t)))=A Lo Q(t)
for all in S, we have l,(f Q)= O(f L,) for all s in S and fz in CB(S ).
Hence

m(A L,)= .*m(A L,)= m(.(A L,))= m(l,(A Q))
for all s in S andf in CB(Sz).
Now, assume that m is left invariant. Then

m(A L,)= m(l(A Q))= m(A Q)= O.*m(A)= m(A)
for all s in S and fz in CB(Sz).

Conversely, if m (f L,) m (A) for each s in S andf in CB(S) then

m(l,(fl Q))= ml(fl Ls)= ml(fl)= (*m(fl)= m(fl Q)
for all s in S and fl in CB(S), and this completes the proof.

DFtqITO 2.3. Let X be a closed subalgebra of CB(S) containing the
constant functions. Let m be a mean on X and m the mean defined in Lemma
2.2. Then by Riesz’s representation theorem, m induces a unique regular prob-
ability measure on the Borel sets of S . Let s(m) be the support of/ .We call
s(m) the support of m. For discrete semigroups our definition agrees with one
given in [15]. If E is a collection of means on X, we denote by s(E) the support
of E, which is by definition the weak* closure of Ume s(m) in S (see [16]).
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LEMMA 2.4. Let X be a left translation invariant closed subalgebra ofCB(S)
containin the constant functions. Let m be a left invariant mean on X. Then
L(s(m)) s(m) for each s in S.

Proof. For simplicity write F s(m).
Let s be in S andf the element in CB(S)satisfyingf(LF) 1, 0 <_f <_ 1.

Let # be the probability measure induced by m, where m is as in Lemma 2.2.
Then, by Lemma 2.2,

f f d# m(f) m(fo L) f fo L d/ 1 d# 1"
F F

Hence jr, (1 ft) d/t 0. Since 1 ft is continuous and nonnegative we
have 1 -ft 0 on Ft. Therefore by Urysohn’s lemma, F - LsF t. A similar
argument implies that LF

_
F, for each s in S.

THEOREM 2.5. Let X be a left introverted and left translation invariant closed
suballebra of CB(S) containing the constant functions. Let m be a left invariant
mean on x. Then Q.(s) (R) s(m) s(m) for all s in S, and s(m) is a left ideal of S t.

Proof. First we observe that, for s in S and/ in St,

Ls#(f #(l f Q(s) #(f
for anyfin x. Hence L# Q(s) ( # for each s in S and # in S. Now we apply
Lemma 2.4 to get Q(s)C) s(m) s(m) for all s in S. Let v be any element in S .
Then there is a net Q(s) converging to v in S t. Let , be any element in s(m).
Then Q(s) ( y v y. Since each element of the net Q(s) y is in s(m) and
s(m) is closed, we deduce that v y is in s(m). But this implies that S E) s(m)

_
s(m), that is s(m)is a left ideal of S:.

Remarks. (a) Applying Theorem 2.5, we can show the following formally
stronger result" For any subset Lo of L s(Lo) is a left ideal of S t. We omit this
simple proof.

(b) By the preceding remark, for discrete cancellative semigroups S and
X B(S), Theorem 2.5 reduces to a result ofWilde and Witz [15, Theorem 4.3,
p. 583].

(c) An analogue of Lemma 2.4 is shown by Argabright in [2, pp. 197-200]
for completely regular semigroups S and X C(S), the space of all continuous
(not necessarily bounded) functions on S.

(d) It is possible to give a different proof of Lemma 2.4, using the
techniques employed by Argabright in [1].

3. The maximal ideal space of almost periodic functions

In this section we shall improve a result due to Loomis 11] and Burckel [3],
by applying Theorem 2.5. See [3] for the definition of (weakly) almost periodic
functions (W(S))A(S). First we need the following lemma.
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LEMMA 3.1. (i) Let St be the set of all multiplicative means on X W(S).
Thenfor eachf in W(S),

weak closure of {rs f: s e S} {nt(f): n in St}.
(ii) Let St be the set ofall multiplicative means on X A(S). Thenfor eachf

in A(S),
norm closure of {r f: s S} {n,(f): n in $1}.

Proof. (i) Let f be in W(S). Suppose s is a net in S, such that rsf con-
verges weakly to /. Then certainly rf converges pointwise to g. Since St is
compact, passing to a subnet if necessary, we may assume that Q(s)converges
to an element n in S, that is, Q(s) n weak*. This implies that

r,f (Q(s,))tf--’ nt(f) pointwise.

Therefore n(f) and consequently # is in {nf): n in S 1}. Hence weak clo-
sure of {rf: s in S}

_
{nf): n in S }. Let n be any element in S and Q(s) a

net in Q(S)converging weak* to n. Then

(Q(s,)), f rf n,(f pointwise.

Since f is in W(S), {r,f: s S} is relatively weak compact. Hence passing to a
subnet if necessary we may assume that r,fconverges weakly. But this implies
that r,..f converges to n(f) weakly. That is,

{nt(f): n in St) - weak closure of {r,f: s S}.
(ii) A similar argument as above and the fact that, forfin A(S), {rsf: s in S}-

is norm compact implies this part.
The following is a well known result. (See, for example, [6], [13], or [16]).
For completeness we give a different proof here.

LEMMA 3.2. (i) St, the maximal ideal space of weakly almost periodicfunc-
tions under Arens multiplication, is a compact semi[lroup.

(ii) St, the maximal ideal space of almost periodic functions under Arens
multiplication, is a compact semi#roup with jointly continuous multiplication.

Proof. (i) All we need is to show that the map n St---.m (3 n St is
continuous for each m in St. Let n be a net in S converging to n in S 1. We
should prove m n m (3 n weak* for any m in S, that is, for eachfin W(S)
and m in St, m (3 n(f)--- m n(f). Let fbe any element in W(S). By Lemma
3.1 (i) and definition, {nt(f): n in S} is weakly compact, since this set is poin-
twise compact we deduce that the pointwise and weak topology coincide on
{nt(f): n in St}. Now since n---, n weak*, we conclude that (n)tf nt(f) poin-
twise and hence weakly. That is,

m((n)tf) m n,(f)---, m(n,(f)) m n(f)
for each m in S.
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(ii) We should show that the map (m, n) $1 x $1 m (S) n $1 is contin-
uous. Let m and n be two nets in S converging to m and n in S respectively
and letfbe in A(S). Then (n)f---, n(f) pointwise. But the pointwise and norm
topology coincide on {nt(f): n in $1} (this follows from an argument similar to
one given in part (i)). Hence (n)f---, nt(f) strongly. Therefore

m n(f) m 63 n(f)
<- Im, n(f) m 63 n(f)l + m (D n(f) m 63 n(f)l
< m= (n=),f- nt(f)II + m,(n,(f)) m(n,(f))l---O.

(Notice that nt(f) is in A(S) for each n in $1.)Sincefis arbitrary this completes
the proof.

Now we are ready for the main result.

THEOREM 3.3. Let S be a topolooical semioroup. Then the following state-
ments are equivalent"

(i) There is a two sided invariant mean m on A(S) such that m(f Ofor
each nonnegative nonzerof in A(S).

(ii) $1, the maximal ideal space of A(S), is a compact group.

Proof. (i) (ii). Suppose (i) holds. Let ml *m and let/1 be the mea-
sure induced by m on $1. We claim that s(m) equals the support of/1 $1.
Suppose s(m) S. Let v be in S- s(m). Then there is a function f in
CB(S) such that

0<f<l, fl(v)= 1 and fl(s(m))=O.

Now, m(((fx))= (*m(fx)= ml(f)= st,fl dtl 0. Since fl > 0 we have
((f) > 0; therefore, by assumption, (f)= 0. But this implies tatf 0 on
$1, which is a contradiction. Hence s(m) S 1. Since A(S) is left introverted we
can apply Theorem 2.5 to get Q(s)63 S S, for each s in S. We claim that
S
_
t (3 S for each kt in S. To see this let Q(s) be a net in S converging to

t weak* and v in S . Since for each , Q(s)63 S S. Corresponding to each, there is an element/ in S such that Q(s)63 la v.
Since S is compact passing to a subnet if necessary, we may assume that

/ in S. Now joint continuity of Arens multiplication (Lemma 3.2) implies
that Q(s) 63 ! 63 v. Hence S

_
kt (3 S for / in S . Therefore

S t E) S for each/ in S . Similarly we can show that S (3 # S for each/
in S (note that due to separate continuity of Arens multiplication a right
handed version of Theorem 2.5 holds for X W(S) and X A(S)). Therefore
S is a group (see Clifford and Preston [4, p. 6]). Since multiplication is jointly
continuous on $1 we deduce that $1 is a compact group.

(ii)--, (i). Suppose (ii) holds. Let I be the normalized Haar integral on S 1.

Then l(flo Ls) I(f) for each s in S andfl in CB(S 1). Let m ((*)-11 (note



46 H. KHARAGHANI

L and are as in Lemma 2.2). Then by Lemma 2.2, rn is a left invariant mean
on A(S). Similarly we can show that m is right invariant. Letfbe a nonnegative
nonzero element of A(S). Thenf - fis a nonnegative and nonzero element
of CB(S). Hence I(f) > 0 and consequently m(f) m(O(- f)) l(f) > O,
and this completes the proof.

Remarks. (a) By Krein-Smulian Theorem (see [8]), for each f in W(S)
(resp. A(S)), the weak (resp. norm) closure of Co{rf: s S} is weak (resp.
norm) compact. Using this and an argument similar to the proof of Lemma 3.1,
we can show that for any f in W(S) (resp. A(S)), the weak closure of
Co{rf: s S}, equals {mr(f): m a mean on W(S)} (resp. the norm closure of
Co{rf: s S} equals {mr(f): m a mean on A(S)}). This together with the fact
that W(S) (resp. A(S)) is a weak (resp. norm) closed subspace of CB(S) implies
the known result (see [6]) that W(S) (resp. A(s))is a left introverted subspace
of CB(S).

(b) If the topological semigroup S contains an identity, then the map
n--, n, where n is in S and S is the maximal ideal space of A(S) (resp. W(S)),
designates a homeomorphism between S and S (resp. S’), the deLeeuw-
Glicksberg’s (resp. weakly) almost periodic compactification of S (see [6] or [3]
for details of this compactification). The same map is also an algebraic isomor-
phism, where S has the Arens multiplication and S (resp. S’) the composition
of operators as multiplication.

(c) Let S be a topological group. Then A(S) admits a two-sided invariant
mean satisfying (i) of Theorem 3.3. (See [10, Theorem 18.8, p. 250].) Hence
implication (i) (ii) ofTheorem 3.3 reduces to a result of Loomis 11, Theorem
41C, pp. 167-168].

(d) If S is a group and a topological semigroup, then A(S) admits a two-
sided invariant mean satisfying (i) of Theorem 3.3 (see [3, Corollary 1.26,
p. 15]). Therefore Theorem 3.3 reduces to a result ofBurckel [3, Corollary 2.27,
p. 32].

(e) Let S be a nontrivial regular Hausdorff space such that CB(S)consists
of constant functions. (For existence of such spaces see [9].) Define a multi-
plication on S by st for s and in S. Then S is a topological semigroup
which is not a group and has no identity. Trivially A(S) admits a two-sided
invariant mean satisfying (i) of Theorem 3.3. Hence we deduce from Theorem
3.3 that S is a one point compact group. Neither Loomis’s Theorem (due to
lack of group structure on S) nor Burckel’s result (due to lack of identity in S)
can be applied to such a topological semigroup.

4. Left thick subsets of a topological semigroup

In this section we will characterize the left thick subsets of an X-amenable
topological semigroup. Our result implies a result due to Mitchell [12].

DEFINITION 4.1. Let X be a left translation invariant, left introverted closed
subalgebra of CB(S) containing the constant functions. Let S be the maximal
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ideal space of X. A subset A of S is called left X-thick in S if Q(A)- (weak*
closure of Q(A) in S) contains a left ideal of S.
THEOREM 4.2. Let X be as in Definition 4.1. Suppose X admits a left invariant

mean. Then the following are equivalent"

(i) There is a left invariant mean m on X such that m(f 1 for eachf in X
satisfying Za <f< 1.

(ii) A is left X-thick in S.

Proof. (i)--,(ii). Suppose (i) holds. We claim that s(m)_ Q(A)-. Let
m (*m and # be the measure induced by m on S. If we show
#I(Q(A)-) 1, we will have s(m)_ Q(A)-. For this purpose letf’] be a seq-
uence of functions in CB(S1) such that ;tQ(A)- <f’ < 1 andf’l > f’l+ for all n,
andf’ converges to ;(Q(A)- g 1-a.e. (for construction of such sequence see Hewitt
and Ross [19, p. 129]). Then fn f,] Q X and ;tA < fn < 1 for each n and
hence

,.(Q(A)-) f o<l.-d#x. f limf’l d#x. lim ff’l
lim ml(fq)= lim (_.*m)(f])= lim m(f) 1

by the monotone convergence theorem and assumption. Hence s(m)
_

Q(A)-.
Since, by Theorem 2.5,.s(m) is a left ideal of $1, we deduce that Q(A)- contains
a left ideal of $1; that is, A is left X-thick in S.

(ii)---. (i). Suppose (ii) holds. Let I
_

Q(A)- be a left ideal of S 1, then KI is a
left ideal of M. By compactness of M, every left ideal contains a minimal left
ideal (see [3, Theorem 2.1, p. 19]). Since L= Ker M (see Section 1),
L KI is nonempty. Hence L KA 4: . Let m be any element in KA L.
Define m Q*m and let/ be the measure induced by m on S 1. We show that
gl(Q(A)-) 1. To see this let b be a net in KA converging to m weak*. Letf’l
be the sequence introduced in the first part of the proof. Then O*(f]) 1 for
each and n. Hence

Ill {Q(A)- f XO.A.- d#xl f lim f’i d/x1 lim f f’i d/x1

lim ml(f’l) lim O*m(f’l) lim m(f"o Q)

Now let f be any element in X satisfying gA <f< 1. Let fl Q-if. Then by
continuity off, Zee)- <f < 1 and therefore

m(f) m((O_.-if))= !ff.*m(f)= m,(f)= fo f dlx, 1,
(A)-

which completes the proof.
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Remarks. (a) Let S be a discrete semigroup. In [12, p. 256], T. Mitchell
defines the left thick subsets of S as follows: a subset, ,4, of S is called left thick
in S if for each finite subset F of S there exists s in S such that Fs

_
,4.

According to Wilde and Witz [15, Lemma 5.1, p. 589] this definition agrees
with our definition and hence for discrete semigroups S and X B(S),
Theorem 4.2 reduces to a result of Mitchell [12, Theorem 7, p. 257].

(b) Due to antisymmetry of Arens product the right handed version of
Theorem 4.2 may not be true in general.

(c) Let S be an X-amenable topological semigroup, I any left ideal of S.
Then Q(I)- is a left ideal of $1 and therefore I is left X-thick in S.
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