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1. Introduction, preliminaries and notation

All Hilbert spaces in this paper are separable. An operator will mean a
bounded linear transformation. The measures that we consider are finite posi-
tive regular Borel measures with compact support in the plane.
For two measures v and /, the symbolism v =/ means that v and/ are

mutually absolutely continuous. If /is a linear manifold of E(#), let /P(#)
denote the LP(#) closure of’ for any p, 1 < p < . When p , let oo(p) be
the weak-star closure of in L(p)(= Lx(#)*).

In Section 2 we derive the basic intersection formula

(1.1) ’(/z)--- [(v)c L(tz)].

The results in this paper can be viewed as refinements, variations, and applica-
tions of this formula. In particular, an application to the case where equals
the set of polynomials in the variable z yields a refinement of the result of D.
Sarason [16] that a normal operator is reflexive.
For an operator T, set (T) equal to the ultraweakly closed algebra gen-

erated by T and the identity and /’(T) equal to the weak closure of /(T).
(That is, (T) denotes the weakly closed algebra generated by T and 1.) If {T}"
denotes the double commutant of T then the containments

(1.2) (W) _c (T)_ {T)"
hold. For a normal operator the first inclusion is always equality, while the
second can be proper (for example, the bilateral shift). In fact, the second
inclusion is equality if and only if the normal operator is reductive. The prob-
lem of determining where strict inclusion occurs in (1.2), under the assumption
that T is a subnormal operator with cyclic vector, is somewhat perplexing. To
explain in further detail we need the following notation.

If # is a measure, let H2(#) and poo(#) denote the closures of the polynomials
in the norm topology of L2(#)and the weak-star topology ofL(#), respectively.
Let M denote the operator multiplication by z on H2(#). T. Yoshino [18] has
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shown that {Mz}’, (the commutant of Mz) equals the algebra of multiplication
operators of the form Mo for 4) in n2(#) L (#). Observe the first commutant
is commutative so it equals the second commutant. J. Conway and R. Olin [9,
Theorem 2.1] have shown that l(Mz) equals the algebra of multiplication
operators of the form M for b in po(#). Let W(l denote the set of b in
He(p) c L(p) such that M, is in C(Mz). With this notation the operator
algebra containments in (1.2) for the case T Mz on H:(p) correspond to the
function space containments

(1.3) P’(it)_ W(it)_ HZ(it) c L(it).
It is unknown whether the first containment can be proper; this question is

equivalent, via [9, p. 5], to a lifting problem for subnormal operators posed by
J. Bram [3]. The second containment can be proper as seen by example 2 in
[10]. (The function q in this example can be constructed so that the polyno-
mials in the variable 1/q are dense in H2.) Our intersection theorem (for
equal to the set of polynomials) gives a function theoretic characterization of
W’(it) that points out the "analytic" problems one has to overcome in under-
standing the inclusions in (1.3).
The third section of the paper deals with applications of the intersection

theorem to the case where is the algebra of rational functions with poles off
of some fixed compact set. Using techniques of J. Chaumat [5], [6], we prove
the following: Given a pure subnormal operator S whose minimal normal
extension has a cyclic vector, there exists a pure subnormal operator with
nonempty residual spectrum that has the same minimal normal extension as S
and the same spectrum as S. (See [9, chapter 9] for a related result.) Combining
this with an example of J. Brennan [4], one obtains a counterexample to a test
question raised by M. B. Abrahamse and R. G. Douglas [1, Problem 1]. In
Section 4, we give another counterexample, which is much closer to the class of
operators considered by Abrahamse and Douglas.

2. Weakly closed algebras of normal and subnormal operators

The proof of the following useful fact is left to the reader.

PROPOSITION 2.1. Let It be a positive measure and let L(It) have the weak-
star topology induced by its duality with LX(It). Then

(a) If v =_ It then L(It)= L(v) and the weak-star topologies are identical.
(b) For any fixed p, 1 < p < , a net {f} offunctions converges tofweak-

star in L(It) if and only iffor every measure v It the net {f} converges to f
weakly in LP(v).
PROPOSITION 2.2.

l<p_<,
Let 1 be a linear manifold of L(It). Then for any p,

0
v-----u
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Proof. For a fixed v =/t, let f (p) and let the net {f} converge weak-
star to f where eachf is in ’. Then by Proposition 2.1, it follows thatff
weakly in LP(v). Thereforef lP(v) because a subspace is closed in/Y(v) if and
only if it is weakly closed.
To prove the reverse inclusion first define D {(e, v)[e > 0, v _= #}. Order D

in the following way: (e, v) < (e’, v’)if e’ < e and v’(A) > v(A)for all Borel sets
A. Observe that given (e, v) and (e’, v’)in D there exists (e", v")which dominates
the two. (e"= min (e, e’) and v"= v + v’.) Hence D is a net with this ordering.
Now let f belong to the intersection. For each v and each e > 0 choose

%,v, 1 for which the LP(v) norm Ila %,v, is less than e. It is easy to verify
for any v --/ that a,) a strongly in LP(v). Proposition 2.1 then shows that
i t /’(/).

For an operator T on a Hilbert space H, let Lat T be the lattice of all
invariant subspaces for T; and for a collection &o of subspaces of H, let Alg (5a)
be the (weakly closed) algebra of all operators leaving each member of
invariant. Recall that T is said to be reflexive if #(T)= Alg (Lat T). Sarason
[16] has shown that a normal operator is reflexive. The following theorem is a
strengthening of that result for the case where the normal operator has a cyclic
vector. Moreover, the theorem can be used to prove Sarason’s result for a
noncyclic normal operator. For a measure v absolutely continuous with respect
to a measure /t, let dv/dla denote the Radon-Nikodym derivative of v with
respect to #.

THEOREM 2.3. If N is multiplication by z on L2(/)and A is an operator on
L2() such that Lat A contains all the reducing subspacesfor N and all invariant
subspaces for N of the form (dv/d)/2H2(v) where v , then A is in (N).

Proo An easy computation shows thatf (dv/dp)/2f is an isometry of
H2(v) into L2() that intertwines multiplication by z on the respective spaces,
and hence (dv/d)/2H2(v)is an invariant subspace for N. Since A leaves the
reducing subspaces of N invariant, it follows that A commutes with the spectral
projections of N, and hence A Mo for some 0 in L().

Fix v . Since A leaves (dv/d)/2H2(v) invariant, it follows that

1 e H2(v).

Since dv/d is nonzero almost everywhere with respect to , it follows that
0 n:(v).

Proposition 2.2 now implies that 0 P(). Since the weak-star topology on
L () corresponds to the weak operator topology on the corresponding opera-
tor algebra, it follows that A Mo (N).

Recall that if m is normalized Lebesgue measure on the unit circle, then the
bilateral shift is defined as mz on LZ(m). By Beurling’s theorem [13], [14], the
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simply invariant subspaces are of the form OH2(m) where 0 is a unimodular
function in L (m). In view of the last theorem it is natural to ask which of these
subspaces is of the form (dv/dm)l/2n2(v) for some measure v with v m.

PROPOSITION 2.4. With notation as above,

H(v)lvmand log m dm>-oe

cp
H2 H2(m),q 0}- (m)[W

Proof Note that there is no loss of generality in assuming the integrability
condition. For if the integral equals -c then the invariant subspace is L2(m).
(See [14, p. 50].)

Fix the measure dv (dv/dm)dm and set g dv/dm. By Szego’s Theorem
[14] there exists an outer function P n(m)so that g IP 12. Observe that
H2(v) and H2(m) are isometrically isomorphic under the map which sends
ffP. (Recall that an outer function is a cyclic vector for the unilateral shift.)
If we set

then

OH2(m) (Hm))x//- H2(v)x/"

This proves one inclusion relationship.
To prove the other inclusion relationship the following fact will be useful.

Fact. Set 0  /Ivl for some P 6 n2(m), P =/: 0. Then there exists an
outer function U 6 H2(m) such that OU > 0 almost everywhere m.

If we write P IU1 into its inner-outer factorization and let

U UI(1 + 2! + i2),
an easy computation shows that OU > 0. It now suffices to show that
(1 + 21 + 12) is outer. This last statement follows from the facts that the poly-
nomial (1 + z) is an outer function [14, p 76] and that the composition of an
outer function with an inner function is outer [17, p. 120].
We now establish the other inclusion. Let P 6 H2(m); and find an outer

function U with the property stated in the fact above. We let g (OU)
[OU 12 [U 12 and then define dv g dm. (Szego’s theorem shows that
log g dm > -c.) We then have (applying the same ideas used in the other

inclusion) that

H(v) H
H(m) Ha(m) I1"
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Remark. If 0 is a nonconstant inner function then 0 is an example of a
unimodular function which is not of the form /IVl for any V in H2(m).

We conclude this section with an application of the intersection theorem to
algebras of operators generated by a subnormal operator with a cyclic vector.
Recall that if S is a subnormal operator with a cyclic vector, then S is unitarily
equivalent to M on H2(#) for some measure/ [3]. For a measure #, let H2(#)
denote the set of measures v -= tt such that dv (" vii2) dtt for some finite
sequence {s}] = HE(#) and let jH2(#) denote the set of measures v --_ V such
that IV l )a for some sequence {}]=H2(#)with

H2tu) < oo. The following theorem reposes the problems concerning
the containments

Poo(#)= Woo() H2() Loo()
discussed in the introduction.

THEOREM 2.5. Let 1 be a measure. Then

(i) P()= ("]H2(u)[HE(v) Loo()]
and

(ii) W(R)()= (’] n(u)[H2(v) c Loo(/)].

Proof First we recall some general operator theory facts. These ideas are
originally due to W. Arveson [2]. For an operator T on a Hilbert space Jog and
each integer n 1, 2,..., c, let 7") be the direct sum of n copies of the
operator T and set

B.(T) {a" Lat Tt") Lat A(")}.
Using Theorem 7.1 of [15] and the ultraweak continuity of the map T Tt),
one sees that

(2.6) (’] B,(T)= (T)
and

(2.7) Boo(T) /(T).
It is trivial consequence of the intersection theorem (2.2) that Pod (#) is con-.

tained in the right-hand side of (i). The proof of the reverse inclusion is similar
to the proof of the reverse inclusion of (ii). We shall thus proceed to the proof of
the equality in (ii).

Let 0 Woo(#). Then Mo #’(S) where S is Mz on H2(tt). Fix a measure

v= (x IV12)/ inH2(/)"

Define a map R" H2(v) ()’I HE(#) as follows" for a polynomial p, R(p)=
] %p. Observe IIg(p)ll [IPil so we can extend R to an isometry from H2(v)
into ] HE(#). It is easy to verify that R intertwines M on H2(v) and S(") on
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’I H2(#) Consequently, R(H2(#)), the range of R, is an invariant subspace of
St"). From (2.6) and the fact that Mo /’(S), it now follows that

+ OVj" 1 R(H2(v)).

Therefore, 0tP; tp; f for some f in HZ(v) and all j 1, 2, n. Since
(] tP; 12)# is mutually absolutely continuous with respect to p, it follows that
0 =fand hence 0 H2(v). Thus W(H is contained in the right-hand side of
(ii).
To conclude the proof of (ii), it suffices to show that Mois in /(S) whenever

0 c {H2(v) c L(#)lv -H2(#)}. For any such 0 and for each e _> 0 and v in
H2() let p(,) be a polynomial for which

Order the set of pairs (, v) as in the proof of Proposition 2.2. It now follows
from the definition of the weak topology on (H2(//)) and of H2(//) that the
net of operators {Mpt,)} converges weakly to Mo, and hence Mo /(S).

Remark. For T an operator on H, n 1, 2, 3, , define

Cn(T)-- {A" Lat T"+ x)= Lat A("+ )}
where Lat (T"+ x)) is the set of graph invariant subspaces for Tn+ a) with dense
domain [15, p. 142]. It is thus apparent that B,+ (T) = C,(T), and hence (2.6)
and (2.7) imply that for any operator T,

(2.8) C,(T)= W(T),

(2.9) Co(T) M(T).
An examination of the proof of Theorem 2.5 shows that (2.8) and (2.9) hold
with equality for T M on H2(#). Whether this holds in general does not
seem to be known.

3. An answer to a question by Abrahamse and Douglas

Let # be a measure and K a compact set (in the plane) with spt # K. (Here
spt/ denotes the support of the measure /.) Let R(K) denote the uniform
closure of the rational functions with poles off K. Following the notation of
Chaumat [6], R(#, K) denotes the weak-star closure of R(K) in L(p) and
RZ(#, K) denotes the L2(#) closure of R(K). Observe that if K is the polynomial
convex hull of spt #, then R(#, K)= P(/t) and R2(//, K)= H2(12).
The following proposition appears in [6]. It and its proof are essential to the

ideas in this section. For p a measure and w a complex number, write #(w)
instead of kt({w}).

PROPOSITION 3.1. Let # be a measure and K a compact set with spt #

_
K.

Then R(la, K)=/= L(la if and only if there exist a point w in K and a complex
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representin9 measure 2w for evaluation at w for R(K) such that 2w(W) 0 and
2w#.

Proof. Suppose there exists 2w as claimed, and write 2w= 9 d# where
L(H). Set h (z w). Then for each function r in R(K), we see that

f rh d r(z- w)d2 O.

Since 2w(W)= 0 it follows that h d is not the zero measure and therefore,

Now assume that R(, K) L(), and let h in L() be such that h is
nonzero and h&R(, K). That is, h d 0 for all in R(, K). If r is a
rational function with poles off K, then, for every w in K,

(3.2) f[r-r(w)h d 0.
Z--W

By basic results about the Cauchy transform of a measure [12, pp. 46-47], there
exists a point Zo in K such that (Zo)= 0,

(3.3) c d 0,
Z Z0

and the integral in (3.3) converges absolutely. Letting
h

(3.4) dv
c(z- zod

and using (3.2), we see that v is a complex representing measure for zo and
v . Since (Zo)= 0 it follows that v(zo)= 0.

Again following the notation of [6], define E(g, K) to be the set of those w in
K that have a representing measure as in Proposition 3.1. We then let (, K)
denote the set of thosefin L(g) for which there exist a point w in E(, K) and a
complex representing measure 2w g, such that 2w(W)= 0 and d2w =fd.
Observe that iff e (g, K), say fd d2w for some w e E(, g), then evalua-
tion at w on R(K) extends to a bounded linear functional Fon R( f d, K).
Consequently, F extends to a bounded linear functional on
R((1 + f I) d, K), which we also denote by F. In fact, for every r in R(K),

lr(w)la= f r d2

rf

M f Irll/I d

Mf irla(l+ d,

where M I fl d#.
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Observe that if 0 R2((1 + If I) d, K), then

(3.5) Fy(0) .f Ofdp.
The following theorem shows how these R2 spaces determine R(/, K).

THEOREM 3.6. R(R)(#, K)= t,r) [R2((1 + ]fl)d, K) L()].

eroo Let hZR(, K) where h L(). Then choose a point Zo in K as
given by equation (3.3). Using (3.2) we see that

h a= r(zo) j" h(z)
df Z Zo Z" Zo

for all r e R(K). Therefore, if f= h/[(z Zo)C] then f (, K). Hence, for
every 0 in g{,.r [R2((1 + [ff[ dp, K) L()],

Z Z0 Z Z0

(Use (3.5).) That is,

(3.6) f 0 r’e(0) h d# 0.
Z Zo

But if 0 belongs to 0t.,r)JR2((1 + w()], then so does
(z- zo)O. By (3.5)again, Ff((z zo)O)= 0. Hence, by (3.6), we see that

I [(z z)O O
h d f Oh d-

Zo

That is, h_k[o t,,r, R2((1 + 101) w()]. By duality it follows that
the intersection set is contained in R(#, K). Since the reverse inclusion is
obvious, the proof of the theorem is finished.

Given a weak-star closed subalgebra M of L(/), by [9, Prop. 3.4], there
exists a (unique) measurable partition {A1, A2} of spt.# such that Za and

(3.7)
where ZA2 contains no ideal of L(#). We shall call L(A1, # 11)the L sum-
mand of. By the further properties of (3.7) that are stated in [8], the following
proposition is immediate.

PROPOSITION 3.8. R(#, K) has no L summand ifand only ifthere existsfin
(#, K) with If[ > 0 almost everywhere. Consequently, when g(#, K) has no
L summand, there exists a complex representing measure for R(K) that is mu-
tually absolutely continuous with respect to #.
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The following theorem will be the key to our first counterexample to a
question asked by Abrahamse and Douglas [1, Problem 1]. Before stating the
theorem, we need some additional notation. First, let r(T) denote the spectrum
of an operator T. For a fixed nonreductive normal operator N, let 5(N) denote
the collection of all subnormal operators for which N is the minimal normal
extension. (See [8] for related results.)

THEOREM 3.9. Let N be the normal operator M on LZ(p). Then 9iven a pure
subnormal operator S in 5(N), there exists a pure subnormal S in 5(N) for
which (S)= o(S) .d h rsi.l sp. ofS is .o.py.

Proof Let S (N). It is well known that tr(S)_ a(N) and if a(S),
a(N) then the residual spectrum of S is nonempty. So we may assume that
o(S) (N).

Since S is pure and r(S) r(N) spt V, it follows that R (#, spt V) has no
L summand. (If R(#, spt V) had an L summand, let Z belong to this latter
space with #(A) > 0. By using the same arguments that appear in Section 7 of
[9], one can argue that Z induces a nontrivial projection P in the ultraweakly
closed algebra generated by (r(S):r R(a(S))}. Then the range of this projec-
tion would be a nonzero invariant subspace on which S is normal.)

Therefore, by Proposition 3.8, there exists f in g(V, spt/) such that
]fl d# -= d#. Consider the subnormal operator x that is multiplication by z
on R2(]f] d#, spt V). By our remarks following the proof of Proposition 3.1,
R_z(]/] dr, spt #) has a bounded point evaluation, say at w spt V. Therefore
S has residual spectrum. (See [6].)

Let 0 in L(#) be such that 101 1# almost everywhere and/= flo. Then
define 9 0(- ) and observe that for all r R(spt ),

f rO(z w) lfl d I r(z w)f d# O.

Therefore g_l_R2(lfl d, spt #). Since #(w)= 0, it follows that gl > 0 a.e.
By the next proposition it now follows that S is pure.

Define the map V" L2(/) L2(I f UU) by g g/x/-f. By using the same
techniques as in Theorem 2.4 it follows that /= V- (R(I f du, spt u)) be-
longs to the lattice of N. Then Sx N 1 is the desired subnormal operator.

The following proposition was used in the proof of the previous proposition
and will be used again when we give our second counterexample.

PROPOSITION 3.10. Let N Mz on L2(#) and let /g be an invariant subspace
for N. Then N [u is a pure subnormal operator ifand only ifthere exists afunction
f in L2(#) such that fl > 0 a.e. and

Proof Assume there exists f in L2(#) as claimed. Let " c /be such that
N I is normal. Fix h ’. Since V reduces N, this implies nzmh #V" for all
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nonnegative integers n and m. For each continuous function g it follows that
gh I/’. Now since flg, fgh d/2 0 for each continuous function g. There-
fore, fh 0 a.e. , Hence,f= 0 on the set of positive measure where ]h > 0,
a contradiction to our assumption.
Now suppose // is an invariant subspace for N such that N I is a pure

subnormal. By a lemma of Chaumat [6], there exists a function fo in /+/- such
that every measuref d/2 is absolutely continuous with respect tofo d/2 for every
f in //+/-. An easy argument shows that Ifo] > 0 a.e. (Otherwise, let E be the
zero set offo. Then ZE L2(/2)c and ge L2(/2) reduces N.)

Remark. The lemma quoted from [6] in the last proof has the assumption
that the given convex set lies inside L1(/2). However, by a very slight
modification, the result holds in LP(/2) for 1 < p < oe.
We are now ready to present the first counterexample to problem 1 in [1].

The notation here is consistent with that of [1]. Recall their question:
"If for 1, 2 the pure subnormal operator Si has Ni as its minimal normal

extension with a(N,)c c3a(S,), a(S1)= o($2), and N1 is unitarily equivalent to
N2, then are $1 and $2 similar?"

Example 1. Let K be an arbitrary Swiss cheese obtained by removing from
the closed unit disk /5 the open disks Dj {z: ]z- aj] < rj}, j 1, 2,
where the Dj have mutually disjoint closures and 2 rj < oe_Let denote arc
length on )]o c3Dj w cD. Let N Mz on L2(/2), let R2(/2, K), and let

S N]. Iff is a rational function with poles off K, then f(dz/dp)dl=
fdz 0 by Cauchy’s theorem. Thus dz/d/2l///. Since [dz/d/21= 1 a.e./2, it
follows from Proposition 3.10 that $1 is pure. It is easy to see that a(S 1) - Kand since $1 is pure, the reverse inclusion follows from [3]. The fact that
R2(/2, K) has no bounded point evaluations [4, p. 290] implies that $1 has no
residual spectrum [7]. Now by Proposition 3.9, there exists $2 in S(N) such that
o’($2)-- o’(S 1) and the residual spectrum of $2 is nonempty. The operators $1
and $2 satisfy the hypotheses of the question of Abrahamse and Douglas, but
they are not similar since the residual spectrum of an operator is preserved
under similarity.
The preceding example is not entirely satisfactory, for the spectrum of the

subnormal operators has no interior. We shall now present a second counterex-
ample where the spectrum of the minimal normal extensions is the countable
union of disjoint analytic Jordan curves and one point.

4. The second counterexample

Example 2. Let K =/\J D(2-", n-22-") where D(z, r) {w" w-
z < r}. The point zero is not a peak point for R(K)(see Zalcman [19]), so by
[19, p. 5] there exists a representing measure g for evaluation at zero with
/(c3K) 1 and (0)= 0. It follows easily that RZ(p, K) has a bounded point
evaluation at zero. Let N1 Mz on L2(/2) and let $1 N ]R2(,.). Note that S is
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pure by Proposition 3.10. (2+/-R(K)in L2(/)and > 0 a.e./.) We also point
out that zero is in the residual spectrum of S since R2(, K) has a bounded
evaluation at zero.
We shall now construct a measure v that is mutually absolutely continuous

with respect to / and such that RZ(v, K) does not have a bounded point
evaluation at zero although RZ(v, K) 4= LZ(v). Once this is done, we shall show
that multiplication by z on RZ(v, K) and $1 provide a counterexample to the
question of Abrahamse and Douglas.

Let C1 denote the unit circle and let Cj= {z: Iz 2-J =j-22-} forj > 2.
Let v =/t Ic, and vj j-42-zJ/.t Icj and let v vj. Let N2 Mz on LZ(v)and
let S2 N2 IR2(v,K). Let

j422Jg2 for z C, j _> 2,
f(z) 2 for z e C.

Straightforward computations show that f e L2(v) and that fIR(K). Since
[fl > 0 a.e. v, it follows by Proposition 3.10 that $2 is a pure subnormal
operator.

We next show that there does not exist a bounded point evaluation at zero
for RZ(v, K), and thus zero is not in the residual spectrum of $2. Let r,(z)=
(z- 2-")-1. Using the facts that z > 2-J-1 and

r, 1/z] < j22J + 2+ on Cj for j > 2,

one can show that 1/z LZ(v) and that r, 1/z in LZ(v). Thus the r,’s are
uniformly bounded in LZ(v)norm, but r,(0)

It is easy to see (via the Stone-Weierstrass theorem) that the minimal normal
extensions of S and $2 are N1 and N2. The fact that N and N2 are unitarily
equivalent follows from the mutual absolute continuity of/ and v. Thus we
have established that S and $2 satisfy the hypotheses of the Abrahamse and
Douglas question. (It is obvious that a(S,)
and Si is pure, it follows from [3] that r(Si)

_
cK. It is well known that if the

spectrum of a subnormal operator has zero planar measure, then the operator
is normal. Therefore, using [3] again, it follows that a(S 1)= a(S2)= K.)Since
zero is in the residual spectrum of S but not that of S 2, it follows that S and S2

are not similar.
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