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SOLVABLE GROUPS ADMITTING AN “ALMOST FIXED
POINT FREE” AUTOMORPHISM OF PRIME ORDER

BY
STEPHEN M. GAGOLA, JR.

1. Introduction and notation

In [9], Thompson has proved that a group admitting a fixed point free
automorphism of prime order is necessarily nilpotent. In this paper, we relax
somewhat the fixed point free hypothesis on the automorphism, but we do
assume that the group in question is solvable. The specific hypothesis con-
sidered is the following:

Hypothesis 1.1. P is a group of prime order p, N is a solvable group and P
acts on N as a group of automorphisms in such a way that for every prime
divisor r of |[N|, [R, P] = R holds for every P-invariant Sylow r-subgroup R
of N.

If p is not a Fermat prime (i.e., p is not of the form 1 + 2°) then the group N
in the above hypothesis is necessarily nilpotent. This fact is a consequence of
results appearing in a paper of E. Shult [8], although it is not explicitly stated
there. A complete proof is given here.

The interesting case, occupying the bulk of this paper, is when p is a Fermat
prime. In Section 4 we show that if p > 17, then N has a nilpotent normal
2-complement, equivalently, N/F(N) is a 2-group, where F(N) is the Fitting
subgroup of N. For the remaining Fermat primes (3 and 5), N/F(N) need not
be a 2-group, but some of its structure is determined. In particular, the possible
prime divisors of the order of N/F(N) are determined (see Theorem 4.2(c)).

Whenever one group A acts on another group B as a group of automor-
phisms, the usual semidirect product AB may be constructed, and this idea is
used implicitly throughout this paper. One frequent occurance of this is the
case when B is an F[A]-module for some field F. Another obviously is 4 = P
and B = N in the situation of hypothesis 1.1. Notice that this hypothesis is an
example of a coprime action, as | N| is necessarily prime to p.

The notation used throughout this paper is standard we hope, and we use [3]
and [5] as general references for the standard group theoretical results needed.
We also use [2] as a general reference for representation theory.

If G is a finite group, Irr (G) denotes the set of irreducible (complex) charac-
ters of G, and for y € Irr (G), let det y € Irr (G) denote the linear character
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192 STEPHEN M. GAGOLA, JR.

defined by
(det x)(g) = det X(g)

where X is any representation affording y. If N < G, we sometimes view charac-
ters of G/N as characters of G with N in their kernels (and similarly with Brauer
characters).

2. Some preliminary lemmas and needed facts

LEMMA 2.1.  Let G be a group of the form PR where |P| = p is a prime, and
R = [R, P] is a nontrivial r-group for some prime r # p. Assume Z(R) s cyclic, P
acts trivially on Z(R), and that every characteristic abelian subgroup of R is
contained in the center of R. Then R is extra special, and if r is odd, exp (R) = r.

Proof. See Lemma 1.2 of [4].

Let V be an irreducible F[G]-module over a field F of characteristic g. Then
A = Endgg, (V) is a division ring finite dimensional over F, and if E is a
maximal subfield of A (necessarily containing F) then ¥ may be viewed as an
irreducible E[G])-module. Since Endgg; (V)= E - 1,, the module V is abso-
lutely irreducible as an E[G]-module. By a “Brauer character of V”” we shall
always mean a Brauer character of V viewed as an E[G]-module. It need not be
uniquely determined, but this does not matter for our purposes. Notice that the
degree of a Brauer character associated with V is < dimy V, with equality iff F
is a splitting field for V.

Part (a) of the following lemma is implied by Theorem 3.1 and Corollary 3.2
of [8].

LEmMMA 2.2. Suppose PS is a group where P has prime order p > 2, and
S =[S, P] is a nontrivial s-group where s is a prime (different from p). Let V be an
F[PS)-module where the characteristic of F is q+ s, p. Finally assume
[V, P]=V. Then:

(@) If[V,S]+ {0}, then s =2 and p is a Fermat prime.

(b) If PS is faithful and irreducible on V, then dimp V =p —1,and S is an
extra special 2-group of order 2(p — 1)*. Moreover, the F[PS]-module V is unique
up to isomorphism, and so is the group PS.

Proof (Sketch). Notice that if [V, S] # 0 then Cps(U) is properly contained
in S for any irreducible submodule U of V which is contained in [V, S]. Thus,
the hypothesis of (b) are satisfied with PS replaced by PS/Cps(U) and V
replaced by U, and so (b) implies (a).

Assume now the hypothesis of (b) is satisfied. Let E = End gips; (V) so that E
is a finite field containing an isomorphic copy of F and view V as an E[PS}-



SOLVABLE GROUPS 193

module. Let U = V ® ¢ K where K is a finite extension of E such that K is a
splitting field for all subgroups of PS.

By standard arguments (Clifford’s Theorem and Mackey’s Theorem) it is
easy to establish that Uy is irreducible and Uy, is homogeneous for all S, << PS
with S, = S. By Lemma 2.1 then, S is extra special of order s?**! say.

If ¢ is the Brauer character of U then ¢ € Irr (PS) as g} |PS|. Also
[U, P] = U implies (¢ p, 1p)p = 0. Now the characters of PS may be computed
(see Satz 17.13 on p. 574 of [5]) and in particular, ¢p = mp + op where p is the
regular character of P, u € Irr (P) and é = + 1. Since (¢p, 1p)p = 0, it follows
that m= 1, y=1p and § = — 1. Thus ¢p = p — 1.

Hence, s°= ¢(1)=p— 1. Since p>2, p—1 is even, forcing s=2 and
p =1+ 2% a Fermat prime. Also |S| =2%*!=2(p — 1)

Again, from the character theory of PS, ¢ must be rational valued. Hence
tr (xy) € GF(q) € F, where xy: U — U is the linear transformation determined
by x € PS. All Schur indices for finite fields are trivial, so F = E and dimg U =
dimp; V =p— 1, and V is unique up to isomorphism. Finally, there are two
extra special groups of order 2(p — 1)* up to isomorphism, but only one of
these admits a group of automorphisms of order p. A Sylow p-subgroup of the
full automorphism group of this group has order p, and it readily follows that
the group PS is unique up to isomorphism.

COROLLARY 2.3. Let PS be a group where P has prime order p > 2, and
S =[S, P] is a nontrivial s-group for some prime s # p. Assume PS acts faithfully
on a finite abelian group A having order prime to ps and which satisfies
[A, Pl= A. Then s =2, p is a Fermat prime and S is a subdirect product of
isomorphic extra special 2-groups, each having order 2(p — 1)

Proof. Since the order of A is prime to ps, PS acts faithfully on A/¢(A4) and
[A4/¢(A), P] = A/¢(A). Clearly, we may replace A by A/¢p(A) so as to assume
¢(A) = 1. Then, A is a completely reducible abelian group under PS and we
may write A=V, + V, + -+ V, where each V; is an irreducible GF(g;)
[PS]-module for some prime g; different from p and s. Then, [V}, P] = V; for all
i, and PS is faithful on [4, S]. It follows that S is a subdirect product of the
groups S/Cps(V;) where i ranges over all indices for which [V, S] = V;, and we
are done by Lemma 2.2(b).

LeMMA 2.4. Let P be a cyclic group of prime order p, and let P act on a group
N satisfying 0%"(N) < O%N) < N. Assume
[N/OY(N), P = N/OY(N) and [O(N)/O*"(N), P] = O%(N)/0%"(N).
If q is odd, or if p is not a Fermat prime, then
0%"(N) = O%N) n O'(N).
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Proof. In general, 02"(N) < 0%N) n O"(N), and the lemma is unaffected if
0%"(N) is factored out. Thus, we may assume O%'(N) = 1. Let R = O%(N) and
let Q be a P-invariant Sylow g-subgroup of N. Then R is the unique Sylow
r-subgroup of N. If ¢(R) # 1, then by induction, Q¢(R)/¢(R) < N/¢p(R). Hence
[@, R] < ¢(R), and so [Q, R] = 1, proving the lemma. Thus, we may assume
¢(R) = 1 so that R is a vector space over GF(r). For odd p, the hypotheses of
Lemma 2 are satisfied with S = Q and R = V. Thus, if [Q, R] # 1 then g =2
and p is a Fermat prime, a contradiction, and we are finished in this case. Thus,
we may assume p = 2. If O,(N) > 1, then by induction Q/0(N) is normal in
N/O,(N) and hence Q <N. Thus, we may assume O (N)= 1. Hence, PQ is
faithful on R. Now, P inverts some element x # 1 of Q and so P acts without
fixed points on {x>R. By Thompson’s theorem [9], {x)R is nilpotent, which
contradicts that (x) is faithful on R. (Actually, since p = 2, a more elementary
argument can be used to prove directly that (x)R is abelian.)

3. Representation theory

This section contains some technical results from representation theory
which will be useful for the next section.

LemMMA 3.1. Let G be a group of the form PR where P has prime order p and
R = [R, P] is a nontrivial r-group for some prime r (necessarily different from p).
Let U be an F[PR)}-module where F is a finite field of characteristic r. Then,
[RU, P] = RU lfand Only ifhomp[pR] (U, F) = {0}

Proof. In general, we have [RU, P]=[R, P][R, P, U][U, P]. Since
[R, P] = R, this simplifies to [RU, P] = R[R, U][U, P]. The last two factors are
contained in U. Thus, [RU, P] = RU is equivalent to [R, U][U, P]=U. In
additive form, this may be written as U = [U, R] + [U, P]. Notice, [U, R] is
the radical of U when viewed either as an F[R]-module or as an F[PR]-module,
and the equation is equivalent to the statement that U does not have the
principal F[PR]-module as a homomorphic image, i.e., homgpg, (U, F) = {0}.

LemMA 3.2. Let V be an irreducible F[G]-module and W an irreducible F[H]-
module where H is a subgroup of G. Assume F is a finite field which is a splitting
field for all subgroups of G. Assume also that the Brauer characters of V and W
may be lifted to ordinary irreducible characters, say y and A respectively, and that
(xu»> A)z # 0. Then W is a homomorphic image of Vy.

Proof. Let the characteristic of F be g. Then, F is obtained from the prime
subfield by adjoining a primitive mth root of unity, where g ¥ m. Moreover,
since F is a splitting field for all the cyclic subgroups of G, it follows that the
exponent of G divides g°m for some a. Let K denote the algebraic number field
obtained by adjoining a primitive g°mth root of 1 to the rationals. Hence, K is a
splitting field (in characteristic 0) for all subgroups of G. Let R be the localiza-
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tion of the algebraic integers of K relative to some prime ideal containing g,
and let 2 denote the unique prime ideal of R. Then R/#? = F, and we may
regard R/? = F. As Ris a P.L.LD,, x is realizable in R, and we choose an R-free
R[G]-module, say X , which affords y. Let X = X, ®3 K, and regard X, < X.
Thus, X is an irreducible K[G]-module affording y. Since y is a lift of the Brauer
character affording V, the F[G]-module X, /?X is isomorphic to V.

By hypothesis, (g, A)z # 0, so that A is a constituent of y,. Since Xy is
completely reducible, it follows that X contains a maximal K[H]-module, say
M, such that X/M affords A. Let M= M n X,. Then M is an R-pure R[H]-
submodule of X, and the quotient X, /M, is a free R-module. (This construc-
tion of M, in X, is the same idea appearing in Theorem 1 of [10]). Now,
X, /M, affords 4, and it follows that the F{[H]-module (X /M o)/P(X /M) is
isomorphic to W, as A is a lift of the Brauer character for W. Thus, X ,/2X,
maps onto W, and since V = X, /2X,, we have homy (Vy, W) # {0}.

The next technical lemma is the first indication that, in the situation of
Hypothesis 1.1, exceptional sets of primes will have to be considered in case p is
Jors.

LemMMA 3.3. Let G be a group of the form G = PSQ, where P is a cyclic group
of prime order p, and p is a Fermat prime. Assume Q = [Q, P] is a normal
g-subgroup of G and that Q is an extra special g-group of order q® and exponent q.
Also, assume that S = [S, P) is an extra special 2-group of order 2(p — 1)* and
that PS is faithful and irreducible on Q/Z(Q). Let A be a nonprincipal irreducible
character of G with kernel SQ, and let y be a faithful irreducible character of PSQ
whose restriction to Q is irreducible, and which is canonical for yo. Then
(xps»> Abs)ps #+ 0for0 <k <p— lunlessp=3and q € {5,7, 11, 13,23} or unless
p=5and qe {3,7, 11}.

Proof. Since yq is irreducible, it follows that Z(Q) = Z(G). Moreover, if
Z(S) = {s), then s inverts Q/Z(Q) and centralizes Z(Q). It follows that
I={yeQ|y =y '}is a set of coset representations for Z(Q) in Q, and ob-
viously, PS permutes I.

Let X be a K[PSQ]-module affording y where K is a splitting field of charac-
teristic zero for y. Now, if p: G — GL(X) is the corresponding representation
(i.e., vp(g) =vg for ve X, g € G) then G acts on Endg (X) as follows: for
f€Endg (X) and g € G, f? = p(g)~ *fp(g). The space Endg (X) may then be
viewed as a K[PSQJ]-module in the natural way, and the character of this
module is x¥.

Since po is irreducible, we know from the representation theory of Q that p(I)
is a basis for Endg (X). Thus, Endy (X) is a permutation module for PS.
Moreover, since 1 € I is the only element fixed by P, P acts fixed point freely on
I — {1} and hence on p(I) — {p(1)}. Thus, except for 1, all point stabilizers are



196 STEPHEN M. GAGOLA, JR.

contained in S. Thus, we have
(xX)ps = 1ps + Z (lsi)PS

where the S; are subgroups of S (possibly with repetition).
Now, with 1 as in the statement of the lemma, we have, for any i,

(lps — Apss lgis)Ps = (lsi - }»si, lsi)s; =0
as ker A 2§ 2 S;. Clearly (1p5 — Aps, 1ps)ps = 1, and it follows that
(Lps — Aps, xX)ps = L.
But (1ps — 4, xX)ps = ((1ps — A)t x)ps. Write

p—1 . op-1 .
xes= Y, A+ Y by +n
j=0 j=0
where Y € Irr (PS) is the unique faithful, rational character, and # is a sum of

characters of the form u"S, where p is a linear character of S. Then (1 — A)y =0
so that

p—1 p—1
((Lps = Aps)xps» Xps)es = Z aj(aj —4a;- 1)+ Zo bj(bj - bj-—l) =1
j=0 i=
where all subscripts are read mod p. Hence,
p—1 p—1 p—1 p—-1
Y (@—ai- )+ Y (bj=bi-1)=2{3 afa—a;-1)+ Y bib;—b;_1)
j=o j=0 j=0 =0
=2.
We already know yps is rational valued, so a; =a,=""'=a,and by =b, =

-++ = b, Thus, the above equality yields either ao = a, (and |bo — b,| = 1) or
|ap —ay| =1 (and by, = b,). The lemma asserts that apa, # 0 except for
p=3,9q€{57,11,13,23} and p=5,q€ {3, 7, 11}.

To compute these inner products, we need to compute some values of ¥ ps.
We remark that I. M. Isaacs, in a different, more general context, has described
an algorithm for computing values of the canonical extension y of yo. See [6].

Let x € S be a noncentral involution (x exists only for p > 3). Now y/(x) = 0
where ¥ € Irr (PS) is the unique faithful, rational character. Thus, exactly half
of the “eigenvalues for y/(x)” are negative ones, and the other half are ones. As y
is the Brauer character for Q/Z(Q), it follows that |Cyg,z,(x)| = ¢~ !'2. Since
(xX)ps is the permutation character of PS on Q/Z(Q), it follows that
x(x)* = ¢~ V'% and so x(x) = 6¢?~V/*, where ¢ is a sign. We use the fact that
det x(x) =1 to compute J. Suppose p(x) has u eigenvalues equal to 1, and v
eigenvalues equal to — 1. Then

1x)=u—v=3¢""Y% and y(1)=u+v=qg? V2
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As det y(x) =1 it follows that v is even. Solving for v yields
gDz _ g4
2

Therefore, the numerator must be congruent to 0 mod 4. Now if p > 5, then
(p — 1)/2 and (p — 1)/4 are powers of 2, both > 2, and

qr V2 =g~ V% =1 mod 4.

This proves 6 = 1. If p = 5, then the numerator is congruent to 1 — g mod 4 so
q =6 (mod 4). Hence ¢ is determined.

If x # 1is any element of PS which is not a noncentral involution, then <{x)
acts Frobeniusly on Q/Z(Q), which implies that y(x)* = | Cg,z¢g)(x)| = 1. Thus
x(x)= 1

V=

The case p = 17. In this case, all character values for yps are > —1 and we
have
ao = (xps> IPS)PS

1
=_15ﬂ xgs x(x)
= g () = (1PS| = 1)
)
S|

Now (1) = g%~V and |PS| = (1 + 2°) - 2*** where p = 1 + 2%, 5 > 4. Thus
a, will be greater than one if
q2s—1 > (1 + 2s) . 22s+ l‘
This last inequality is implied by the inequality
qzs—l =2 2s+1 . 22.s+1 — 23s+3

which is equivalent to g > 23$*3/2°7 Since p = 1 + 2°is a Fermat prime, sis a
power of 2, and in our case s > 4. If s > 8, the fractional exponent in the last
inequality is less than 1 so that all odd primes g satisfy it. For s = 4 the
exponent is 15/8 < 2, so all odd primes g > 2? = 4 satisfy the inequality. It
suffices now to compute a, for p = 17 and g = 3. In this case, S cannot be a
central product of 4 dihedral groups of order 8, as, in this group there are
28 — 2 = 240 noncentral involutions (which could not be fixed point freely
permuted by an automorphism of order 17, as 17 does not divide 240). Hence, S

is the central product of three dihedral groups with one quaternion group. For
this group, the number of noncentral involutions is 17 - 14. Hence

ao > (3% +17-14-3*—(17-512—17- 14— 1)) > L.

17 - 512
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We have now shown that for p > 17, a, > 1 and hence a, > 1. The lemma is
now proved for p > 17.

The cases p= 5 and p = 3. The explicit values of yps are needed in order to
handle the cases p= 5 and p = 3.

For simplicity, write x(x) = x(k) if the order of x is k and k # 2. Let (2)
denote the value x(s) where s is the unique central involution of S, and let x(2')
denote y(x) where x is a noncentral involution of S (which exists for p = 5, but
not when p = 3). We already know y(2') = dq where ¢ is the unique sign satisfy-
ing g = 6 (mod 4). The values of xps at all other nonidentity elements are signs.
Let s be the central involution of S. If s has 1 as an eigenvalue with multiplicity
uon X, and —1 with multiplicity v, then

u—v= X(Z), u+v= X(l) = q(p- 12,

Thus 2v = g?~ V2 — %(2). Now, det yps = lps, SO v must be even, and
g~ Y% = y(2) (mod 4). This determines x(2) as x(2) is a sign. In fact, for p = 5,
x(2) = ¢* =1 (mod 4), so x(2) = 1.

Now let x be an element of order 4. As x? is a central involution, and x(x)is a
sign, we have

x@) = x(x) = uy — uy + (v/2)i + (V/2)(—i) = uy —u,

where u; + u, = u= (q?~ 2 + y(2))/2. Now, u, must be even, as det y(x) = 1.
But
_ 477D + 5(2) - 2x(4)
U, = ,

4

and thus ¢~ 12 4+ y(2) — 2x(4) = 0 (mod 8). This determines x(4) uniquely.
Notice that for p =5,

¢~V = ¢ = 1 (mod 8),

so x(2)=1 and hence x(4)= 1. The only elements remaining are those of
orders 2p and p. Now, since  ps is rational valued, we have x(g”) = x(g) (mod p)
for any g € PS. Thus

2(2p) = x(2) (mod p) and y(p) = x(1) (mod p).

Thus x(2p) = x(2) and y(p) is the unique sign satisfying g*~V/? = x(p) (mod p).
We now tabulate these values below. Let 6, 6, and 6, denote the unique signs
satisfying the congruences

6 =gq (mod 4), 6,=qg"" "2 (mod4), J,=4q? V2 (mod p).
Also, let ¢ be the sign satisfying g + d, — 2¢ = 0 (mod 8).
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Element of PS Value when p=5 Value when p =3
1 ' q
2 (central) 1 04
2’ (noncentral) d, (no such elements when p = 3)
4 1 £
r é, S,
2p 1 IR

We note that for p =5, S must be the central product of a dihedral group
with a quaternion group. Otherwise, S would have 12 elements of order 4,
which could not be permuted fixed point freely by an automorphism of order 5.
Hence, when p = 5, S has 10 noncentral involutions, and 20 elements of order 4.
Also, there are 3(p — 1)| S| = 64 elements of order p, and the same number of
order 2p. Thus

ao = (xps Lps)ps

= 15o(q* + 1 + 105g + 20 + 64(1 + 6,))
= 1o((q + 76)(q + 30) + 64(1 + 6,)).

It is easy to check that a; = (yps, A)ps satisfies a; = a, when 6,= —1 and
a; = ao — 1 when 6, = 1. Now

a0 > 1h5((@ — 7)(g—3))>1 when g > 19,

and hence it suffices to consider odd primes q less than 19 (and # 5). If g is 17
or 13 then 6 =1 so

a0 = t2o((13 + 7)(13 +3)) > L.

For the remaining primes (¢ = 3, 7, 11) we tabulate the following,

q o é, a, a,
3 -1 -1 0 0
7 -1 -1 0 0
11 -1 1 1 0

This proves the lemma when p = 5.

When p =3, S is the quaternion group of order 8, in which there are no
noncentral involutions, and 6 elements of order 4. In PS there are 8 elements of
order 3 and 8 of order 6. We have

ao = (xps> 1ps)ps = 24(q + 04 + 6¢ + 85, + 89,4).
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Thus, ao > (1/24)(g — 23) > 1, when ¢ > 47, and hence a,, a, #0 when
q > 47. We remark that when 6, and 6, are of opposite signs, then a, = a, and
for 6,=0,=1 we have a; =a,—1, while for §,=0,= —1 we have
a, = ay + 1. The following table is easily worked out:

q s 7 11 13 17 19 23 29 31 37 41 43 47
6, 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1
e -1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 -1
-1 1 -1t 1 -1 1 -1 -1 1 1 -1 1 -1
@ O O o0 1t 1 1 o0 1 1 2 2 2 1
g O O 1 o0 1 1 1 1 1 1 2 2 2
From the table, we have a, a, = 0 exactly when q € {5, 7, 11, 13, 23}, and this
completes the entire proof of Lemma 3.3.

COROLLARY 3.4. Let G have a normal series Q <<SQ <tPSQ where P is a
cyclic group of prime order p, S =[S, P] is an extra special 2-group of order
2(p — 1)* and Q = [Q, P] is an extra special q group of order g and exponent q
(where 2 # q # p). Assume PS acts faithfully and irreducibly on Q/Z(Q). Let U be
a faithful irreducible F[G]-module where F is a finite field of characteristic 2
which is a splitting field for all subgroups of G. Assume Uy is irreducible. Then

hompps) (Ups, F) # {0}
unless p=3 and q € {5, 7, 11, 13, 23} or unless p=5 and q € {3, 7, 11}.

Proof. Let L be a faithful, irreducible F[PSQ/SQ]-module, regarded as an
F[PSQ]-module. Write

E‘ = L@F L®F "'®F L (k times).

Then, Uy UQ L U®I?,...,U ® I?" ! is a complete list of irreducible F[PSQ]-
modules whose restriction to Q is Uy. Notice

homyps; (U ® L)ps, F) = homprps) (Ups, ((E)" ® F)ps)
= homp[PS] (UPSa ngk)

It follows that (U ® I¥)ps maps onto F for all k if and only if U ps maps onto
(FOLO® L@ - @ I’ ')ps. Notice that this last module is really just the regu-
lar F[PSQ/SQ]-module. It therefore suffices to prove that Ups maps onto
FOLOLP® @ *unlessp=3andqe {57, 11, 13,23} orunlessp=5
and q € {3, 7, 11}. Clearly, we may replace U by any of the modules U ® ¢ I, so
that we may assume U is the “canonical” extension of U,. (This is the unique
extension of Uy, to U satisfying det xy = 1 for every x € PS).

From now on, U is an irreducible F[G]-module with Uy, irreducible and U
canonical for Uy. Let ¢ be the Brauer character of U. By the Fong-Swan
Theorem, there exists an ordinary irreducible character y of G such that x
agrees with ¢ on elements of odd order. (For a proof of the Fong-Swan
Theorem, see Theorem 72.1 on p. 473 of [2]. There is a more conceptual,
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character theoretic proof of this theorem, given in [7). In fact, because of the
specific nature of the group G = PSQ, a separate argument may be given to
prove the existence of y, without appealing to the Fong-Swan Theorem.)

Clearly, the module L has a Brauer character which may be lifted to an
ordinary character of PSQ/SQ, say A. Since y is the canonical extension of g,
the previous lemma implies (xps, Aos)ps # 0 for 0 <k < p — 1 except when
p=3 and g€ {5 7, 11, 13, 23} or when p=5 and g € {3, 7, 11}. Thus, by
Lemma 3.2, Ups maps onto (F®L® - @ P *)psunless p=3and g€ {5, 7,
11, 13,23} or p = S and q € {3, 7, 11}, and this completes the proof of Corollary
34.

4. Main results

The first theorem of this section is a generalization of Corollary 3.4.

THEOREM 4.1.  Let G be a group of the form G = PSQ where |P| = p > 2isa
prime. Assume Q = [Q, P] <G is a g-group, and S = [S, P] is a 2-group, where
2+ q # p. Assume also that Cps(Q) = 1. Let U be a faithful F[G]-module where
F is a finite field of characteristic 2, and suppose U = [U, S|+ [U, P]. Then:

(@ p=3andqe{57,11,13,23} or p=5and qe {3, 7, 11}.
(b) Q is a nonabelian group of exponent q and class 2.

Proof. The hypothesis U = [U, S] + [U, P], which by Lemma 3.1 is equiv-
alent to hompps; (Ups, F) = {0}, is unchanged if we replace F by any finite
extension field, say E, and U by U ® ¢ E. We may therefore assume that Fis a
splitting field for all subgroups of G. We now prove (a) and (b) together by
induction on dimy U + |G]|.

Since 0,(G) = 1, G acts faithfully on U/J(U) where J(U) is the radical of U.
If J(U) # {0}, we are done by induction, so assume J(U) = {0}. Hence, U is
completely reducible, and we may write U = U, + - + U, where the U, are
simple F[G]-modules. If Q = C4(U)) for some i, then G is faithful on U/U; and
induction applies again. Thus, we may assume Q & Cs(U)) for all i. Suppose
S < C4(U;) for some i and let G = G/Cg(U;). Then G = PQ acts faithfully on U;
with [Q, P] = Q and [U,, P] = U,. The hypotheses of Lemma 2.4 are satisfied
with N = QU; and r = 2. By that lemma, Q centralizes U, which is a contradic-
tion. Thus, S & Cg(U;) for alli. Since 0,(G/Cg(U;)) = 1 for all i, it follows that
PSCg(U,)/Cs(U;) acts faithfully on QCq(U;)/C6(U;) for all i. If I > 1, then
induction applies and (a) follows. From (b), QC¢(U;)/Cs(U;) is a nonabelian
g-group of exponent g and class 2, for each i. Since Q is a subdirect product of
these groups, the same is true of Q itself.

Thus, we may assume [ = 1, i.e., U is an irreducible F[G]-module. If Usgg
reduces, then U= Y® for some irreducible F[SQ]-module Y. Then
Ups = Y9 |ps = (Y5)™, and

homF[PS] (U s, F ) = homF[PS] ((YS)PS, F ) = homp[s] (Ys, F ) # {0}!

a contradiction. Hence, Usgyg is irreducible.
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Suppose U is not homogeneous. Then, by standard arguments, U is induced
from a proper subgroup of the form PS,Q where S, is a P-invariant subgroup
of S. We may assume that PS, Q is a maximal subgroup of PSQ so that S, <,
and P acts irreducibly on S/S,. Write U= V"2 where V is an
F[PS, Q]-module.

Set S, =[Sy, P}, and assume [V, PS;] < V. Now, S, = §,Cs,(P), and Cs,(P)
normalizes PS,. Hence, S, normalizes PS, and also [V, PS,]. Thus [V, PS,]is
an F[S,]-submodule of V. Clearly, the F[S,]-submodules of ¥ which contain
[V, PS,] are stabilized by P and hence are F[PS,]-submodules. Let W be a
maximal F[S]-submodule of V containing [Y, PS,]. As char F = 2, it follows
that V/W is the principal F[PS,]-module, and homgps,; (V, F) # {0}. However,
Ux VG, 5o Ups = (VPSO)PS and

{0} = hompps) (Ups, F)

= homp[ps] ((VPSo)Ps’ F)
= homppsy) (Veso F)

# {0}
This contradiction proves that [V, PS,] =

Let PS, Q = PS, /Cps,o(V). Since PS, Q <IPS,Q and V is an irreducible
F[PS QQI-module it follows that Vps o is completely reducible, and hence
0,(PS; Q) = 1. From this, it follows that PS, acts faithfully on Q. If S1 =1,
then the hypotheses of Lemma 2.4 are satisfied with N = QV and r = 2,50 Q
centralizes V. But then § = 1, so Q centralizes V¢ = U, as Q < G. This contr’a—
diction proves §; # 1 so that induction applies in the group PS; Q (with U
replaced by Vps o). Thus, (a) is satisfied, and QCps,o(V)/Cps,o(V) is a g-group
of exponent g and class 2. Since the core of Cps, o(V) is trivial, Q itself has
exponent g and class 2.

We are now led to the case in which U, is homogeneous. Since SQ/Q is a
2-group, this implies Uy, is irreducible in fact.

Suppose Uy, is not homogeneous for some normal subgroup Q, of G con-
tained in Q. Choose Q, with |Q,| as large as possible with this property.
Choose a homogeneous component of Uy, in such a way that PS is contained
in its inertia group. If PSQ, is the inertia group of this module, then U = Y© for
some F[PSQ;]-module. Let PSQ, be a maximal subgroup of G containing
PSQ,, and let Y, = Y?5¢2 Hence Y§ = U and Q, <G. Now

Ug = (Y2)% o = ((Y2)0,)°

so Ug, = ((Y2)o,)%le,- Hence Uy, reduces into |Q:Q,| distinct conjugates. By
maximality of Q,, and Q, < Q; € Q, it follows that @y = Q, (and Y, = Y).
Let O be a nontrivial orbit of PS on Q/Q,, and choose xQ, = X € 0. Since P
acts fixed point freely on Q/Q,, the stabilizer of X in PS is some subgroup of S,
say So. Then, S, acts on xQ, by conjugation, and since S, is a 2-group, S, must
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centralize some element of xQ,. We may assume that x is centralized by S,,.
Clearly Y ® x is an F[S,]-submodule of Y¢, and (Y ® x)™ is a direct summand
of Y°|ps from Mackey’s theorem. Since Y¢|ps = Ups, this implies

homm,s] ((Y ® X)Ps, F) = {0}
But

hompps) (Y ® x)™, F) = homgsg (Y ® x)s,, F) # {0}.

This contradiction proves that Uy, is homogeneous for all normal subgroups
Q, of G contained in Q.

In particular, every characteristic abelian subgroup of Q is contained in
Z(Q). Also, Ug, is homogeneous, so Z(Q) is cyclic and is contained in Z(G).
By Lemma 1 (with r = g), Q is extra special of exponent ¢, and (b) follows. It
remains to prove (a).

Choose Q, = Q with Z(Q) % Q, <G such that PS acts irreducibly on
Q,/Z(Q). Now, Q, is nonabelian as every normal abelian subgroup of G con-
tained in Q is necessarily contained in Z(Q). Thus Q) = Q' = Z(Q). Now P acts
fixed point freely on Q,/Q’;,s0 [Q, P] = Q. If[S, Q] = 1, then Q, normalizes
SU and Lemma 2.4 applies with N = Q, SU and r = 2. But then Q, centralizes
SU 2 U which contradicts that Q, is faithful on U. Hence Cps(Q,) < S.

Let G, = PSQ,. Notice that 0,(G,) = Cps(Q,), and if J(U) denotes the radi-
cal of U when viewed as an F[G,]-module, then Cg,(U/J(U))= 0,(G,) =
Cps(Q,). Thus, G, /0,(G,) acts faithfully on U/J(U) and the hypotheses of the
lemma are satisfied with G replaced by G, and U replaced by U/J(U). If
Q, < Q then induction applies, and (a) follows.

Therefore, we may assume Q, = Q, which means that PS acts faithfully and
irreducibly on Q/Z(Q). By Lemma 2.2, S is extra special of order 2(p — 1)%, and
Corollary 3.4 now applies to this minimal situation.

THEOREM 4.2. Let P and N be groups satisfying hypothesis 1.1. Then:

(@) If pis not a Fermat prime, then N is nilpotent.

(b) If |N| is odd, then N is nilpotent.

() If pis a Fermat prime, then N has a nilpotent normal m ,-complement
where

M =1{2,5711,13,23), ms={23,7 11}
and
n,= {2} for every Fermat prime p > 17.
Proof. First assume that the hypothesis of (a) or (b) is satisfied. If every Hall
{q, r}-subgroup of N is nilpotent, then so is N itself. We may replace N by a

P-invariant Hall {g, r}-subgroup so as to assume that N itself is a {g, r}-group.
Clearly, we may assume that N is neither a g-group nor an r-group. Let U be a
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minimal normal subgroup of NP contained in N. Without loss, we may assume
that U is an r-group. By induction, N/U is nilpotent, so that 1 = 0%"(N) <
0%(N) < N, and the hypotheses of Lemma 2.4 are satisfied. By that lemma then,
O%N) n O"(N)=1 and N is nilpotent.

It remains now to prove part (c). Assume that p is a Fermat prime and that N
is a minimal counterexample to part (c). Let H be a P-invariant Hall 2-
complement in N. By part (b), H is nilpotent. If N has a normal
n,-complement, say K, then K < H and K is nilpotent. Thus, N does not have a
normal 7,-complement.

If 0,,(N) # 1, then N/O, (N) has a normal n,-complement, and we’re done.
Let n(N) denote the prime divisors of |N|. If n(N) = =, we are done, as the
identity subgroup is then a normal n -complement. Let g € n(N), g ¢ 7, and let
N, be a P-invariant Hall {2, g}-subgroup of N. We may assume that
Q = Ny n H is the Sylow g-subgroup of H. Hypothesis 1.1 holds for the action
of P on Ny, so if Ny< N then Q is normal in N,. Also Q <H so
Q <HN, = N. But then Q < O, (N) = 1, a contradiction. Hence N, = N and
N is a {2, g}-group with O,,(N) = O,(N) = 1.

The Fitting subgroup F(NP) of NP must be a 2-group. If the Frattini sub-
group ¢(NP) is nontrivial, then N/¢(NP) has a normal 2-complement, which
must be Q¢(NP)/¢p(NP). Hence Q¢p(NP) < N. Thus

[0. F(NP)] < Q$(NP) ~ F(NP) = $(NP).

As C(F(NP)/¢(NP)) = F(NP)/¢(NP), this proves that Q = F(NP), a contra-
diction. Thus, ¢(NP) = 1 so that U = F(NP)is an elementary abelian 2-group.

Since N/U is not a counterexample to part (c), N/U has a normal
n,-complement, which must be QU/U. Hence QU < NP.

Let G = Nyp(Q). By the standard Frattini argument, NP =G - U. Let
C =G n U =Cy(Q) Since U is abelian, C < U and hence C <NP.If C # 1
then N/C is not a counterexample to part (c), so that N/C has a normal
n,-complement (which is QC/C). Thus QC <NP, and so [U, Q,Q]<
[0C n U, @] =[C, Q] = 1. But this implies that Q = C(U) = U, a contradic-
tion. Thus, C =1 and G is a complement for U in NP.

Notice that if S is a P-invariant Sylow 2-subgroup of G, then G = PSQ.
Furthermore, U may be regarded as a GF(2)[G]-module. Since [SU, P] = SU
and [S, P] = Sit follows that [U, S] + [U, P] = U. The hypotheses of Theorem
4.1 are now satisfied, and this forces either p = 3 or 5 and q € =,,. Either case is
a contradiction, and the proof of Theorem 4.2 is now complete.

Theorem 4.1 is also useful in classifying all solvable groups N satisfying
Hypothesis 1.1 and having small nilpotent (or Fitting) length. In fact, the
structure of N/F(N) is completely determined. In order to state the result
explicitly, we need some notation. Define /(G) to be the nilpotent length for any
solvable group G, and define K(G) to be the characteristic subgroup of G
containing F(G) and satisfying K(G)/F(G)= 0,(G/F(G)). (Notice
K(G) = 0,,,(G))
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Finally, define Qg4 to be the quaternion group of order 8, D4 the dihedral
group of order 8, and DgyQy the central product of these groups.

THEOREM 4.3. Let P and N satisfy Hypothesis 1.1 and assume I(N) < 3.

(@) IfI(N)=1 then N is nilpotent.

(b) IfI(N) =2 then pis a Fermat prime and N/F(N) is a subdirect product of
isomorphic extra special groups, each having order 2(p — 1)2. In particular, N has
a normal 2-complement which is nilpotent, and the class of N/F(N) is 2.

() IfUN)=3 then p=23or5, and K(N)/F(N) is the normal 2-complement
for N/F(N). The group K(N)/F(N) is the direct product of special g-groups for
odd primes q in m,. If p =3, N/K(N) is a subdirect product of groups isomorphic
to Qg while for p=5, N/K(N) is a subdirect product of groups isomorphic to
DgyQg. In particular, N/K(N) and K(N)/F(N) each have class 2, and N/F(N)is a
T ,~group.

Proof. Part (a) is a triviality.

Assume that [(N) = 2. Suppose 0,(N) = 1. Then F(NP) = F(N)is a 2-group
which implies (since N/F(N) is nilpotent) N/F(N) has odd order. Let Q be a
P-invariant Sylow g-subgroup of N for some odd g dividing |N|. Now, by
Lemma 2.4 applied to the group QF(N) with r = 2 we get the contradiction
Q = C(F(N)) = F(N). Hence, 0,(N) # 1, and by induction, N/O,,(N) has a
normal 2-complement. Thus, N itself has a normal 2-complement which is
nilpotent by Theorem 4.2(b). By part (a) of that same theorem, p must be a
Fermat prime. As F(NP)= F(N), the conclusion is unaffected if ¢(NP) is
factored out, so we may assume ¢(NP) = 1. Thus F(N) = A x B where 4 and
B are abelian groups, |A| is odd, and B is a 2-group. The hypotheses of
Corollary 2.3 are now satisfied in the action of PN/F(N) on 4, and case (b)
follows.

Suppose now [(N)=3. Then, N cannot have a nilpotent normal 2-
complement, so by Theorem 4.2, p is 3 or 5. As [(N/F(N)) = 2, it follows from
case (b) that N/F(N) has a nilpotent normal 2-complement, which is therefore
K(N)/F(N). Now K(N)/O,(N) is isomorphic to a P-invariant Hall 2-
complement (say H) of N, and so is nilpotent. As O,(N/O,(N)) is trivial,
K(N)/O0,(N) is the Fitting subgroup of N/O,(N). Clearly, I(N/O,(N)) = 2, and
so N/K(N)is a subdirect product of extra special groups of order 2(p — 1)®. The
only extra special group of this order which admits a nontrivial automorphism
of order pis Qg when p = 3 and DgyQs when p = 5. It remains to determine the
structure of K(N)/F(N).

Define F by the equation F/O,(N)= F(N/O,(N)). Since the Hall 2-
complement H for N is nilpotent, F/O,,(N) must be a 2-group. Now F 2 F(N)
and so F n K(N) = F(N). Define F, by F,/F = F(N/F). Clearly, F,/F con-
tains K(N)F/F, and as F,/F must have odd order, we have F, /F = K(N)F/F so
F,=K(N)F. If F, = N then N/F(N) is isomorphic to the direct product of
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K(N)/F(N) with F/F(N) and so is nilpotent, contradicting I[(N)= 3. Thus
F, < N, so that I(N/0,(N)) = 3. Also, F, = K(N)F so

F,/F = K(N)F/F = K(N)/(K(N) n F) = K(N)/F(N).

It follows that both the section K(N)/F(N) and the length I(N) are unaffected if
0,/(N) is factored out. We may assume then that O,(N)=1, and then
K(N)/F(N) = F(N/F(N)). Clearly, ¢(NP) may also be factored out, so that
F(N) = F(NP) is an elementary abelian 2-group. Also, F(NP) is complemented
in NP by a group G which we may assume contains PH (recall that H is a
P-invariant Hall 2-complement for N). Thus, H <G and G = PSH where Sisa
P-invariant Sylow 2-subgroup of G.

Set U = F(NP) = F(N). Then C(U) = U, so U may be regarded as a faithful
GF(2)[G]-module. Furthermore, C(U)= U also implies that [(SQU) = 3,
where Q is the unique Sylow g-subgroup of H for any prime q| | H|. We may
therefore assume H = Q is a g-group. Since [SU, P] = SU, it follows that
U =[U, S] + [U, P] where U is denoted additively. All of the hypotheses of
Theorem 4.1 are now satisfied, so g € 7,and Q has exponent g and class 2. Thus
Q' = $(0) < Z(Q)

Suppose Q' < Z(Q). Now Z(Q) is elementary abelian, and since [Q, P] = Q,
P is fixed point free on Q/Q’. By Maschke’s theorem, there exists a PS-invariant
subgroup Q, of Z(Q) such that Q, - Q' = Z(Q) and Q, N Q' = 1. It follows that
Qo admits P fixed point freely and that the hypotheses of Theorem 4.1 are
satisfied in the action of PSQ, on U. By part (b) of that theorem, Q, must be
nonabelian, and this contradiction proves that Q' = Z(Q). Thus Q is special
and Theorem 4.3 is now completely proved.

5. Concluding remarks

It is interesting to consider whether Hypothesis 1.1 implies that I(N) is
bounded. Because of Theorem 4.2, only the primes p =3 and p = 5 need be
considered. The fact that N/F(N) is completely determined when I(N) =13
suggests that a bound is possible. The author suggests that I[(N) < 4.

If p=3 and g€ {5, 7, 11, 13, 23}, a {2, q}-group N may be constructed
satisfying hypothesis 1.1 but I(N) = 3. This shows that Theorem 4.2 is no longer
valid if any prime is removed from 7. (Similarly, neither 2 nor 3 may be
removed from 5. It appears likely that the other two primes in 75 can’t be
removed). The group PN has the form PSQU where the hypotheses of Corol-
lary 3.4 hold for the group G = PSQ acting on the F[G]-module U. Using [1],
the source for the module U may be computed. The action of P on U/[U, S]is
then determined, and replacing U by U ®; L if necessary (where L is a module
for PSQU/SQU), the module U then satisfies hom gips; (U ps, F) = {0}. Then
[SU, P] = SU by Lemma 3.1, and Theorem 4.2 is false if q is removed from 5. 1
am indebted to Professor T. R. Berger for pointing out to me the relevance of
Dade’s important work in [1].
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It is an open question whether Theorem 4.2 remains true if the solvability
assumption is removed from hypothesis 1.1.
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