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Introduction

This is the second of two papers (see also [Cr]) relating a free analogue,
called a free splitting homomorphism, of the Stallings-Jaco formalism for
Heegaard splittings of 3-manifolds (see [St] and [Jc]) with the theory of
extended Nielsen transformations. Free splitting homomorphisms are
homorphisms of the form

q q x qa: G"-->X"xY"
where G", Xn, and Y" are free groups of ranks m, n, and n respectively and
each of the factor homomorphisms ql: G"---X" and q2: G"---> Y" is sur-
jective. A theory of equivalence and stable equivalence for free splitting
homomorphisms is developed in [Cr] modelled on the corresponding theory
for Heegaard diagrams. Extended Nielsen transformations may be regarded
as certain special Tietze transformations that preserve the deficiency of a
group presentation. They will be reviewed in 1. Sometimes extended
Nielsen transformations include operations that allow one to add new
generators and relations to a presentation--i.e, to stabilize the"
presentation--and sometimes these operations are excluded.
A connection between the free splitting homomorphism theory and the

theory of extended Nielsen transformations is made in [Cr] by normalizing a
free splitting homomorphism t)l x 12: G X x Y" so that for free
bases {g: i<--m} for’G and {x: i<-n} for X" we have O(g)= x (i<_n) and
tk(g+,) 1 (i<_m-n). In a manner analogous to the reading of a group
presentation for the fundamental group of a 3-manifold from a Heegaard
diagram for the 3-manifold, we associate a group presentation (tk)
(Y": (ri)) with the normalized where (ri) is the (m-n)-tuple (q2(g+,)).
Theorem 4.1 of [Cr] says that two free splitting homomorphisms q and th in
normal form and with associated group presentations (tk) and (tk) are
stably equivalent if and only if the presentations I() and (th) are
equivalent under extended Nielsen transformations including stabilization.
Our interest in this paper will be in establishing a more detailed connec-

tion between the free splitting homomorphism theory and the theory of
extended Nielsen transformations and in using the information thus ob-
tained to gain further insight into the difficult Andrews-Curtis conjecture
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102 ROBERT CRAGGS

[AC, FH] and [AC, EN] which says that balanced presentations for the
trivial group can be converted to the standard ones through the use of
extended Nielsen transformations. Two questions that we will be moving
towards are these: When does an equivalence between normalized free
splitting homomorphisms and b convert to an extended Nielsen equival-
ence between () and (tk) that avoids stabilization of () and (tk)? If
for equivalent and b as above, it is necessary to stabilize () and (th) in
order to make them equivalent under extended Nielsen transformations, is
there a reasonable bound on the amount of stabilization needed? We will
obtain answers to these two questions through a detailed analysis of
methods due to Rapaport [Rp] (see also [Pf]). This analysis will enable us to
give a purely algebraic proo of the stable classification theorem mentioned
above, Theorem 4.1 of [Cr], as opposed to the geometric proof given in
[Cr]. The Rapaport techniques will lead us also to some new criteria or
simplifying presentations for the trivial group by means of extended Nielsen
transformations. Finally our investigations will provide us with a possible
method or producing examples of balanced presentations for the trivial
group of the form (Y": (r)) that cannot be converted to the standard
presentation

(Y": y,))

unless stabilization is used.
Some familiarity with [Cr], especially 2 and 3, would be helpful to the

reader, although we will review some things in 1 here. The logical depen-
dence on [Cr] here is limited to the two normalization theorems in 3 of [Cr]
and the first half of the proof of Theorem 4.1 in 4 of [Cr].
The paper is divided into five sections. In 1 we will review extended

Nielsen transformations and the free splitting homomorphism theory, and
we will show how considerations of equivalence for free splitting
homomorphisms lead us directly to Rapaport’s work on invertible transfor-
mations [Rp]. In 2 we will consider Rapaport’s methods in detail. In 3 we
will give a criterion for simplifying presentations for the trivial group
through the use of extended Nielsen transformations. This criterion mostly
involves normal closure properties of auxilliary presentations connected with
the original group presentation. In 4 we will give a partial classification
theorem relating the two theories, and we will give the bounds on stabiliza-
tion promised earlier. These bounds will lead us to the promised algebraic
proof of the stable classification theorem in [Cr.]. In 5 we will examine the
failure of the partial classification in 4 to completely resolve matters
without stabilization. We will describe an example and a conjecture, Conjec-
ture 5.3, designed to clarify the reasons for this failure. The conjecture is
aimed at determining whether there are examples of balanced presentations
for the trivial group that cannot be made standard by extended Nielsen
transformations unless stabilization is allowed. The conjecture concerns
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subgroups of the automorphism group of a free group; the falsity of the
conjecture will be seen to guarantee that such examples exist.
We wish to thank Elvira Rapaport Strasser for helpful suggestions during

the preparation of this paper.

1. Review of extended Nielsen transformations
and free splitting homomorphisms

We denote by G", Xn, and Y" (m= 1,2,..., n= 1,2,...) the free
groups with canonical free bases {gi: i-< m}, {xi: i<_n}, and {y: i-<n}. In
general, for a set of elements {r} in a free group W, we denote by Gp ({r})
or Gpw ({r}) the subgroup generated by {ri} and we denote by C1 ({r}) or
Clw ({ri}) the smallest normal subgroup of W containing {ri}.
Extended Nielsen transformations are regarded as acting on p-tuples (r)

of elements of Y" (p 0, 1,..., n 1, 2,...) or as acting on the correspond-
ing group presentations (Y": (r)). Because we will sometimes be changing
the rank of Y" we will, on occasion, write (r), to indicate that we are
considering (r) as a tuple of elements in Y". We. consider the following
elementary transformations acting on a p-tuple (r),:

Type 1.
Type 2.
Type 3.
Type 4.

yn.
Type 5.

Replace rk by r for some k.
Replace rk by rkrj for some k and some jr k.
Replace rk by ylrky or some k and some j <-n.
Replace (ri). by (s). (h(r)). where h is an automorphism of

Replace (r) by the (p+ 1)-tuple of elements in vn+l, ((ri),
Yn/),/. Notice that n + 1 now replaces n and p+ 1 replaces p.

Type 6. If rp y, and each r (i < p) is an element of y,-1, replace (r),
by the (p-1)-tuple of elements in Y"-, (rl,..., rp_),_l. Notice that n-1
now replaces n and p-1 replaces p.

A Q, Q*, resp. O**-transformation (ri),l--> (s), is any composition of
transformations of Types 1-3, 1-4, resp. 1-6, and two tuples (ri)nl and (s),2
or the corresponding group presentations (y-l: (r)) and (y-2: (s)) are Q,
Q*, resp. Q**-equivalent if one is a Q, Q*, resp. Q**-transform of the
other. See [AC, FH], [Rp], and [Mz, HT] for other descriptions of extended
Nielsen transformations. The Q**-equivalence relation will be used spar-
ingly here.

Example 1. The transformation (y, y2)--(ylyly2y-2, y-y2yiy2) of
elements in y2 is not a Nielsen transformation since the two elements in the
second tuple do not generate y2. The transformation above is, however, a
Q-transformation as is seen by the following sequence of steps (some
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elementary steps have been combined)"

(Yl, Y2)--(Y1, Yl)---(YY, Y)---(YYI, Y2YY)-- (yy-(, yy-ly:yy) (yy, yyyy) (yyy, yyyy)
(yayyyyyayy, ylyayya)(yayyy, ylyayy)

(yyyay, yyayya).
This example will be used as a model to illustrate several constructions to be
introduced later.
A free splitting homomorphism is a homomorphism =x a:G

X"x Y" where each of the factor homomorphisms :GX and

"GY" is surjective. Two free splitting homomorphisms and are
defined to be equivalent if there are automorphisms
X", and : Y" Y" such that the diagram below is commutative"

G

G&XxY

Let q" G"I--Xnl Y" and 4" G"2--X"2 x Y" be two free splitting
homomorphisms. Let

be defined by/x(xi, 1)= (xi/,, 1) and/x(1, y)= (1, Y/nl). We define the sum
q# 4 of q and b to be the free splitting homomorphism from G"/" to
X1+ x Y"l+n given by

gi q(gi) (i --< nl), gi+,,----/xth(gi) (i <-- ha),

gi+,+,- q(gi) (i --< rex- n), g,+,,+,---

We define a standard free splitting homomorphism X," G2n’"XnX Y’ by
x,(g) (x, yi)(i_< n) and x,(g+,) (1, y). Finally, we define two free split-
ting homomorphisms q and b to be stably equivalent provided that for some
p and q, the homomorphisms # Xp and tk # Xq are equivalent.
A free splitting homomorphism " G"---Xnx Y" is said to be in normal

form if q(gi) (x, w) (i -< n) and q(gi/) (1, ri) where w (i -< n) and
r (i<_m-n) are elements in Y". For q in the normal form as above, we
refer to the group presentation (q)=(Y": (r)) as the presentation as-
sociated with q. If q is in the normal form above, and if w yi (i-< n), then
q is said to be a Mihailova map (compare [Mh] and [M1, pp. 35-42]). Notice
that every finite group presentation =(Y": (r)) is the associated group
presentation (q) for some Mihailova map q. If (r) has p elements, set
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m p+ n and just define : G"--+X" x Y" so that it is a Mihailova map
with ()=. In [Cr, Section 3] it is shown that every free splitting
homomorphism is equivalent to one in normal form and is stably equival-
ent to a Mihailova map. Theorem 4.1 of [Cr] says that two free splitting
homomorphisms @ and b in normal form and with associated group
presentations () and (tk) are stably equivalent if and only if () and
(b) are Q**-equivalent.
We describe in the next two paragraphs a lifting technique that will be

used to convert equivalences between free splitting homomorphisms and
(h in normal form to Q*-equivalences between () and (b). There
appear to be, in some cases, obstructions to making this conversion, and
these obstructions will be considered in 5.
The notation in this paragraph will be assumed to hold throughout the

remainder of the paper. Consider the free product X Y. It is freely
generated by {x}tJ{y}, but it is also freely generated by {y}tA{xy}. Set
z xy and set Z"= Gp ({z}). Then X" Y" has the internal free product
decomposition X" Y"= Y" Z" corresponding to the free basis {y}t.J
{z}. We define as follows three projection homomorphisms for X" Y"=
Y" Z" to subgroups" (x)= x, (y)= 1, ((;(z)= x), o(x)= 1, o(y)= y,
(o(z)= yi), and (y)= 1, (z)= z, ((x)= zi). Let 7r denote the natural
factor map r x o" X" * Y"--->X" x Y".

Consider now (1), the model for equivalence. Assume that and are in
normal form, and assume for simplicity that r/=id and r/2=id. Let
(g+,) (1, r) and (g+,)= (1, s). We define lifts and of and to
homomorphisms from G" to X". Y". First choose elements v
X" Y" (i--< n) such that r(v,)= (g,). Set (g,)= v, (i <- n) and (g,+,)= r.
Then set Crl. We have then, = and 7r, and what we have
done, in effect, is to respell each element s as g (g/,) using the symbols
v and r and using the homomorphism o to translate back to the old
spelling. We will be able to use this respelling to convert the equivalence in
(1) to a Q*-equivalence between () and () provided that rl takes
Gp ({g" i<_n}) onto itself; i.e. rl-l V defines an automorphism of V
where V Gp ({v}).

Example 2. Let : G4--X2 x y2 and th" GX2 y2 be defined by= 4’(&) (x, y,) (i <--2), 4(ga) (1, yyyy72)
and

((g4) (1, y-ly2yly2).

Define an automorphism rV G4-- G4 by

r/(gi) gi (i-:< 2), r/(g3) glglg2gg2gg3g4ggTg2

and
r/(g4) gEgglg2g3g2.
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Then r/, r/ id, and 2 id define an equivalence in (1) between and b. If
we define and as in the preceding paragraph, then corresponding to the
relator tuple (th2(g3), thE(g4)) we have the 2-tuple of elements in X2 y2,

(t(g3), t(g4)) (zXzzyy-(2zyy2zz-z2, z2yy-*zuyzU).
This particular 2-tuple of elements in X2 * y2 is an example of what will be
called an invertible respelling (of (th2(g3), th2(g4))) in 2. The Q-equivalence
of (y, y2)2 and (42(g3), th(g4))2 (YYY2Y-2, Y-Y2Yy2), already shown
in Example 1, will be seen in 2 to follow from the fact that {z, z2, (g3),
(g4)} freely generates X2 y2. Also the equivalence between q and 4 is
typical of the kind of equivalence which converts to a Q*-equivalence
between (q) and (th).

Respelling techniques are essential features in papers by Rapaport [Rp]
and Peiiter [Pf] on group presentations. The Rapaport respelling technique
corresponds in the situation above to the case where

v=z and n[Gp({g:i<_n})=id.

Instead of using the second alphabet {z}, Rapaport uses an exponent
language. Thus g would be written as II r-, where % e Y". If {/3i} were a set
of elements in Z" with 0(/3)= %, then I-[ r’, would correspond to the

:i X" Y".element YI/3-r, /3] in

2. Respellings, the Rapaport invertibility criterion

In this section we develop a variant form of Rapaport’s invertibility
criterion [Rp,. Th. 1] characterizing Q-equivalent tuples. Some of the
material here can be extracted from [Rp, 3 and 5], but in some cases it is
only by an analysis of the proof of Rapaport’s invertibility criterion that we
are able to obtain tools needed in later sections of the paper. For example,
there is a lovely technique exhibited in Rapaport’s proof of her Theorem 1
that we call "conservative Nielsen transformations"; Metzler and Browning
use the term "relative Nielsen transformations" (see [Mz, G, 4] and [Br]).
This technique is the key to understanding (a) the invertibility criterion, (b)
the criterion in 3 for simplifying presentations for the trivial group by
Q-transformations, (c) the revised, algebraic proof of Theorem 4.1 of [Cr] in
4, and (d) the possible obstructions described in 5 to converting an
equivalence of normalized free splitting homomorphisms to a Q*-
equivalence of the associated group presentations. Because of this impor-
tance, the technique of conservative Nielsen transformations will be isolated
and discussed in detail.

Let V be a finitely generated subgroup of X" Y"= Y" Z" such that
the natural homomorphism from Y" V to Gp (Y"U V) induced by inclu-
sion on each of the factors is an isomorphism. Note that V is free by the
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Nielsen-Schreier subgroup theorem (see [MKS, Cor. 2.9]). Because
Gp (YnU V) is naturally isomorphic to Yn. V, there is a well-defined
projection homomorphism

Or: Gp (yn U V)--- V

given by 0v(y)= 1 for y Y" and Or(v)= v for v V. Let (r) be a p-tuple of
elements in Y", and let s Yn. By a respelling of s relative to ((r),V) we
mean an element g X" Y" such that

(2) (i)
(ii)
(iii)

o() s,
Or(g) 1, and
g I-I ui where each syllable ui either belongs to V or has the
form r for some rj in (r). If the relator tuple (r) contains l’s
these may appear in the syllabification.

By a respelling of a q-tuple (s) of elements in Y" relative to ((r), V) we
mean a q-tuple (g) such that each g is a respelling of s relative to ((r), V).
Condition (ii) shows that any respelling g of s relative to ((ri) V) can also be
regarded as a respelling relative to ((y), Z") by a possible revision of the
syllables u, for (g)= Ov(g) 1. Sometimes we will refer to elements or
tuples as respellings by which we will mean respellings relative to ((y), Z").
The discussion at the end of 1 suggests that we should have IV an

isomorphism of V onto X", but this is not necessary and would be in fact
misleading. The property of V that makes it work in respellings is the
existence of the projection map Ov’Gp(Y"U V)-.V rather than the
character of IV. We remark also that condition (ii) in (2) enables us to
avoid heavy reliance on conjugations found in [Pf] and [Rp]. We will,
however, find’ it necessary in a couple of places to express certain elements
of X" Y" as products of conjugates of powers of the elements rr The
following lemma is designed for such needs"

LEMMA 2.1. If g=l-I u is a respelling of s relative to ((r), V), then
sCl. ({r}). In fact, g eClx.y ({r}), and g can be written as a product
II c[Irj’cq where each e +1 and each cq V.

Proof. The last assertion in the conclusion of the lemma implies the
others so we establish it. By redefining the syllables of g, if necessary, we
may suppose that 0v(g)=I-[ Ov(ui) cancels to 1 by removal of successive
pairs of syllables of the form v-v where e + 1 and v e V. Check off pairs
(v-, v) in g as their projections cancel in Or(g). Consider the last pair to be
cancelled. We have g= gv-g2vga where g, g2, and g3 are respellings of
elements s, s2, and s3 relative to ((r), V). By an induction argument, we
may suppose that g, g2, and g3 can be expressed in the desired form as
products of V-conjugates of powers of the r’s. But then g can also be
expressed in this form and so the lemma is proved.
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Let (ri) and (si) be p-tuples o elements in Y", and let (gt) be respelling of
(s) relative to ((r), V). We say that (g) is invertible it there is a respelling ()
of (ri) relative to ((st), V) with syllabification I-[ wj (as required by (iii) in

+/-1(2)) so that for each , when every syllable wj ot the form s k (1-< k-< p) is
replaced by (gk)+/-l, the resulting word is equal to ri in the free group
X" Y". The respelling (t) will be called an inverse respelling to
The 2-tuple (tk(g3), t(g4)) in Example 2 is an invertible respelling of

(t2(g3) t2(g4) relative to ((yl, Y2), Z2) It is easy to check this by using the
lemma below which offers a more convenient description of invertibility.

LEMMA 2.2. Let (rt) and (st) be p-tuples of elements in Y", and let (g) be
a respelling of (s) relative to ((r), V). Let {vi} be a free basis for V. Then (gi)
is invertible if and only if {g}U{v} generates Gp ({ri}U V).

Proof. First suppose that (g) is invertible. The substitution condition
insures that each r can be expressed as a product of powers on the elements
gl, and v, Thus Gp ({rt} U V)= Gp ({gi}U V) and so {g}U {v} gener-
ates Gp ({rt} U V).
Suppose that {gi}U{vt} generates Gp ({r}U V). For each rt set r =I-I wt.

where each wij belongs to the set {gi}t.J{vi}. Now for wja{vi} set ui= w,
and for wij{i}, set uij=sj, where w=g. Set =l-lu. By (ii)
in (2), each 0v(U)= 0v(Wi) so 0v(i) 0v(r)= 1. By the same argument
we have v()= v(r)= ri. Thus () is a respelling of (r) relative to ((s), V).
By resubstituting the terms g for s (1--< k <--p) in () we convert () back
to (r); thus () is an inverse respelling to (g) and (i) is invertible.

Rapaport’s invertibility criterion characterizes Q-equivalent p-tuples in
terms of the existence of invertible respellings. Before we describe this
result, we wish to examine a technique from her proof. Consider a free
group W and a Nielsen transformation (s)--(t) of p-tuples of elements of
W such that for some number q, s, tt (i < q). We would like, if possible, to
diminish the participation of the terms indexed by i<_q in the individual
steps of the Nielsen transformation (st)---(tt) so that they may be inverted or
used to conjugate the terms indexed by i> q but are not otherwise to be
involved in the individual steps. An example with p=3 and q= 1 is
illustrated below with the old steps on the left and a revised sequence of
steps on the right:

Example 3.

S1 Wl $2 W3WIW2W 1 $3 W3
(w,www.w-i, w)
(Wl, W3WIW2, W3)
(w, ww-iw, w3)
(w, ww;, w)
(w, w, w)
(w, w, w)
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We are led to the following definition: Let W be a free group and
(s)---(ti) a Nielsen transformation of a p-tuple (si) of elements in W. Let
q--< p be a number and suppose that s t (i-< q). We say that the Nielsen
transformation (s)--(t) is conservative relative to (sl,..., sq) provided that
there is a sequence of Nielsen transformations

(s,) (s,(O)) (s,(c))--->(s,( + )) (s,(e))= (t,)

where each of the transformations (s(c))--(s(c+ 1)) changes exactly one
term, s(c) for some k k(c), and is of one of the following three types:

(3) Type 1.
Type 2.
Type 3’.

s (c + 1) s (c)-,
s(c + 1) s(c)s(c) where k > q, 1 > q, and k # 1, or
s(c + 1)= s(c)’s(c)s(c)+/- where k > q and ] <-q.

Notice that the transformation (si)--(t) in Example 3 is conservative
relative to (sl); although the original sequence of elementary steps defining
(s)---(ti) has to be revised to the right hand sequence to establish this.
The lemma and three corollaries below are designed to cover a variety of

situations where conservative Nielsen transformations will be needed later.
For the lemma and corollaries we assume that there is given a free group W
freely generated by wl,..., wn and a number q-< n. We denote by WE the
subgroup Gp ({w.i<_q}) of W, and we denote by IX the projection map
Ix" W--* Wr defined by Ix(w)= wi (i<_q) and Ix(w)= 1 (i> q). The lemma
and corollaries are similar to results in [Mz, AG, Th. 7] and [Br].

LEMMA 2.3 (Prefix lemma). Let (s,)-->(t) be a Nielsen transformation of a
p-tuple (s) of elements of W where p>-q and s,=ti=wi (i<-q). Let
u, % be elements of W, such that u, 1 (i <-q). Then there are elements
u; u’ in W, where u 1 (i _< q), and there is a Nielsen transformation
(u,s,)--->(u’,t,) that is conservative relative to

(us, U,Sq)= (w, wq).

Proof. By a theorem of Nielsen’s (see [MKS, Section 3.2]) there are
sequences of length preserving and length reducing elementary Nielsen
transformation (with respect to the alphabet {w}) converting the p-tuples
(s) and (tl) to a Nielsen reduced p-tuple (r). By a length argument we may
assume that the terms s t =w (i<_q) do not change in the sequence
except possibly by inversion. By combining these two sequences of transfor-
mations we find that there is a sequence of elementary Nielsen transforma-
tions

(s,) (si(0)) (si(c))----(s,(c + 1)) (s,(e))=

such that s(c + 1)= s(c)+/-1 (i <--q) and such that a transformation of Type 2
defined by

s (c + 1) s(c)s(c) with k -< q

never occurs in the sequence.
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We will define recursively prefixes ui(c) .WL (c <-- e, <-- p) so that up to
certain inversions, each of the transformations

(u,(c)s,(c))----(u,(c + )s,(c + 1))

is conservative relative to (ul(c)sl(c),..., uq(C)Sq(C)). We begin by setting
ui(0) ui, and we will require that u(c)= 1 (c <-e, i<_ q). In the end we will
set u’= ui(e)(i <-p) to get the desired conservative transformation (usi)---

Suppose, by way of induction, that the prefixes u,(O),..., u,(c)(i<_p)
have been defined so that, up to inversions of the terms ui(c)s,(c) (i <-q), the
transformation

(u, (0)s, (u, c)s, (c))

is conservative relative to (ul(0)s(0),..., uq(O)sq(O)). The inversion hedge is
necessary because the terms u,(0)s,(0)(i-< q) may be inverted in the inter-
vening stages of the conservative transformation but must eventually return
to u,(0)s,(0). Consider the old step (s,(c))---(si(c+ 1)). We describe new
prefixes ui(c + 1) so that, up to the inversions mentioned before, the trans-
formation

(u,(O)s,(O))---(u,(c + 1)s,(c + 1))

is conservative relative to (u(0)s(0),..., uq(O)sq(O)). We consider the pos-
sible types of elementary Nielsen transformations separately"

Type 1. Let s(c + 1) s (c)- and s,(c + 1) s,(c) otherwise. If k > q, set
uk( + 1) uk (c)- and u,(c + 1) u,(c) otherwise. Because u(c) e WL, we
can convert

(c)s (c)) (c)

to uk(c)-ls(c)-1 by a sequence of conservative transformations effecting
the conjugation

Thus, up to the inversions mentioned before,

(u,(O)s,(O))--->(ui(c + 1)s,(c + 1))

is conservative relative to (u(0)s(0),..., Uq(O)Sq(O)). If k<_q, then set
u,(c + 1)= u,(c) for all i. Remember that u,(c)= 1 (i<_q). Then, as before,
the transformation

(u,(O)s,(O))-->(u,(c + 1)s,(c + 1))

is, up to inversions, conservative relative to (u(O)s(O),..., uq(c+ 1)s(c+
1)).
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Type 2. Let Sk(C + 1)= S.(C)S(C) and s(c + 1)= s(c) otherwise where
k ]. We divide considerations into two cases; recall that by assumption,
k>q.

Case I (1 <-q).
Then we have

Set Uk(C + 1)= S(C)-U(C) and u,(c + 1)= u,(c) otherwise.

u(c + 1)s (c + 1) s(c)-u(c)s (c)s(c)
and ui(c+ 1)si(c + 1)= u,(c)si(c) otherwise. This gives us, up to inversions,
the desired conservative transformation.

Case II (]>q). Set Uk(C+ 1)= U(C)Uk(C) and ui(c+ 1)= ui(c) otherwise.
Then we have the following sequence of conservative transformations (the
unmodified terms are ignored)"

(a)
(b)

(c)

u(c)s(c)--> s(c)u(c)
u, (c)s (c)---> u, (c)s, (c)s(c) u(c)--> u(c)u,(c)s (c)s(c)
u(c + 1)s(c + 1)

sj(c)uj(c)--- uj(c)s(c) u(c + 1)sj(c + 1).

Thus again (u(O)s(O))---(u(c + 1)s(c + 1)) is, up to inversions, conservative
relative to (Ul(O)sl(O),..., uq(O)s(O)), and the induction step is complete.
We may now suppose that the prefixes ui(c) have been defined for c<_e.

But (si(e))=(6) so we take u’= u(e) (i <- p) to complete the proof of the
lemma.

COROLLARY 2.4. In Lemma 2.3, let H be a normal subgroup of
containing each i(us) (i> q). Then H also contains each I(U’i6) (i> q).

Pro@ This follows directly from a case by case analysis of the changes in
the projected sets {g(ui(c)s(c)): i> q}--{/x(u (c + 1)s(c + 1)): i> q}.

COROLLARY 2.5. Ill Lemma 2.3, suppose that /x(s)= 1 and
1 (i> q). Then (s)---(6) is conservative relative to (s,..., Sq).

Proof. Set u 1 (i-< p) and note that by Corollary 2.4 we must also have
u= 1 (i<_p) in the conservative transformation (us)--(u6).

COROLLARY 2.6. In Lemma 2.3, suppose that the Nielsen transformation
(s) (ti) restricts to a Nielsen transformation

(S+l, s,,)--->(t+i, t,).
Then the elements u’ and the conservative transformation (us)--(u’6) in the
conclusion of Lemma 2.3 may be chosen so that

(u+,,..., u,,)-->(u+,; u’,,)
is also a Nielsen transformation.
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Proof. Under the hypothesis of the corollary we may ignore the original
length analysis and suppose instead that there is a sequence of elementary
Nielsen transformations (si(c))-->(si(c / 1)) with (si)= (s,(0)) and (t,)= (s,(e))
where, for i<_q, si(c)= s(c+ 1) and s,(c) is not involved in the Nielsen
transformation (s,(c))-+(si(c / 1)). But then the Case I analysis for a Type 2
transformation never comes up, and a case by case analysis of the remaining
possibilities reveals that each prefix transformation

(u,+,(c), up(c))--+(Uq+,(c + 1),..., u,(c + 1))

is a Nielsen transformation. Thus (Uq+l, up)--(U’q+,..., u’p) is a Nielsen
transformation as desired.

LEMMA 2.7. Let (r,) and (s,) be p-tuples in Y", and let () and (g,) be
respellings of (ri) and (s,). Suppose that for some finite tuple of elements (v) in
X" Y" there is a Nielsen transformation ((v,), (g,))--((vi), (,)) that is con-
servative relative to (v,). Then (r,) and (s,) are Q-equivalent p-tuples.

Proof. Apply o to the reduced tuples in the elementary steps in the
conservative transformation, (g,(c))-+(g,(c+ 1)), to get a sequence o Q-
transformations, (o(g,(c))---(o(gi(c + 1)), beginning at (s,) and terminating at
(t,). /

The following theorem gives the Rapaport invertibility criterion in alter-
nate form [Rp, Th. 1] (compare [Pf, Section 2, Th. 4]):
TEORE 2.8 (Rapaport). Let (r) and (s) be p-tuples of elements of Y".

Then (r) and (s) are Q-equivalent if there is a subgroup V o X" Y" and
an invertible respelling (gi) of (si) relative to ((r), V). Moreover, if (r,) and (s,)
are Q-equivalent, then there is an invertible respelling (g,) of (s,) relative to

z").

Proof. Suppose that (gi) is an invertible respelling of (s,) relative to
((r), V). Let vl,..., vq be a free basis for V. By Lemma 2.2, {v,} t.J {g,}
generates Gp ({r,} t3 V). By the assumption on V that Gp (Y" t.J V) is canoni-
cally equivalent to Y" V, it follows that there is a free basis wl,..., w,,
for Gp(Y"U V) such that wi v, (i<-q). By a theorem of Nielsen’s (see
[MKS, Section 3.2]) there is a Nielsen transformation

((v,), ((v,), (r,)).

Apply Lemma 2.3 and Corollary 2.5 with Gp (Y" t_J V) in place o W and Ov
in place of /x. Since each Ov(g) 1 and each Ov(r)= 1, it follows from
Corollary 2.5 that the transformation ((v), (g))--+((vi), (r)) is conservative
relative to (v). Now (r) is a respelling o (r); thus by Lemma 2.7, (ri) and
(s) are Q-equivalent.
Where (r) and (si) are Q-equivalent, the invertible respelling (g) of (s)

relative to ((r), Z") can be constructed from Rapaport’s proof by using
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Lemma 2.1 together with the change in notation described at the end of
1.

It is helpful to look at the invertibility criterion in terms of isomorphisms
between subgroups of X" Y. In general, a respelling () of (s) relative to
((r), V) does not induce a homomorphism from Gp ({s}2 V) to Gp
V) by s---> , for there may be relations amon the s’s that are not reflected
in relations amon the ’s. In fact, this excess redundancy in the s’s is
sometimes iust what is needed to establish Q-equivalence of (r) and (s).
But if {5} and {s} freely generate subgroups of Y" this situation does not
arise. The followin corollary restates the invertibility criterion for this
special case:

COROLLARY 2.9. Let (r) and () be p-tuples of elements in Y" that freel
generate rank p subgroups R and S of Y". Then (r) and (s) are Q-equivalent
if for some V as in the definition of respelling there is an isomorphism
A: Gp (S t2 V) --> Gp (R t2 V) such that (i) A Y id, (ii)
and (iii) OvA IS is the trivial homomorphism. Furthermore, if (5) and (s) are
{)-equivalent then there is an isomorphism A: Gp (S t2 Z")-->Gp (R t2 Z)
with the properties described above.

Proof. Any isomorphism A with the three properties listed above ives
rise to a respellin ()= ((A(s)) relative to ((r), V) that is invertible with an
inverse respellin ()= (A-(5)); thus the first part of the corollary follows
from the first part of Theorem 2.8. On the other hand, in the special case
dealt with here, respellings () and () of (s) and (r) relative to ((r), Z")
and ((s), Z") ive rise to homomorphisms from Gp (St2 V) to Gp (R t2 V)
and vice versa satisfying (i)-(iii). Invertible respellings correspond to the case
where the second homomorphism is the inverse of the first. Thus the
homomorphisms are isomorphisms in this case and the second half of the
corollary follows from the second half of Theorem 2.8.

3. Matched respellings, simplifying presentations for the trivial group

In this section we develop a criterion for simplifying p-tuples. It will apply
both to the case of simplifying p-tuples by Q-transformations and to the
case of simplifying p-tuples by Q**-transformations that ultimately result in
destabilization via Type 6 transformations.

Consider a p-tuple (ri) of elements in Y" such that Y"___ C1 ({ri}). The set
{ri} can be regarded as a generating set for the commutator quotient group
Y"/([Y’, Y"]). Thus by performing Nielsen transformations on the p-tuple
(r) we can always arrange things so that the exponent sum of rl on the
generator y is + 1 (see [MKS, p. 76] for the definition of exponent sum).
Assume that this modification has already been made. Then, when regarded
as a word on the alphabet {y}, r has the form uyv where the exponent
sums on Y in u and v add up to zero. Replace each syllable y in u and v
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by z to get an element leX"*Y respelling r. Let 2,..., p be any
respellings of r2 rp. There is a partial matching of (1) with an invertible
respelling (ts) of an n-tuple (ti) relative to ((yi), Z"). To see this set t =r,
t y (i > 1), ta t, and ts Y (i > 1). Then {zi}U{fi} is a free basis for
X" Y so by Lemma 2.2, (t) is invertible. By the invertibility criterion, or
by direct observation, (ti) is Q-equivalent to (yl,..., y,). It seems natural to
ask whether this partial matching of the respellings might be useful in
simplifying the p-tuple (r). The matching would be useful if the answer to
the following question were "yes": Given a p-tuple (r) and an n-tuple (t) of
elements in Y" such that Y"

_
C1 ({r}), Y"

__
C1 ({t}), and r t (i -< d)

where d-> 1, and given a Q-transformation (ti) (u), is there a Q-trans-
formation (ri)-- (si) such that s- u (i-<d)? The matching property below
will provide us with conditions under which the answer to the preceding
question is "yes".

Matching property. Let (rs) and (t) be a p-tuple and an n-tuple of
elements in Y" such that Y"

_
C1 ({r}) and Y"

_
C1 ({t}). Suppose,

moreover, that for some integer d-> 1, rs t (i<-d). Let (f) and () be
respellings of (rs) and (t) relative to ((yi), V) for some V. The pair ((s),
is defined to be a (d, V)-matched pair of respellings provided that the
following conditions are satisfied"

(i) (Is) is invertible,
(ii) (i -< d), and
(iii) o(V)

_
Cln ({s}) where H= Gp (Y" U V).

In the case where V Z" condition (iii) says that Clx.v ({}) must contain
Y". We will show in Theorem 3.3 that when a (d, Z")-matched pair of
respellings exists for (rs) and (ts) the answer to the question above is "yes",
and we will show in Theorem 3.2 that regardless of what V is, a (d, V)-
matched pair of respellings for (rs) and (ts) causes (rs) to be O**-equivalent
to a (p-d)-tuple of elements in Y"-a.
The proof of the following lemma is left as an exercise.

LEUA 3.1. Let (rs) be a p-tuple o]’ elements in Y".
(i) Let rk uvw where vC1 ({rs: i k}). Set sk uw and ss rs (i k).

Then (rs) is Q-equivalent to (si).
(ii) Let r w,,uwb and [or some j# k let r uv-. Set s wavwb and

si =r (i k). Then (rs) is O-equivalent to (s).

THEOREM 3.2. Let (r) and (t) be a p-tuple and an n-tuple o[ elements in
Y" such that a (d, V)-matched pair o[ respellings ((f), (t)) exists [or (r) and
(t). Then (r) is O**-equivalent to a (p-d)-tuple (s) o[ elements in

Proo[. Let {vi: i<_q} be a tree basis or V. By Lemma 2.2,
generates the group H= Gp (Y"tA V). Below we describe a sequence of
presentation transformations. They are not described explicitly as O**-
transformations, but by associating each vs with y/,, and using Nielsen
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transformations that permute the relators, these transformations can be
converted to O**-transformations.

1. Stabilize by adding each v as a generator and adding relators vio(v-1)
(see [Cr, Le. 1.1]):

(0)= (Y": (r,))--->(1)= (H: ((r,), (v,o(v7,1)))).
2. Respell the relators r as using the new relations v o(v) and

Lemma 3.1ii:
(1)--->(2) (H: ((f,), (v,o(v7,1)))).

3. Remove the subwords o(v7,) from the relators vo(vT,) using Lemma
3.1i and the normal closure property in the matching condition:

(2)-->(3) (H: ((i), (v,))}.

4. By rank considerations on the abelianization of H (see [MKS,
2.2-2.4]), {t}t.J{v} freely generates H. Define an isomorphism h: H--->H
by h(v)= v and h(f) y,_:

(3)--->(4) (H: ((y,,..., Y,-d/l, h(d+l),..., h (p)), (v,)).

5. Permute the relators:

(4)-->(5) <H: ((h(fa+,),..., h(fp), y,_a+,,..., y,), (v,)).

6. Using Lemma 3.1i, remove the syllables y,_+’ (i<d)- and v7. from
the terms in (h(fa+,),...,h(fp)) to convert this tuple to (s,,...,sp_a), a
tuple of elements in

(5)-->(6) (n: ((sl,..., sp-a, Y,-a+, Y,), (v,))).

7. Destabilize"

(6)--->(7) (Y"-e: (s,...,

THEOREM 3.3. Let (r,) and (t) be a p-tuple and an n-tuple of elements in

Y" such that a (d, Z")-matched pair of respellings ((), (,)) exists for (r,) and
(t,). Let (t,)-->(u,) be a Q-transformation. Then there is an invertible respelling
(fi,) of (u,) relative to ((y,), Zn), and for any such invertible respelling there is

a Q-transformation (r)-->(s,) such that s, ui(i <-d) and there is a respelling
(g,) of (s,) so that ((g,), (fi,)) is a (d, Z")-matched pair of respellings for (s,)
and (u,).

Proof. By the Rapaport invertibility criterion, Theorem 2.8, there is an
invertible respelling (fii) of (u) relative to ((y), Z"). Let (fi) be given now.
By Lemma 2.2 both {z}U{f} and {z}t.J{fi} generate X" Y". Thus by the
proof of the invertibility criterion, there is a Nielsen transformation

((z,), (,))-o ((z,),
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that is conservative relative to (zi). We wish to find a Q-transformation
(ri)--(s) so that si =u (i <-d) and we wish to find a respelling (g) so that
((gi), (fi)) is a (d, Z")-matched pair of respellings.
We begin by considering the following special case"

Type 2.
Case I.
Case II.

otherwise.
Case IIi.

Special case. The transformation ((zi), (li))---((z), (fi) is an elementary
conservative Nielsen transformation as defined in (3). To define (s) and (g)
we will consider the types of transformations separately, and after the
definitions are made in all cases we will verify that (s) and () have the
desired properties.

Type 1. If some ik (k > d) is inverted, set (s) (5) and (g) (). If some
lk (k <-d) is inverted, set sk r[ and gk , and s, =r, and g, i other-
wise.

Suppose that fik lkfr We consider three subcases:
k > d. Set (s,)= (r,) and (g,)= (,).
k -< d, j -< d. Set Sk rkrj and gk ki, and set s ri and g

k-< d, j> d. This is the difficult case. We pass to the new
tuples in two stages each involving several transformations. By Lemma 2.2
and rank considerations as in the proof of Theorem 3.2, {z}U{} is a free
basis for X" Y". Define first a projection homomorphism /z" X" Y"--
X" Y" by /z(z,) z,, tz() (i > d), and /z() 1 (i -< d). Define a p-
tuple (f,(0)) by f,(0) f, (i-< d) and ,(0) =/z(fi) (i > d). Set (r,(0)) (o(f,(0)).
By expressing each , (i> d) in terms of the alphabet {z,}U{l,}, we see that
each ,(0) (i > d) is obtained from f by deleting the syllables (l -< d).
Thus by Lemma 3.1ii, (r,(0)) is Q-equivalent to (r,). By definition,
Clx.y ({i(0)})= Clx.y ({i}) so this group contains Y" o(Z"). Thus
((,(0), (,)) is a (d, Z")-matched pair of respellings.
We claim next that each , (i > d) is a product of conjugates of powers of

the elements +(0),..., p(0)). To see this, observe that by Lemma 2.1 and
the fact that Y" _C1 ({,(0)}) we have ’, =1-I c-1,(0)% (i> d). But for i> d,
we have ix(l,)= ’ =1-I/(ct)-l/x(,,(0))/z(c). Now /x(,,(0)= 1 for it <-d and
/z(,(0)) ,,(0) for i > d. Thus li belongs to el ({d+,(0)}) as desired.
We define now s rk(O)t and gk (0), and for i k we set s, r,(0)

and g, ,(0).
:vl z:lType 3’. Suppose that fi z1 ik If k > d, set (s)= (r) and (gi)= (f).

If k-<d, set s y[rky[ and g ^ -=z rz and set s, r, and gi=,other-
wise.
We claim that (s,) is Q-equivalent to (r,) and that ((g), (fi)) is a (d, Z")

matched pair of respellings. Except for Case III in the Type 2 consideration,
this verification is straightforward. Consider Case III. We showed that each

f (i > d) belongs to Clx.Y ({i(O): i> d}); thus each t o(f) (i > d) belongs
to

({r,(o): > d}).
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Now sk results from rk (0) by insertion of conjugates of the r(0)-terms (i > d).
From Lemma 3.1, (ri(0)) and (si) are Q-equivalent, and by transitivity of
equivalence, (r) and (s) are equivalent. Finally, since each (i > d) belongs
to Clx.v ({f (0): > d}), it follows that

Clx.a ({Pi(0)})= Clx. ({gi})

and so yn is contained in this latter subgroup as required.
It follows now that ((gi), (ti,)) is a (d, Z")-matched pair of respellings and

the verification of the theorem for the special case is complete.
General Case. Divide the conservative transformation ((z,), (t,))----

((z), (fii)) into a sequence of elementary conservative transformations

((z,), (t,))= ((z,(0)), (,(0)))... ((z,(c)), (t,(c)))-- ((z,(c + 1)), (t(c + 1)))... ((z,(e)), (t(e)))= ((z,), (fi,)).

Use the special case to define, inductively, respellings ( (c)) (O <_ c <_ e) of
p-tuples (ri(c)) so that

(i) (r,(O))= (r,) and (,(0))= (,),
(ii) each (r,(c + 1)) is Q-equivalent to (ri(c)), and
(iii) each pair ((f,(c)), (i,(c))) is a matched pair of respellings for (o(r,(c))

and (o(t(c))).

Take (si)=(r(e)) and (gi)=((e)). By transitivity, (ri) and (s) are Q-
equivalent so ((g), (riO) is the desired (d, Z")-matched pair of respellings.

The theorem below shows how the matching condition may be used
simplify presentations for the trivial group by Q-transformations"

THEOREM 3.4. Let (r) and (t) be a p-tuple and an n-tuple of elements in
Y" such that a (d, Z")-matched pair of respellings exists for (r) and (t). Then
(ri) is Q-equivalent to a p-tuple

(Sl, Sp-cl, Y,-a+l,..., Y,)

where each si (i <-p-d) is an element of y,-a.

Proof. By the invertibility criterion, (t) is Q-equivalent to (y,,..., yl).
By Theorem 3.3, (r) is Q-equivalent to a p-tuple

(y,,. y-a+, u,..., %_).
Express each u as a product of powers of the generators y,..., y,. For
each i, let s result from u by deletion of the syllables y[ (n-d + 1-<]-< n).
By Lemma 3.1,

(Y,, Y,-a+, Ul’ Up-d)
is Q-equivalent to

(Y,, Y,-a+, s,..., s,-a).
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Now use elementary Nielsen transformations ettecting permutations to
convert this tuple to the desired (Sl,..., sp-d, Yn-d+l,..., Yn).
Remark. If (r) and (ti) are a p-tuple and an n-tuple of elements in Y"

with (t) Q-equivalent to (yi), Y"
_
C1 ({r}), and r t (i -< d), it would

appear that the existence of a (d, V)-matched pair of respellings ((), ())
would depend on the choice of the invertible respelling (). This is not so
however. If ((), ()) is a (d, V)-matched pair and (t’) is another invertible
respelling of (t) relative to ((yi), V) then there is an automorphism

: Gp (Y" tA V)---Gp (Y" V)

given by K V id and k(f)= f’. Set ’ K(). It is then easy to verify that
((f’), (’)) is also a (d, V)-matched pair of respellings. It helps to observe that
in the group Gp (Y" tO V), C1 (Y") is precisely

7r-1(1 x Y") f’l Gp (Yn tO V),

and must leave this invariant since

4. Converting equivalences, classifying free splitting homomorphisms

In this section we apply the invertibility criterion and the technique of
conservative Nielsen transformations to answer the following two questions:
(I) When do equivalences between free splitting homomorphisms q and tk in
normal form convert to Q*-equivalences between (q) and (th) and vice
versa? (II) If the convertability cannot be assured in (I) how much stabiliza-
tion is needed to guarantee convertibility? In the process of answering these
two questions we will give a purely algebraic proof of Theorem 4.1 of [Cr]
which says that two free splitting homomorphisms q and th in normal form
are stably equivalent if and only if (q) and (b) are Q**-equivalent.

For n-< m, let G and G denote the respective subgroups

Gp ({g: i-<n}) and Gp ({g+n})

of G". Let hr/ Gm----G’ be the projection defined by hr(g) g (i<-n) and
hr(g+,) 1. In the lemma and corollary which follow, we use the decom-
position G"= G * G and the projection hr to examine the character of
the isomorphisms in (1), the model for equivalence:

LEMMA 4.1. Let d/ and th be ree splitting homomorphisms in normal form
from G" to X" Y", and let rl, rll, and "I’2 be isomorphisms defining an
equivalence via (1) between d/ and th. Then ALr/ G is an isomorphism and
hLr/ G is the trivial map that sends every element to 1.

Proof. Each of the maps b, r/l kl, and takes G isomorphically onto
X". Now n4lG’= O’oIG’= h,nlG’. The latter equality follows
from the fact that O[G is the trivial map. Thus hr.rl[G must be
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surjective and so be an isomorphism onto G. Suppose that h_*/(g) 1 for
some element g G. Then we have lhL*/(g) ql*/(g) 1 contradicting
the normal form properties.

Remark. Let and tk be free splitting homomorphisms in normal form
from G" to X" Y’*. Let */, */1 and */2 be automorphisms of G", Xn, and
yn defining an equivalence via (1) between q and tk. In attempting to
convert this equivalence between q and th to a Q*-equivalence between
(q) and (th) it turns out to be a nusiance to have */1 id or */2 id. We
can avoid this as follows: Consider first the homomorphism (*/1, */2)th. Now
this map may not be in normal form, but as we observed in the proof of the
preceding lemma, thl and so */1bl takes Gr isomorphically onto Xn. Thus
there is an automorphism */0 of G" with */olGH=id and */o[G an
automorphism of Gr onto itself so that */lbl*/o(gi)= xi (i-< n). Replace th by
th’= (*/1, */2)tk*/o. Then the equivalence in (1) between q and th’ is induced
by */*/0 on G", id on X", and id on Y". By transitivity, a Q*-equivalence of
(q) and (th’) implies a Q*-equivalence of (q) and

COROLLARY 4.2. Let g/, th, */, */1, and */2 be as in Lemma 4.1. Suppose
that */1 =id, */2=id, and */ G’f. takes G’ isomorphically onto itself. Then
*/[G id.

Proof. We observed in the proof of Lemma 4.1 that both thl and 1 take
G’ isomorphically onto X". Each of these maps sends g, (i-< n) to x,. Thus
since */1 id it follows from commutativity in (1) that */IG must also be
the identity.

The theorem which follows gives a partial answer to the first question
raised in the beginning of this section:

THEOREM 4.3. Let q and th be free splitting homomorphisms from G to
X" Y". Let these be in normal form with associated group presentations
(q) (Y": (r,)) and (6)= (Y": (s,)).

If there are automorphisms , , and *]2 of G, X, and Y defining an
equivalence between q and d via (1) so that n G’ takes G" isomorphically
onto itself, then (n) and (s,) are Q*-equivalent. Moreover, if q and d are
Mihailova maps, and if (r,) and (s,) are Q*-equivalent, then there are
automorphisms , 1, and 2 defining an equivalence as above so that

Proof. Suppose that isomorphisms , 1, and *]2 exist as in the hypoth-
eses. We will show that (ri) and (si) are Q*-equivalent. By Corollary 4.2 and
the remark preceding it, it is sufficient to consider the case where */[ GT.’
id, */1 id, and */2 id.
We define homomorphisms and from G to X Y as indicated at

the end of 1 so that (gi)= v (i-< n), (g+n)= r q2(g+), and */.
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Here 7r(vi) (gi). Note again that = 7r and tk 7r. We have a com-
mutative diagram"

(5)

Set V= Gp ({v}), and set (g)= (((g+,)). We claim that (g) is a respelling
of (s) relative to ((r), V): By the commutativity in (5) conditions (i) and (ii)
are satisfied in the definition of respelling; so all that is necessary is to., ( +1).specify the syllabification g =l-I ui or each g. Let r/(g+,)= 1-I g,
For the syllables u take u q(g)’. This takes care of condition (iii).
By the definition of (k, Gp ({v}t3{g})= Gp ({v}U{r}); so by Lemma 2.2,

(g) is invertible, and by the Rapaport criterion (ri) and (s) are Q- and hence
O*-equivalent.
When and b are Mihailova maps, and (r) and (s) are O*-equivalent,

the existence o the desired automorphisms l, , and r/z follows from the
first half of the proof o Theorem 4.1 of [Cr].

Lemma 4.4 and Theorem 4.5 below are designed to answer the second
question at the beginning of this section.

LEMMA 4.4. Suppose that d/ and ch are equivalent Mihailova maps from
G to X" Y" with associated group presentations

9(q)=(Y": (r,)) and (b)=(Y": (s,)).

Then the stabilized presentations

and
’(q,) <Y:": fir,), (y,+,,..., y:,))>

’(6) (Y": ((s,), (y,+,...,

(obtained by applying Type 5 transformations n times) are Q*-equivalent.

Proof. By the remark preceding Corollary 4.2, it is sufficient to establish
the lemma for the case where there is an equivalence between and (h
defined in (1) via automorphisms rl, */1 id, and */2 id.

Following the proof of Theorem 4.3, we define lifts and ( of q and 4)
to hooorphisms from G" to X" Y" by (g)= z (i<-n), (i+,)= r,
and 6 4,r. Set v (g)(i <-n) and g (g+,). Note that 6 r6 so that
6(v)=(x, y) and (g) is respelling of (s). By construction, {v}U{g} and
{z}U{r} generate the same subgroup of X" Y"; thus, by the results on
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Nielsen transformations used earlier, there is a Nielsen transformation
((vi),(gi))--((zi), (ri)). This transformation will be used presently in an
application of Lemma 2.3 and Corollary 2.6.
We switch now from X Yn to Xz" y2, yz, , Z2,, and we describe

several correspondences intended to set the hypotheses in Lemma 2.3. First
-1(i<set W X2n * y2.. Set w yi+.z -n) and set

Wr Gp ({w" i_< n}).

Let W./l, w4. denote, in some order, the elements in

{z" -< 2n} tO {y" -< n}.

Set p= 2n +(m-n)= m + n and define two p-tuples (si(a)) and (t(a)) by
-1 (i < n), (a) vi (i < n), t,+.(a)= z, (i < n), s,+2.(a)s(a) ti(a)= yi+.zi s+.

g, and ti+.,,(a) r. Set q n. By the preceding paragraph (s(a)) -- (ti(a)) is a
Nielsen transformation which restricts to a Nielsen transformation

(s+(a), sp(a))(tq+(a), tp(a)).
Define prefixes u(a) (i <- p) in Wr by ui(a) 1 (i <- n), u/.(a) w
yi+,z-1 (i --< n), and Ui+2n(a) 1.
Apply Lemma 4.3 and Corollary 2.6 using the correspondences described

in the last paragraph. There are prefixes u’(a) (i <_ p) in W such that
u’(a) 1 (i <-n), and there is a Nielsen transformation

(u(a)s(a))(u’(a)t(a))

that is conservative relative to (ul(a)s(a),..., Uq(a)sq(a)) so that

(Uq+(a),..., up(a))---(U’q+(a),..., u’p(a))

is a Nielsen transformation of prefixes in Wry.
Observe now that for q + 1 <- <-2n, we have

(u(a)s(a)) (y+.z71vi) x71(vi) 1

and that we have (ui+2.(a)s+2.(a)) (1. gi) r(g)= 1. Thus, since the
Nielsen transformation (u(a)s(a)--(u’(a)t(a)) is conservative, it follows
that we have ("uI(a)t(a))= 1 (i > q). Now

u[+2,,(a)t,+2,(a) u,+z,(a)r,

so ,(u+2,(a)ri) (u+2.(a)) 1. But maps Wr isomorphically onto X"
since (w)= (y+,z-) x-x. Thus we must have u+z,(a)= 1. Because, by
definition, {u+,(a),..., u2n(a)} generates Wry, it follows from our applica-
tion of Corollary 2.6 to get the Nielsen transformation of prefixes that
{u]+,(a),..., u,(a)} also generates Wry. Because W. is a free group of rank
n, it follows that {u]+,(a),..., u,(a)} freely generates Wr (see [MKS,
Section 2.2]).
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Now consider the projection under o of the conservative transformation

(u,(a)s,(a))--.(u(a)t(a)).

By Lemma 2.7,

(o(ul+n(a)sl+n(a)),..., o(up(a)sp(a)))
--(o(u’+,(a)t+,(a)),..., o(u’p(a)tp(a)))

is a Q-transformation o m-tuples in y2,. By the analysis on the preceding
paragraph, what we have is the Q-transformation,

((o(y,+.z;v,)), (o(,)))= ((y,+.), (s,))((o(u’+.(a)z,)), (r,)).

The projection o maps WL isomorphically onto the subgroup

Gp ({y,+,y-’: i_< n})

of y2,; thus by our analysis of prefixes in the last paragraph,

{o(uI+.(a)): < n} t3 {y,: i--< n}

freely generates y2.. Define an automorphism : y2.___ y2. by

,(o(uI+.(a))) y+.y- (i-< n) and A(y)= y (i -< n).

Then induces a Type 4 Q*-transformation,

((o(uI+.(a)z)), (r))-- ((y+.y-y), (r))= ((y+.), (r)).

By using Nielsen transformations to permute elements we then obtain, from
the transformations already described, the following sequence of Q*-
transformations:

((s), (y,+.))--- ((y+n), (s))-- ((y+n), (r))-- ((r), (y+.)).

Thus the stabilized presentations ’(q) and ’(b) are Q*-equivalent as
desired.

THEORE 4.5. Let q and k be free splitting homomorphisms in normal
form from G" to X"x Y" and with associated group presentations (q)=
(Y": (r)) and (b)= (Y": (s)). I]’ q and d are equivalent, then the stabilized
presentations

l’(t) (y4n: ((ri), (Yl+n, Y4n))>
and

are Q*-equivalent. On the other hand, i]’ (t) and (th) are Q*-equivalent,
then q# X, and d # Xn are equivalent.

Proof. Suppose first that q and tk are equivalent. By Lemma 3.2 of [Cr],
q# X, and th # X, are equivalent to Mihailova maps q/ and tk’ with
associated group presentations

9(q/) (Y2": ((r,), (y,+,,...,
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and
(4,’) <Y:": ((s,), (y,+,,..., y:,))>.

Because ’ and (h’ are also equivalent, Lemma 4.4 shows that the stabilized
presentations ’() and ’((h) described in the conclusion of Theorem 4.5
are Q*-equivalent.

If, on the other hand, () and ((k) are Q*-equivalent, then so are the
presentations

(y2,: ((ri), (Yl+,,..., Y2,))) and (y2,: ((s,), (Yl+n,..., Y2n))).
By Theorem 3.2 of [Cr] these latter two presentations are the associated
presentations (’) and ((h’) for Milhailova maps ’ and 4)’ equivalent to
#Xn and 4)# X, respectively. By Theorem 4.3, ’ and 4)’ are equivalent;
hence so are q#X and 4) #X equivalent.

The next theorem gives the promised algebraic proof of Theorem 4.1 of
[Cr]. Although it uses a small amount of material from [Cr] one can see by
tracing back that the proof below avoids the geometric material introduced
in [Cr, Sec. 4]

THEOREM 4.6. Let and tk be free splitting homomorphisms in normal
form and with associated group presentations () and (th). Then and th
are stably equivalent if and only if () and (th) are Q**-equivalent.

Proof. Suppose first that q and 4) are stably equivalent. Stabilization
does not change the Q**-classes of (q) and ((k) so we may assume that
and 4) are equivalent. But then, by Theorem 4.5, () and ((k) are
Q**-equivalent.
Suppose that () and 9((h) are Q**-equivalent. Reorder the sequence of

elementary Q**-transormations taking () to ((k) so that the Type 5
transformations come first, the Type 6 transformations come last, and all
Type 4 transformations are lumped together in a single step. But then, by
stabilizing, we can convert and (k to stably equivalent free splitting
homomorphisms ’ and (h’ so that (’) and ((k’) are Q*-equivalent. By
Theorem 4.5, ’ and (h’ are stably equivalent; hence ff and 4) are also stably
equivalent.

The appearance o the invertibility criterion in the proof of Theorem 4.3
viewed in conjunction with the stable classification theorem, Theorem 4.6
here, suggests that there might be, in some cases, a relaxation of the
invertibility criterion if one desires to test only for Q**-equivalence. Such a
relaxation is described by the following theorem"

THEOREM 4.7. Let (ri) and (s) be p-tuples of elements in Y", and let (g)
be a respelling of (s) relative to ((r), V) where V is a subgroup of X" Y"
freely generated by a set of n elements {v: i<_n}. Set H=Gp ({r}U V).
Suppose that there exists a set of n elements {u: < n} in X Y" so that H is
freely generated by {u}t.J{gi}. Finally, suppose that H is sufficiently large so
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that each of the factor maps IH: H-X" and o lH: H---- Y" is surjective.
Then (ri) and (si) are Q**-equivalent.

Proof. Set m p+ n, and define as follows homomorphisms @ and tk
from G" to X" Y". First define " G"---X" Y" by(g)= v (i-< n) and
(g+,) r. Then define " G"---X" Y" by b(gi) ui (i-< n) and
(g,+,) g,. Finally, set @ 7r and 6 7r. The hypotheses of the theorem
imply that

image image H Gp ({r} tA V).

Furthermore, since and o map H surjectively onto X" and Y", it follows
that both @ and b are ree splitting homomorphisms.
Rank considerations on the abelianization of H (see [MKS, Sections 2.2

and 2.4]) show that {r}tA{v} also freely generates H. Each of the
homomorphisms and is thus an isomorphism from G" to H; therefore
rl -1 is an automorphism of G". But now rl, */1 id, and */2 id define
an equivalence via (1) between @ and tk. Since and tk are in normal orm
with associated group presentations (@)=(Y": (ri)) and (tk)=(Y": (si)),
Theorem 4.6 shows that (ri) and (s) are Q**-equivalent.

Remark. "l’heorem 4.5 gives a bound of 3n on the number of Type 6
transformations needed in a sequence of elementary Q**-transormations to
convert (b) to (@) in Theorem 4.7.

5. Concluding remarks, some candidates for counter-examples

The partial classification theorem for free splitting homomorphisms,
Theorem 4.3, fails to provide a complete answer to the first question about
convertibility of equivalences posed at the beginning of 4. It fails in both
directions; although Lemma 4.4 and Theorem 4.5 give quantitative bounds
on this failure. In this section we will examine this failure with an eye to
providing reasons for it.

Consider first the problem of converting a Q*-equivalence between group
presentations () and (tk) associated with normalized splitting
homomorphisms and th to an equivalence between and th. To simplify
matters assume that is a Mihailova map. There are three possibilities.

(1) The homomorphism th is equivalent to a Mihailova map b’ whose
associated group presentation (b’) is Q*-equivalent to (tk). Note that in
this case, and tk are equivalent by Theorem 4.3.

(2) The homomorphism b is equivalent to a Mihailova map, but any
Mihailova map b’ equivalent to th has its associated presentation, (tk’),
Q*-inequivalent to (b).

(3) The homomorphism tk is not equivalent to any Milhailova map. Note
that in this case and tk cannot be equivalent.
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We do not know if case (2) can occur, but Example 4 below shows that
case (3) can occur even when (q) =(tk).

Example 4. Two splitting homomorphisms from G2 to Xlx Y1.

y0,

6(g,) (x,, y), 6(g2)= (1, y) (6(g2g2)= (x, y,)).

The homomorphism tk is not equivalent to a Mihailova map. To see this
note that if it were, either (x, y,) or (x, y-’) would have to belong to the
image of 4). But the only images under tO with xl in the first coordinate are
of the form (xl, y) (1, y)r=(x, y+5), and 2+5r=:t:1 has no integer
solutions.

Consider now the problem of converting free splitting homomorphism
equivalences to Q*-equivalences. Suppose that q and th are equivalent free
splitting homomorphisms in normal form. Are the associated group presen-
tations () and ((k) Q*-equivalent? Let r), r)l, and 12 define an equival-
ence in (1) between and (k. By the remark preceding Corollary 4.2 we may
suppose, without loss of generality, that r) id and T2--id. At this point the
hypotheses of Theorem 4.3 still may not be satisfied because r) G may not
take G* onto itself. In general it is hard to determine what kind of a
condition might be used in place of the condition above on r) to guarantee
the Q*-equivalence of )() and )((k). There is one special case, however,
where we can pinpoint exactly what is needed. This is the case where both
and 4) are Mihailova maps and Xn. Below we describe two subgroups of
the automorphism group of X Yn and then we state a conjecture about
the relation between these two. We will show that in the special situation
above, the convertibility of equivalences of Mihailova maps th with X,
to Q*-equivalences of the corresponding presentations (b) with (Xn) is
completely determined by the conjecture.

Let s, denote the subgroup of the group Auto (X yn) of automorph-
isms of X Yn consisting of automorphisms a satisfying the two condi-
tions:

(i)
(ii)

rt(z,) 7r(z,) (i-< n), and
a(y) 1 (i-< n).

Let Y/’, __.s, denote the subgroup of Auto (X". Y") consisting of au-
tomorphisms K satisfying 7rK r (i.e. Y/’, consists of the lifts of id: X’x Y"
to automorphisms of X" Y"). The conjecture and proposition below show
how the convertibility of equivalences in the special case above is deter-
mined by the relation between the subgroups s, and Y/’,.

Conjecture 5.1. For each n, and for each a e s,, there is an element, such that a Z" id.
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PROPOSITION 5.2. For each a ,, there is a Mihailova map

a G2n’-Xn X Y"

equivalent to X.. For this map, (tk) is O*-equivalent to

(Y": y,))

if and only if the conclusion of Conjecture 5.1 holds for a. Moreover if tk is
any Mihailova map equivalent to X., then there is an a sl, such that (tk) is
Q*-equivalent to (d) where b, is as above.

Proof. Define a lift . of X. to an isomorphism from G2n to X" Y" by
.(g,) z, (i<_n) and ;,(g,+.)= y, (i<_n). For a d., define ,, by
and define th by tk 7r. Observe that by the definition of d., each th, is
a Mihailova map. The substitution 15 for 1, id for !1, and id for */2 in (1)
defines an equivalence between X. and
Suppose now that there exists a K. such that KalZ"=id. But

tk b. Set h f-Ka,. The substitution h for r/, id for rl, and id for
defines another equivalence via (1) between = X, and th=. Now , takes
G2 isomorphically onto the subgroup Z" of X" Y" and KalZ"= id so
h lG2L"=id and the hypotheses of Lemma 4.3 are satisfied. We conclude
from Lemma 4.3 that (tk) is Q*-equivalent to (X,).

Suppose that (tk=) is Q*-equivalent to (X,)= (Y": (y)). By Theorem 3
of [Rp], (b=) is Q-equivalent to (X,). By the proof of Theorem 4.3 (the
relevant portion goes back to the first part of the proof of Theorem 4.1 of
[Cr]), there is an equivalence between =X, and tk defined in (1) corres-
ponding to the substitution of automorphisms h for rl, id for fix, and id for
"02 where h[G2 bIG"= id. The fact that the equivalence just described
has rl =id and */2 =id implies that ),h= ,h:la- is a lift of

d: X"x Y"---X"x Y";

that is, r ,. But ra[Z"= id as can be verified by diagram chasing. Thus
if (d,,) is Q*-equivalent to (X,) then there exists a r X, as promised in
Conjecture 5.1.

Finally consider an arbitrary Mihailova map b that is equivalent to X,. Let
rl, rl, and n2 define an equivalence in (1) between O=X, and b. As in the
remark before Corollary 4.2 we may, without modifying the Q*-equivalence
class of (b), change b to an equivalent map so that in the equivalence with
Xn we have T]I =id and rl2=id. Define a lift ,rl where , has been
defined previously. Note that b 7r. Also define an automorphism a by
a;. t. Then a, X.I so a ,rlt. By Lemma 4.1 we have

7ra(z,) 7r(f.rl-(zi))= r(.rl(g,))= 7r(th(g,))= tk(g)= 7r(z)

since b is a Mihailova map. Similarly we have ra(y)=b(g/.)=
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(1, 6=(g+,)) SO a(y)= 1. Thus aM,. By our simplification we have
represented 6 as b as desired.

This completes the proof of the proposition.

Remark. We see from Proposition 5.2 that if Conjecture 5.1 is true then
for any Mihailova map 6 equivalent to X,, the presentation (th) is O*-
equivalent to the standard presentation (Y"" (Yl,..., Y,)). On the other
hand, if Conjecture 5.1 is false, say for a s,, and if si (i-< n) denotes
oaX,(yi), then the presentation (tk)=(Y"" (si)) is not O*-equivalent to
(X,) (Y"" (Yi)). But by Lemma 4.4 the two presentations (b) and (X,)
are O**-equivalent. Thus if Conjecture 5.1 is false, then there are non-
standard (in the sense of O*-transformations) balanced presentations for the
trivial group which can be made standard by stabilization.
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