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SECTIONAL REPRESENTATION OF MULTITOPOLOGICAL
SPACES RELATIVE TO A FAMILY OF SMOOTHNESS

CATEGORIES

BY

M. V. MIELKE

Introduction

The purpose of this paper is to study those multitopological spaces (a set
with a family of topologies on it) that can be represented, relative to a family
of differentiability classes, by an embedding of the set in a differentiable
manifold. For example, if the family of differentiability classes is {Cr}, r
1, 2,..., then an embedding A c E of a set A in a smooth manifold E is
said to represent a sequence of topologies {rr}, r 1, 2,..., on A if r is
coinduced by the family of all C-maps from the reals to E with image in A,
for r= 1, 2,....

After this notion of representation is discussed in some detail, the
problem of representing multitopological structures on a manifold by sec-
tions of a differentiable vector bundle is then studied. In particular, it is
shown that those structures that are induced by a locally finite, decreasing
sequence of regular, local kernels can be so represented. From this follows a
generalized Whitney embedding theorem: namely, any decreasing sequence
of foliation topologies on an n-manifold can be represented by an embed-
ding in Euclidean 2n-space. The case in which the foliations are trivial
(leaf manifold) reduces to the classical Whitney embedding theorem, while
the case in which the foliations have points for leaves reduces to a
generalized form of the construction of a continuous, nowhere differentiable
function. The paper concludes with a discussion of some further problems.
The general procedure is to construct global representations by "pasting

together" local ones. However, the usual technique of forming global
sections from local ones by using a partition of unity does not work since
sectional representations, in general, are not closed under addition and
scalar multiplication. The key assumption is regularity (5) since it allows
one to build global representations from local ones by other means (5.1 and
5.2).

See [6], [7], and [9] for closely related topics.
I would like to thank the referee for suggestions on simplifying certain

portions of this paper.

Received April 14, 1977" received in revised form October 5, 1977.
(C) 1979 by the Board of Trustees of the University of Illinois

Manufactured in the United States of America

58



SECTIONAL REPRESENTATION 59

1. Germ topologies and smoothness categories

Recall [11] that a smoothness category C is a category whose objects are
the open sets U in finite dimensional real vector spaces and whose morph-
isms C(Ua, U2) consist of certain C (continuously differentiable) functions
from U. to U2 subject to the following conditions"

(1) If U C and V is a finite-dimensional real vector space then
C(U, V) is a linear subspace of the real vector space Ca(U, V) of all C
maps of U into V and contains all constant maps of U into V.

(2) If Va V,, and W are finite-dimensional real vector spaces then
C(Va" "V,, W) contains all multilinear maps.

(3) Let Ua and U2 be open sets in finite dimensional real vector spaces
Va and V2 respectively. A function f: Ua-- U2 is in C(Ua, U2) if, for each
x Ua, there is an open set Vx of Ua containing x such that ]’1 Vx
c(v, v).

(4) If faC(U, Va) and fC(U, V) then x--(fa(x),f(x)) is in
C(U, Wx) W2).

(5) If f C(Ua, U2) is a bijection then f-a C(U2, UI) if f-a is Ca.
The categories C, r--1, 2,..., and C defined by C and real analytic

functions respectively together with the HNder C/ and the Lipschitz C-categories are well known examples of smoothness categories. By 5 [11],
one can show that the collection of all smoothness categories can be
assumed to be a set, S, that has the structure of a complete lattice under
inclusion with C as maximal element and Cn (Nash category) as minimal
element. As usual, an element C of S will also denote the category of
finite-dimensional C-manifolds that it determines. For C-manifolds X, Z,
and a subset A of Z let B(A) be the set of all C-maps/3 from all open sets
Ue in X to Z that have image in A. Let B,: LIB(A Ue-*A be the map
from the disjoint union (coproduct) of all the Ue’s to A, whose /3th
component Be: Ue --A is /3. The set A with the coinduced topology from
B,(U is open in A iffBa(U) is open in I_[Ue) will be denoted by
GC(X,(Z,A)) or GC(X,Z) if A=Z. In sheaf theoretic terms,
GC(X, (Z, A)) is the "C-germ" topology on A in the sense that if T is the
total space of the sheaf of germs of C maps of X to Z with image in A then
there is a factorization

HUe >T *A
of B, with 4 and B, coinducing the same topology on A (cf. [3, p. 5]).

1.1 PROPOSrrION. (a) If dim X n then GC(X, (Z, A)) GC(R", (Z, A)).
Let GC(R, R’) R for n 1, 2, Then:
(b) GC(R", (Z, A))= GC(R, (Z, A)) for n 1, 2,
(c) GC(R, (Z, A)) is universal for C-maps into A; i.e., each (f: Y--A c

Z) C has a unique factorization through GC(R, (Z, A))<_ A (<- denotes the
identity map on A when it is continuous).
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(d) GC*(R,R")=R"
differentiable maps).

for 1 r -- oo and n=l, 2,...(C=C-
Proof. (a) This is trivial since X and R" are locally C-diffeomorphic.
(b) Clearly GC(R, R")= R" implies GC(R, U)= Ua for any open set

Uo in R". Hence Ua has the coinduced topology from the C-maps from
open sets in R and the result then follows from the "transitivity" of
coinduced topologies since the topology of GC(R", (Z, A)) is coinduced by
B,: ]_[ Ut --A.(c) Since any (f: Y---A Z)e C has an obvious factorization through
GC(Y, (Z, A))<-A, the result follows from (a) and (b).

(d) Since GC(R, R") <- GC(R, R") <- R" it is enough tc show that
R" <-GC(R, R"); i.e., that any closed set in GC(R, R") is closed in R" or
equivalently that any set not closed in R" is not closed in GC(R, R"). The
latter condition is obviously satisfied if for each convergent sequence {y,,}--
y in R" there are a convergent sequence {x,,}--x in R and a Coo-map
V: R--R" so that V(x,,) y.,, and V(x) y. Suppose y,, (yX y)
R" defines a sequence that converges to 0. Without loss of generality it may
be assumed that {y,,} lies in the first quadrant; i.e., y> 0 for m 1, 2,...,
and i= 1 n. Let U" R--R be a C-map such that

p , 2,..., IID(ro)ll M, k 0,..., p where

Such a map exists by standard methods [4, p. 24]. Since {y,,}-O, there is a
for i=sufficiently large integer re(p) so that O<y.o-<tf(1/2o-)=ao

1 n. Then

where

V= (V1, V"): R---> R",

is a C map with V(1/20-1) y,,(p) and V(0)= 0. This implies the result.
Although it is always the case that GC(X, (Z, A))_< A, it is not generally

true that GC(X,(Z,A))>_A. In particular it may turn out that
GC(X, (Z, A)) is discrete. If, for example, A is the graph of a continuous,
nowhere differentiable function R---R then it is easy to see that
GCI(R, (R2, A)) is discrete. The existence of certain C-discrete subsets A
of R" (i.e. GC(R, (R, A)) is discrete) is studied in 4 and they, or the
functions defining them, are essential in the proof of the main results.
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2. The general problem

Each subset A of Z, for Z e Ca, determines a family {GC(R", (Z, A))},
C e S, n e N= {1, 2 } of topologies on A. (lil(a) shows nothing more
general than R" need be used.) A general problem is to characterize those
S x N-indexed families, F, of topologies on A that can be represented in the
sense that F can be induced from {GC(R", (Z, A))} by an embedding A c Z,
for some Z e Ca. Many simplified versions of this general question are
possible. For example, one may consider only the S-indexed families
{GC(R, (Z, A))}. For C C this is no loss of generality in view of 1.1(b)
and (d). The remainder of this paper is concerned with the following general
problem" Describe those sequences {rr} of topologies on a C=-manifold A
that can be represented by a map of A into some C=-manifold Z; i.e., so
that {.r} is induced by from {GCr(R, (Z, i(A)))}. For those sequences that
can be so represented, determine the "simplest" such Z. By taking A to be
a C=-manifold it is possible to phrase questions on representing families of
topologies on A in terms of realizing certain families of subsets (R-spaces)
of the tangent bundle of A. The details of this translation are given in 3
with Corollary 3.5 as the main result.

3. R-Spaces

Let T be a subset of the total space T(A) of the tangent bundle of A. T is
an R-space if it is closed under scalar multiplication and contains the
0-section. For YcA and r>0, the map B.: HB(-)U---Y defining
GCr(R, (A, Y)) induces a map DB,: [IT(U)---T(A) where DB is the
differential D/3: T(U)-- T(A) of /3: U-- Yc A. Let BT, be the restric-
tion of B, to those components Uo for which (image D/3) T (subsequently
shortened to D/3 c T) and let DBT. be the map induced by passing to
differentials. If DBT, maps onto T IY we say that T is r-proper on Y. Let
R(A) be the category of R-spaces on A and Rr(A) the full subcategory
consisting of those R-spaces that are r-proper on A. Clearly R(A) is
isomorphic to P(PI(A)), the category of subsets of the total space PI(A) of
the associated projective space bundle to T(A), and Rr(A) is a coreflective
subcategory (in the sense of [8]) of R(A) with coreflector Mr: R(A)---
R(A) given by Mr(T)= (image DBT,); i.e., Mr(T) is the maximum subset
of T that is r-proper on A.

If A C is the category whose objects are the functions (not necessarily
continuous) on A with codomain a C-manifold and whose morphisms
il--i2 are those C-maps f satisfying fi=i2, then Tr(i)=image DB,(i)
defines a functor 7": A $ C---R(A), where DB,(i) is the restriction of
DB, (with Y A) to those components T(Ua) for which i/3 e Cr. Further,
T--* rr (T) A with coinduced topology from BT, (with Y A), defines a
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functor from R(A) to the category of topologies on A with "<-" morph-
isms.

3.1 DZVINrrION. An R-space T on A is said to be (strongly) r-realized by
a function i" A--Z if, for all open sets U in R and all functions/3" U--A,

(a) /3C and D/3cT imply i/3C((a)’/3C and D/3cT imply
i[3 Cs, for s 1, 2 ) and

(b) i/3 C implies/3 C and D/3 c T.

3.2 Remark. If T can be r-realized by a C’-map then T T(A), for
then /3 C implies i/3 C which gives, by (b), D/3 T.

3.3 LEMMA. If T is r-realized by an injection i, then represents -(T).

Proof. By definition, represents r(T) if the topology of r(T) is
induced by

i= i: ’(T)--->GC(R, (Z, i(A)));

i.e., since i is a bijection if i is a homeomorphism. I BT, is as above and
B is the representation of GC(R, (Z, i(A))) then 3.1(a) and (b) imply that
the components of iBT,, i-Bi are among those of B, BT, respectively.
Hence i and i;-x are continuous and the result follows.
A sequence {T} of R-spaces on A is said to be locally finite if there is a

locally finite open cover {U} of A so that Di={x ]xA,
U, where (T) is the fiber o T at x. Note that D1 A.

3.4 PROPOSITION. Let {T} be a locally finite, decreasing sequence of
R-spaces on A and suppose that T is strongly ri-realized by a C,-section ii of
a C-vector bundle p" E--A, ] 1, 2, If 0 <- s <- ri <- Si+l, j 1, 2,
then there is a section of p that ri-realizes T, ] 1, 2,...,

Proof. By [4, page 24] there is a C-map

o-: A--R with o-x(O)= A- c A Dv
Since {U} is locally finite, i=Y’.i__ o’ii is a well defined section of p. If N is
an open set that intersects only U(), for k=l, 2,...,n then i=

Y= r)ii() on N since N Cl U 4 implies Nc r}-(0). If ](1) < ](2) <." <
](n) then ](1)= 1 since D=A. Also, T= T() on N, where ] satisfies
](k) < ] < ](k + 1) or ](k) < ] if k n since N fqD 4 implies T T_ on N.
If T() is ri()-realized by on N, then r-realizes T on N for ] as above.
Indeed, if/3 e C and D/3 c T then

k

vrt=l

by 3.1(a)’ since T c T(,)and (ri(,,) C for j(m)<j; and

C
=k+l
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since r <- si(,, ), ii(,, CSJ,.,, and (ri(,,) C for k < m. Hence 3.1(a) is proved.
On the other hand, if i/3 C, then/3 pi[3 C and, since ri(k)<- ri, i[3 CrJ,k,

and so D/3 c T(k)= T and 3.1(b) follows. Since "realization" is a local
property, it is then enough to prove the proposition where {T} is a finite set,
j 1, 2,..., n. The verification of 3. l(a) is as above. Condition 3.1(b) will be
proved by induction. If i/3 C1 then/3 pi/3 C and, as above,

i=2

Hence ((rl/)(ia/) G Cq. Since cry/3 C and is nowhere 0 (D1 A), i/3 C.
Therefore D/3 c T1 and 3.1(b) is shown for j- 1. Suppose now that condi-
tion 3. l(b) holds for j < k and that i/3 C% Then D/3 T for 1 -< j -< k 1
by the induction hypothesis since r > rr Since /3 pil3 C it follows, as
above, that

k-1

(ai/3)(ii/3) e C and (ri/3)(ii/3)e C%
1=1 i=k+l

Consequently (tr/3)(i/3) C. On/3-1(A-o’1(0)), trk(/3) is nowhere 0 and
so ik(/3) Ck and D/3 Tk there. From above, D/3 c T_I and, since
try1(0) ND tb, it follows that Tk T_I on cry1(0) and that

D/3 c T on /3-1(A-tr(0))t3/3-(o’(0)) =/3-(A).

This completes the induction.
Note that if sj =rj in 3.4, then, by 3.2, T, and consequently Tk for k-< ], is

T(A).

3.5 COROLLARY. If {T} is a locally finite, decreasing sequence of R-spaces
on A with T strongly r-realizable by a Cr- section of a C-vector bundle
p: E--A, r= 1,2,..., then the sequence of topologies {’(Tr)} can be rep-
resented by a section of p.

Proof. Since the section of 3.4 is an injection, 3.3 implies that
represents (T/), 1, 2, The special case with s - 1, r j, and r
is the corollary.

In view of 3.4 it is desirable to find strongly realizable R-spaces. To this
end define an R-space T to be r-closed if T Mr(K), for some K that is
dosed in T(A). If DB, T, where B, represents GC(R, (A, Y)), say that T
is C on Y. Note that if Y is a C-submanifold in A then T is C on
Y iff T(Y) c T.

3.6 LEMMA. Let T be an r-closed, R-space on A that is C on a closed
subset Y of A. If a section of a Coo-map p: Z-->A satisfies 3.1(a) (3.1(a)’)
and if i[3 C implies D[3 T for all [3 of the form [3: U-(A- Y) A, U
-(R), then (strongly) r-realizes T on A.
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Proof. It is enough to show satisfies 3.1(b) and, since i/3 C implies
[3 pi[3 C, it is enough to prove i/3 C implies D/3 c T for/3" U--A. The
assumptions on and T imply D([31U1 t2 U2)c T=Mr(K), where U1
/3-(A Y) and U2 =interior (U-U). Since U U U2 is dense in U and K
is closed it follows that D/3 c K. But then, by definition, D[3 Mr(K)= T
since/3 C, and the result follows.

3.7 LEMMA. If T is r-closed and C on each Y,, where {Y}, a D, is a
locally finite family of closed sets of A, then T is C on Y o Y,.

Proof. Since {} is locally finite it is sufficient to prove the lemma when
D is finite, and in fact when D consists of two points. Suppose

(/3"U-->YcA)C and Y=YUY2.
Let U1--/3-1((Y Y)U(Y- Y2)) and U =interior (U- U1). Since

Y-Y1 V2, Y-Y2 Y1, Y- Y1) CI Y- Y2) eb,

and

/3 (U) c Yx Yc Yx,

the assumptions imply D(/3(U1U U2)c T. The result now follows as in the
proof of 3.6.

In order to construct R-spaces and sections to which 3.6 applies, it is
necessary to introduce a special class of maps.

4. (r, s)-maps

A C-map f: X-- Y between C-manifolds is an (r, s)-map if, for all
([3" U---X)C with U an open connected subset of R, f[3C/ implies
/3 C, the class of constant maps, where r, s are non-negative integers.

4.1 LEMMA. Let f: R-- R.
(a) f is an (s + 1, s)-map (a(O, O)-map) iff f is C (C) and is not C

(in]ective or constant) on any open subset.
(b) f is not an (r, s)-map for r <_ s >-1.

Proof. (a) If f is an (s + 1, s)-map (a (0, 0)-map) and f is Cs+ (constant)
on an open subset V, then the inclusion /3: VcR is Cs+ (C),f/3e
C+1 (C1) and/3 is not constant on connected components, a contradiction.
In case f is injective on V, a local C-section/3 of f with connected domain
can be found. Then f13 =ide C, and /3 C, a contradiction. Conversely
suppose f is C (C) but not C+ (injective or constant) on any open subset
and/3: U---R is C+1 (CO), U a connected subset of R, and f/3 e Cs+l (C1).
If /3 C then ft has a local C+ (C) section r since D(fl3)#0 at some
point. (If D(fl3)= 0 on U, then f e C. Thus f is constant, and consequently
C+x, on interior (/3(U)), which is not empty since /3 C, a contradiction.)
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Thus /3r is a local Cs+l (C0) section of f and consequently f is Cs+a

(injective) on some open set, a contradiction.
(b) If f is an (r, s)-map for s >-1, then f has a local CS-section /3 since

fe C. Hence /3 C, f/3 id Cs+l and /3 is not constant on connected
components, a contradiction.

4.2 LVMA. If f: X--- Y is an (rl, s)-map, g: Y---Z is an (r2, sz)-map
with 0 <- s2 <- sa < r, rz <- s and H is a Lie group with an effective (h y y
for some y implies h id) C-action on Y, then , g(Trl fTr2): H X--Z is
an (r, s2)-map, where 7r denotes the ith proection, for i= 1, 2.

Proof. Let

/3 (/31,/32) C and ,/3 g(/3a, fl32) Cs+a.
Then /31,/32 C% f Cs C and consequently/31" f/32 C. Since g is an
(r2, sz)-map, /3- f/3z C and thus

ft3 t3. (t3. ft3) c cs+.
Since f is an (.r, Sl)-map it follows that/3a C. Since H is effective and both
/31" f/3 and f/3a are constant, /3 C and thus/3 C. Clearly , Cs and the
result follows.

4.3 PRomsrrioN. For n, m >_ 1 there exists an (r, s)-map
f: R" --(R -{0}) for s 0 or for s >- 1 if r >_ s + 1 +{loga (n/m)}, where {x} is
the least integer >- x if x >- O, and 0 otherwise.

Proof. By [5, p. 150] or [10, p. 1963] there is a non-negative continuous
map go" R R that is neither injective nor constant, hence not C1, on any
open subset. The C-map gs, where g(x)=$Lx gs-x(t)dr, for s 1,2,..., is
not C+ on any open subset of (-1, oo). Consequently

fs(x) (x)gs(x) + (-x)a (-x) + 1,

where or: R--[0, oo) is a C%map with cr-(0)= (-0% 0], is a positive CS-map
that is not C/x on any open set. By 4.1, then, fo. R---(O, oo)cR is an
(s + 1, s) map, s 0, 1,. Also f is easily seen to be a (0, 0)-map. If there
exists an (s +p+ 1, s)-map f: R2" --- (R {0}) for s =0, 1,..., then by 4.2,
with X Y R2, Z R, f H2 0f+o+, g f, H R2 with action on Y by
left translation, there exists an (s + p + 2, s)-map f+: R"/(R -{0}) c R.
By induction, then, there is an (s+p+l,s)-map fs: R"(R-{O}) for
s=0, 1,2,...,p=0, 1,2, Given non-negative integers n, m, either
1 _< n -< m or 2-1m --< n --< 2ore for some p --> 1. If n --< m then

R" -R"xR’-"=R t >(R-_{0})

is clearly an (s + 1, s)-map where i(x)= (x, 0) and f=II,,f. If 2"-m < n-<
2Pm then

R" >RnxR2""-"=R2"" f>(R-{0})
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is an (s + p + 1, s)-map where i(x) (x, 0) and f= 1-I,, f. Since

p=0 or p-l<log2(n/m)<_p for p->l

it follows that p {log2 (n/m)}. Since an (r’, s)-map is obviously an (r, s)-map
for r >_ r’, the result follows for the s-> 1 case. For s 0 proceed as follows:
Using the methods and results of [1] one can show the existence of a
continuous function f: R2---R with totally path disconnected fibers. (Such
maps are called a-light in [12].) Then

f(f 1): R3-- R2-->R

also has totally path disconnected fibers and thus, by induction, there exists
such a function g: R"-- R. Then g: R"-R--(R -{0}) is a (0, 0)-map,
since if fg/3 C1, then g/3 C and so /3 C on connected components.
Hence there exists (0, 0)-, and consequently (r, 0)- maps Rn---(R"-{0}).

5. Regular kernels

An R-space T is a local r-kernel if T Mr(K) where K is a local kernel,
i.e., for each x A there is a C-map kx" Wx--Rhe*) on an open neighbor-
hood W of x such that K IW --ker (Dk). Let n(T) be the minimum of all
bounds of all local kernels K for which Mr(K)- T, where a bound for K is
an integer m so that the functions k can be chosen with n(x)<_m. T is
unbounded if n(T) o. An R-space T is r-regular if for each x A and each
open neighborhood W of x there is an open neighborhood V of x such
that V Wx and T is C (3) on Bd (Vx)- V- Vx.

5.1 PROPOSITION. Let p: E--A be an m-dimensional Coo-vector bundle on
A and let T be an r-regular, local r-kernel on A. If m >-1, then T can be
strongly r-realized by a continuous, bounded section of p. Further, can be
taken to be C for

1 -< s <- r- 1 {log2 (n(T)/m)}.

Proof. The proof consists of constructing a Y and so that T, Y, and p
satisfy the conditions of 3.6. Clearly there is a family {k" W--Rn}, a
sO, of Coo-functions for which n(a) <- n(T), ker (Dk,) K W,, Mr(K)
T, E W is trivial, "Vz is compact and {W} is a locally finite open cover of
A. Since T is r-regular, it is not difficult to construct an open cover
{Va}, d D, of A and a function a" D--s such that Qa Wa, {Qa}D is
locally finite, and T is C on Bd (Va). Since, for a well ordering of D, the set
La= [_Ja’<a Va, is closed, there is a Coo-map ra" A--R with r(0)
(A-Va)t3 La. By 4.3 there is an (r, s)-map

f,a)" R’’a))-->(R"-(O}) for s =0or 1-<s-<r-l-{log: (n(T)/m)}

since n(a(d))<_n(T). The CS-map o’a’(fa)k,a)): A’--R can be viewed
as a C-section ia of p since A-o-$1(0) Va W,a) and E W,a) is trivial.
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Since {Va} is locally finite, i=D a is a well defined CS-section of p. The
conditions of 3.6 will now be verified for T, i, p and Y [.J o (Bd (Va)). T is
r-closed since T Mr(K) and K, being a local kernel, is closed in T(A). By
3.7, then, T is C on the closed set Y since {Va}, and hence {Bd (Va)}, is
locally finite and T is C on each Bd (Va). To see 3.1(a)’ let (/3" U---A) C
with D/3 c T and set

U 13-(Wo,(a)) and U2 [3-1(A- Qa).
Then k,a)[3, and consequently f,a)k,a)13, is constant on the connected
components of U. Since ra/ is C on U and 0 on U2, [ra f,(a)k,,,a)]l is C
on both U and U2, and consequently on U tA U2 U, i.e., ial3 C. Since
il3- ial3 is locally a finite sum, i/3 C and 3.1(a)’ follows. To check the
last condition of 3.6 note that if da <d then La, La and Va, C3 (A La)
4. Hence

A -crS(O) O crSl(O) Vdll" Vd21"l(A-Ld2)=,
i.e., if o’a,(x) # 0 # o’a2(x) then dl dz. Thus if oh(x) 0 then i(x) ia(x) and,
since f,(a) is nowhere 0, i(x) O. Suppose i(x)= 0 and x Y. If dl is minimal
with x e Val then xC:A-Val and x: Va for d <dl. Hence xcrS(0) and
i(x) # 0, a contradiction. Therefore i-(0)c Y and, consequently, if

[3" U--- (A- Y) A

then i/3 is nowhere 0. For any t U, then, i([3(t))#O and ra(13(t))#O for
some d. By continuity, there is a connected neighborhood U, of so that era/3
does not vanish on U; i.e., i/ ia[3 on U. But then on U,, i/ C implies
ial3 C and thus ra(/3) (fo,(a)k,(a)13) Cr. Since o’a(/3) C and is nowhere 0
on U, fo,(d)[ko,(d)[3] C". Further, since k,,,(a) C, s + 1 <- r, and f,,(a) is an
(r, s)-map, it follows that k,(a)13 C; i.e., D/3 c T on U, and hence on U
since was arbitrary. It now follows from 3.6 that strongly r-realizes T.
Finally, if i(x)O then i(x)= ia(x) and since A-i-dl(O)c Va, a compact set,
ia is bounded. By multiplying by a non-zero constant (this does not destroy
the essential properties of ia used above) one can then assume ]ial <- 1 and so
a bounded exists. This completes the proof.

5.2 COROLLARY. Let p E--A be an m-dimensional C-vector bundle on
A with m >_ 1. If {Tr} is a locally finite, decreasing sequence of R-spaces
where Tr is an r-regular, local r-kernel on A with n(Tr)<-m, r 1, 2,..., then
the sequence of topologies {’r(T)} can be represented by a section of p.

Proof. Apply 5.1 to each Tr and use 3.5.

The following result is useful in showing certain R-spaces are r-regular.

5.3 LEMMA. Let p" N--M be a C-vector bundle on M and f: N--N1 a
C-map such that

(a) for all v, w N, the equality f(tv)=f(tw) holds for all t[0, 1] iff it
holds for 0 and 1.
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If there is a nowhere O, C-section s of p for which
(b) the equality f(ts(x))= f(ts(y)) holds for t= 1 i it holds for t= O, all x,

yeM,
then there is a section sl of p such that T Mr (ker Dr) is C on (image Sl)
N.

Proof. Let Sl =(gfso)s, where g" N1--(0, 1) is a (0, 0)-map, and So is the
0-section of p. It is sufficient to show that if (1" U--(image sl)c N)
where U is connected, then ]’/3 C. From (a) and (b) it follows that Sl
satisfies (b). Condition (b) clearly implies that if fSop[3 C then fspl (and
consequently f/3 since /3-sp[3) is constant. Thus it is enough to show
fsopl3 C. By assumption,

sp (gsopt3) (sp) c
and so g(fsopl3)Cr. Since g is a (0, 0)-map, fsopl3C and the result
follows.
An easy application of 5.3 gives the following result on distributions.

5.4 LEMMA. Any m-dimensional integrable C-distribution T on A is an
r-regular, local r-kernel with n(T)=n-m, n =dim (A).

Proof. By [2, p. 24], locally T can be identified with ker (Der2) where

"/1"2" R" R" x R"-" --> R

is projection on the second factor. Thus T is a local r-kernel since

ker (Dr2)= Mr (ker (Dcr2)).

If N, N2 is a tubular neighborhood of the unit sphere S"-’-1, S"-1 in
R"-", R respectively then N R" N and N N2 R"-" are tubular
neighborhoods of the C-submanifolds (of R") M R" S"-’- and M2
S"-x x R"-" respectively. As usual, N can be smoothly identified with the
total space of the normal bundle of M in R" where the projection
p" N--M is "radial", 1, 2. The conditions of 5.3 with f and p replaced
by r2 and p respectively are easily verified. Hence M (viewed as 0-section
of p) can be replaced by a manifold M (= image Sl of 5.3) arbitrarily near
M with TC on M. Since kernels are r-closed, 3.7 implies that T is C on
M UM. Thus T is C on Bd VcM L; M, where V is the component o
R" -(M UM) containing 0 a R". By reducing the radii of S"-’-1 and S
and using the homogeneity of R" one can then obtain an arbitrarily small
neighborhood V about any point of R" with TC on Bd V. This implies the
result.
Each integrable C-distribution T on A defines a topology -r(T) on A

which is the foliation or leaf topology on A in the sense of [9].

5.5 THEOREM. Any decreasing sequence of foliation topologies {r} on A
can be represented by an embedding of A in R2", where n dim A.
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Proof. By definition = ,(T), where {T} is a decreasing sequence of
integrable C%distributions on A. Since {T} is a decreasing sequence of
subvector bundles of T(A), it is locally finite. By 5.4 and 5.2, then, {} can
be represented by a section of any m-dimensional C-vector bundle on A
with m_>n. By Whitney [13], A can be embedded in Rz" with n-
dimensional normal bundle. Then i(A) defines an embedding of A in Rz"

that represents {-}.

6. Comments and questions

The following questions arise naturally in an attempt to extend the
methods of this paper to solve the general problem of 2.

(1) The topology of A is greatly suppressed by assuming A is a C=-
manifold. For a general subspace A c Rn, how is the topology of A reflected
in the R-space T= (image DB,), where B, represents GCr(R, (Rn, A))?

(2) For a smoothness category C, the topology of GC(R, R") is sequen-
tially determined; a convergent sequence in R" converges in GC(R, R) if it
has a convergent subsequence lying on a C-curve in R" (see proof of 1.1).
An intrinsic characterization of such "C-sequences" would be useful. For
example, one could determine those Ca, C2 for which GCa(R,R")
GC2(R, R). (The case Ca Cr, Cz C is 1. l(d)).

(3) Proposition 4.3 shows the existence of certain (r, s)-maps R"--R.
Can the condition on r and s be relaxed? In particular, do there exist
(s+ 1, s)-rnaps R"--R? The existence of such a map implies that of a
CS-map R"--R with totally C+a-path disconnected fibers. Also, if such
maps exist, Theorem 5.5 can be improved since the restriction on the
dimension of the normal bundle could be relaxed.

(4) For which smoothness categories Ca, C2, and C3 do there exist
Ca-maps f: R"--R such that if /3 6 C2 and f/3 C3 then /3 is constant on
connected components? (Ca C, C2 C, C C"+a is the (r, s)-rnap
case.)
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