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FUNCTIONS WHICH FOLLOW INNER FUNCTIONS

BY

KENNETH STEPHENSON

If 0// denotes the unit disc and A c 0// has (logarithmic) capacity zero,
Frostman proved that the universal covering map bA: -- q/\A is an
inner function. bA has some very nice properties" On the one hand, any
analytic function f mapping 0//into a//\A is subordinate to 4A, that is, there
exists an analytic function g on 0// so that f bA g. On the other hand,
there is a group FA of M6bius transformations of such that any function f
which is automorphic with respect to FA can be realized as a composition
with bA, that is, there exists a function g on \ A so that f go4A. In this
paper we exploit these properties to obtain results about the composition
operators C+: f- f b for general inner functions b.
We consider these operators on the Hardy spaces, the Smirnov class, and

the space of meromorphic functions of bounded characteristic. X will denote
any one of these spaces. An obvious necessary condition for a function f in
X to be in the range of C+ is that f(ot)=f([3) whenever th(ct)=4)(/3). We
describe this property by saying that f follows d. We prove in Section 3 that
this surprisingly simple condition is also sufficient. In Section 4 we use this
condition to characterize the range of C+ as a linear submanifold of X,
extending and simplifying a characterization due to Ball [4]. We conclude
with comments and questions in Section 5.
The composition operators C+ have been much studied, particularly in

relation to Toeplitz operators. For work in this direction, see Abrahamse
[1], Abrahamse and Ball [2], Ball [4], Nordgren [7], [8], and Thomson [12],
[13]. Certain properties of the inner functions tkA were studied by the
author in [10]. We assume that the reader is familiar with the basic theory of
functions of bounded characteristic, the notion of logarithmic capacity for
plane sets, and the elementary properties of universal covering surfaces for
plane regions. Appropriate references would be Duren [5], Tsuji [14], and
Ahlfors and Sario [3], respectively.

I wish to thank J. D. Chandler and Tom Metzger for helpful discussions
on the material presented here.

1. Preliminaries

All functions have domain R, the unit disc, unless stated otherwise.
1.1. Factorization. H denotes the space of bounded analytic functions.
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A nonconstant function in H is an inner function if

lim I,b(se’)l- 1

for almost all 0 [-r, r]. We say & is a factor of f H if f/dH. An
analytic function f is an outer function if f--fl/f2 where fl, f2 H and

loglf(0)l=sup
1 f_-

r<l
log [f(re’)[ dO, j 1, 2.

A meromorphic function f is said to be of bounded characteristic (BC) if

f fl/f2 with fl, f2 H=- If we define

log+ max {0, log t}, [0, o],

then f BC if and only if log+ Ill has a superharmonic majorant in oR. If f is
analytic, this is equivalent to the condition

sup log+ [f(rei) dO <
r<l

If f BC, then f can be factored as

() f=--i:
where the factors satisfy:

(a) 11 and I2 are inner functions or unimodular constants. If both are
inner functions, they have no nonconstant common inner factors.

(b) F1 and F2 are outer functions in H with IIFlllo 1, IIF211=<_ 1.

We will call (1) the canonical factorization of f because the factors are
unique up to multiplication by unimodular constants. I1 is termed the inner

factor of f.
The Smirnov class N. BC consists of those functions f for which the

canonical factorization (1) has I1 --c, Icl-- 1. In particular, f N. implies f is
analytic. For 0 p , the Hardy Space H N. consists of those functions

f for which If[" has a harmonic majorant. The following result is a synthesis
of known properties of the composition operation. See Nordgren [7] and
Stephenson [113.

1.2. THnOnM. Let X be any one of the spaces BC, N., or H, 0 p <--.
If d is an inner function and g X, then g oq6 X. Furthermore, if g has
canonical factorization

g
]r2f2
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then g tk has canonical factorization

1.3. Automorphic ]’unctions. A/t denotes the group, under composition, of
M6bius transformations of onto . A Fuchsian group is a subgroup F

_
such that for z the orbit {/(z): /F} has no cluster point in . A
function f is said to be automorphic with respect to F if fo/= f for all / F.

2. The function A

2.0. Frostman [6] proved that for A
__

to be the set of values omitted
by an inner function, it is necessary and sufficient that A be a closed subset
of (logarithmic) capacity zero. For the sufficiency he showed that if A is such
a set, then 9/ is the universal covering space for 9/\A and the universal
covering map bA:-- R\A is an inner function. Associated with any
universal covering map is a group of covering transformations. Since 0// is
our covering space, this will be a Fuchsian group and we denote it FA. The
following proposition gives the essential properties of thA and FA. Note that
bA is unique only up to composition with a M6bius transformation; all
statements referring to bn, and the associated FA, assume that some
particular choice has been made.

2.1. PROPOSITION. Let A It be a closed set of capacity zero, let (all, bA)
be the universal covering surface of 11 \ A, and let FA be the associated group

of covering transformations.
(a) If f H and f(all) 11 \ A, then there exists g H, Ilglloo <- 1, such that

f thA g. f is an inner function if and only if g is an inner function.
(b) For o 91, {z: 4A (z) 4A (a)} {/(a): /6 ra}.
(c) If f is automorphic with respect to Fa, then there exists a function g on

91 \A such that f gotha. If f is meromorphic or superharmonic, then g is
meromorphic or superharmonic, respectively, on 91 \ A.

Proof. (a) is the usual subordination property associated with conformal
maps; g is simply the "lifting" of the map f" R-- ag \A to the covering
surface R. Checking radial limits, it is clear that if g is not an inner function,
then tha g cannot be an inner function. Conversely, it is well known that the
composition of two inner functions is an inner function.

(b) and (c) are standard properties relating a conformal covering map to
its covering transformations (see [3]).

3. Functions in the range of C,

3.1. DEFINITION. Let 4 and f be functions with domain G C. f is said to

follow th if, whenever a,/3 G with 4(a)= 4(/3), then f(a)= f(/3). Equival-
ently, 4-1(4(a))_ f-(f(a)) for all a G.
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3.2. THEOREM. Let d be an inner function and let X denote any one of the
spaces BC, N., or H, 0<p <--. A function f X follows d if and only if
them exists g X such that f g dO.

Sufficiency is dear from Theorem 1.2. To prove necessity, we shall first
show in Proposition 3.3 that i there exists a meromorphic function g on 9/
such that/c gosh, then g X. Thereafter, we can assume X BC. As for
existence, we shall construct g on the range of th using Lemma 3.4 and then
prove that it can be extended to be meromorphic on all of q/. For this last
step we reduce to the case that is one of our covering maps tkA.

3.3. PROPOSITION. Let X be any one of the spaces BC, N., or H,
0< p <--. If th is an inner function and g is meromorphic on all, then g d X
implies g X.

Proof. Using Theorem 1.2 we can make some simplifying assumptions.
First, assume b(0)=0; for otherwise replace b by /o4 where / is
appropriately chosen. Next, assume g otk is analytic" For suppose A

_
is

the set of poles of g 4. A is dosed and countable, hence of capacity zero.
Replace b by the inner function q tk ba. Since g b is in BC, g q
g 4 tkA is in BC with no poles.
Our first aim is to prove that g BC. It is enough to show

(2) sup
1 f"r<a

log+ Ig(re’)l dO <.
Let v be the least harmonic majorant of log/lgo4l. For 0<r<l, let

={w-Iwl< r} and let ur be the continuous function on Dr which agrees
with log/ Igl on 0D and is harmonic in Dr. (At most a countable number of
radii r will have to be avoided because log/ Igl is not continuous on ODr.) (2)
will follow if we prove ur(0)--<v(0), 0<r<l.

Claim. ur(0)=(uo4)(0)-<v(0), 0<r<l.

Proof of claim. Fix r and let fr be the component of 4)-1(Dr) which
contains 0. Let E =0fr. If z E, then Itk(z)l r so

(3) (ur otk)(z) log+ I(go)(z)l v(z), z E.

For each 0, 0< 0 < 1, define Go l’r N{z" Izl < 0} and split OGo into

Eo=EO{z" lzl<o}, So=OGo{z" lzl=o).
Let e > 0 be given. 4 is an inner function so lim_114,(se’)l- 1 for almost
all 0 [-Tr, 7r]. By Egoroff’s theorem we can choose O #(e) so large that

m{e’O" 16(0e’)l <- r} < e//3,
where m denotes Lebesgue measure on 0q/ and /3 =supz, In
particular,
(4) m{e’" Oe’ Jo}< e/[3.
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Now consider the difference (uro4))-v. This is harmonic in Go, continuous
on Go, nonpositive on E, by (3), and

(uo4,)(z)-v(z)<-t3, z Go. (s)

Let h be the harmonic function in {z" Izl < p} obtained using the boundary
values (u,.o)-v on Jo and zero on {z" Izl=, zeroS, h majorizes u,o-v
and by (4) and (5), h(0)<e, ffhis is simply the extension of domain
principle.) Therefore (Go)(0)<v(0)+e. Since e>0 was arbitrary, this
proves the claim, and hence that g BC.

Suppose, now, that g has canonical factorization

IFg

By Theorem 1.2, go has canonical factorization

(I $)(Fo)
(i,o6)(F,o6)"

In particular, if goring, then Iaoc, lcl= 1, so Iac, hence gent. If
g H, 0< p <, then we may repeat the arguments used earlier, replac-
ing log+[ with l-Ip, to prove g e Ho. The H case is trivial. is completes
the proof of the proposition.

3.4. LE. Let O be a region in with analytic on O. I[ [ is

meromohic on O and follows , then there exists g meromohic on
(O) such that g .

Proof. It is sucient to prove the result on the subset of O where is
analytic, for the same can then be done with 1/; so without loss of
generality assume [ is analytic. I is constant, the conclusion is obvious; i

is not constant, let be the discrete (possibly empty) set =
{z G" ’(z)=0}. Define g st on O’=&(O) as follows: For wO’
choose z O with (z)= w, ’(z) 0, and let be the local inverse for

with (w)= z. Define g locally as [o. Since [ follows , the choice of the
local inverse makes no difference. Therefore, g is well-defined and analytic
on ’ with [= go on O.
Now ’ consists of isolated points, and it is easy to see that g is

bounded in a neighborhood of each, so g can be extended to be analytic on
all of . Continuity implies [ go on all of O.

3.5. Completion o[ proo[ o[ eorem 3.2. We assume that BC and
that [ follows the inner function . By the previous lemma there is a
function g, meromohic on (), with [= go&. If ()=, then g is

meromohic on all o and Proposition 3.3 proves the result. However, in
general, ()= A, A a closed set o capacity zero. We may reduce the
problem as ollows: By Proposition 2.1(a), there is an inner function such
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that 4)= bA q. Fortunately, we do not need to know anything about q;
what we do know is that

f gob gotbA oq.

Since g is meromorphic on \A, h- go,hA is meromorphic on all of 9/
with f h b BC. Proposition 3.3 now implies h BC. This puts us back in
the original situation, only with h replacing f and qbA replacing 4; that is,
g thA BC and we wish to show that g (more precisely, an extension of g) is
in BC. Therefore, we may assume without loss of generality that 4 is one of
our special inner functions bA.
By Proposition 2.1 (b), for all a, /3a//, (A(t2t)=(A() if and only if

/(ct)= 3, some "yFA. Thus, a function follows bA if and only if it is
automorphic with respect to FA. f G BC implies log+ Ill has a superharmonic
majorant in R. Therefore, the function vf defined by

vf(z) inf {v(z): v superharmonic with log+ Ill <- v}
is the unique least superharmonic majorant o log+ If[- The uniqueness
implies vf is automorphic with respect to FA, hence there is a superharmonic
function u on //\A so that vf=uobA. Clearly u is a superharmonic
majorant of log+ Igl. By a result of Parreau [9, Th6orme 20], g extends to a
meromorphic function on q/. This, along with Proposition 3.3, completes the
proof of Theorem 3.2.

4. The range of C
Theorem 3.2 characterizes the functions in the range of the composition

operator C+ as those which follow 4. Using this, we can characterize the
range of C+ as a linear submanifold. This simplifies somewhat a characteri-
zation due to Ball [4, Theorem 1] for Hp, 1 _< p _<. Also, since the proof
does not depend on the expectation operator of Ball, it extends to Hp,
0< p < 1, N,, and BC. Let g.c.d, denote greatest common divisor.

4.1. THEOREM. Let X be any one of the spaces BC, N., or H, 0< p <--,
and let M be a linear submanifold of X which is closed under uniform
convergence on compact subsets of 11. Then M C, (X), some inner function
th, if and only if M has the following properties:

(a)
(b)
(c)
(d)

M contains a nonconstant function.
If f, g M and f g X (resp. f/g X), then f g M (resp. f/g M).
If f M and X is the inner factor of f, then X M.
M contains g.c.d. {B M: B inner and B(0) 0}.

Proof. First, suppose M-C6(X), and assume without loss of generality
that 4(0)= 0. Then b M and b is the g.c.d, of part (d), so properties (a)
and (d) hold. (c) and (d) are easy consequences of Theorem 2.2. Also it is
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clear that the limit of functions which follow will likewise follow b, so M
is closed under uniform convergence on compact subsets of .
For the converse, suppose M satisfies properties (a)-(d). By (a) and (b), M

contains the constant functions, and along with (c) this implies there exists
an inner function B M with B(0)= 0. Thus the inner function

g.c.d. {B M: B inner, B (0) 0}

is well defined. We claim M C,(X).
Clearly b(0)=0, and by (b) and (d) the functions {bJ: j =0, 1, 2,...} are

in M. These form an orthonormal set in Ha under the usual inner product,
denoted (-, .). Fix an inner function B M. Write

B g+hob (6)

where g 6 Ha with (g, 4j) 0, ] 0, 1, 2,..., and h Ha is given by

h(z) (B, ,t;)z

Suppose k_>0 is the largest integer such that (g/4k)H2. Rewrite (6) as

=o =k+

The left side shows that =g+=+ {B,) is in MH. Now, by the
definition of k, is a factor of 0, so by (b),

g/,t, + (B, (7)
=k/l

is in MfqH. 0=(g, b) (g/b)(0) implies (k/4)(0)= 0, so (d) implies 4 is
a factor of q/b. But this means q/4k+l Ha and hence by (7), g/b/1H
This contradicts the definition of k. The only possible conclusion is g 0; so
by (6), h H and B C6 (X).

Finally, fix raM and suppose a,/3 0// with 4(a) =4(/3). Let B be the
inner factor of f-f(a). B M, so by the above, B follows b. Since B(a)= 0,
we have B(/3)= 0, hence f([3)-f(a)= 0 or f(/3)=
and by Theorem 3.2, f C6 (X). This shows that M C6(X). The opposite
inclusion follows from the fact that {bi" ] 0, 1, 2,...}c M and M is closed
under uniform convergence on compact subsets of

5. Comments and questions

5.1. If b is any nonconstant function in H with IIbl[oo-< 1, then f X
implies f4X. However, if b is not an inner function, the reverse
implication may fail. This is most evident when has small range; for
instance, if II ll < 1, then f4 H for any function f analytic in 0//. But a
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small range is not a necessity: Let f ={z: Izl< 1, Re z >0} and let be a
conformal map of q/onto fL + is outer [5, page 51], so 4 3 is outer and
has range a//\{0}. Let f(z)=l/z. Then fBC, f.N,, but fothN, (see
Section 1.1.). Can it be the case that the conclusion of. Theorem 3.2 holds
only when tk is an inner function?

5.2. In Theorem 4.1., condition (b) is stronger than the analogous
conditions in the theorem of Ball. However, a much weaker condition was
all that was needed in the proof, namely"

(b’) Let B M be an inner function and suppose f M fqH. Then f B
M and, if B is a lactor of f, f/B M.

5.3. It is conceivable that condition (d) of Theorem 4.1 is redundant.
One might ask the following question, for example: Given f X noncon-
stant, let Me be the smallest linear manifold of X containing f satisfying
conditions (b) and (c), and dosed under uniform convergence on compact
subsets of 07/. If Mf c/ X, is there necessarily an inner function tk, not a
M6bius transformation, such that f C6 (X)?
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