TOPOLOGICAL SPACES IN WHICH BLUMBERG'S THEOREM HOLDS II

ΒY

H. E. WHITE, JR.¹

1. This note consists of some "odds and ends" involving Blumberg's theorem. Section 2 contains an example of a Baire space with a point countable base for which Blumberg's theorem does not hold; Section 3 deals with Blumberg's theorem for linearly ordered spaces; Section 4 is concerned with a strong form of Blumberg's theorem.

2. If X denotes a set, then $\mathbf{P}(X)$ denotes the collection of all subsets of X. If $A \subset X$ and $\mathscr{F} \subset \mathbf{P}(X)$, then $\mathscr{F} \cap A$ denotes $\{F \cap A; F \in \mathscr{F}\}$ and \mathscr{F}^* denotes $\mathscr{F} \sim \{\emptyset\}$. If (X, \mathcal{T}) is a topological space, a subset \mathscr{P} of \mathcal{T}^* is called a pseudo-base for \mathscr{T} if every element of \mathscr{T}^* contains an element of \mathscr{P} . A collection of sets of called σ -disjoint if it is the union of a countable set of disjoint collections. The set of real numbers is denoted by R; the set of positive integers by N.

2.1. THEOREM. If (X, \mathcal{T}) is a Baire space that has either a σ -point finite or σ -locally countable pseudo-base, then the following statement, known as Blumberg's theorem, holds for X.

2.2. If φ is a real valued function defined on X, then there is a dense subset D of X such that $\varphi \mid D$ is continuous.

Proof. This follows from [15, Proposition 1.7] and the following statements.

2.3. If \mathcal{T} has a σ -locally countable pseudo-base, then it has a σ -disjoint pseudo-base.

Proof. If \mathscr{C} is a locally countable subset of \mathscr{T}^* and \mathscr{U} is a maximal disjoint subcollection of \mathscr{T}^* such that $(\mathscr{C} \cap U)^*$ is countable for every U in \mathscr{U} , then $\mathscr{C}' = \bigcup \{ (\mathscr{C} \cap U)^* : U \in \mathscr{U} \}$ is a σ -disjoint subcollection of \mathscr{T}^* such that every element of \mathscr{C} contains an element of \mathscr{C}' .

Remark. In [5, Theorem 2.1] it is shown that \mathcal{T} has a σ -disjoint pseudobase whenever it has a σ -locally countable base.

2.4. PROPOSITION [6, Theorem 3.10]. If (X, \mathcal{T}) is a Baire space and \mathcal{C} is a point finite subset of \mathcal{T}^* , then there is a dense subset D of X such that \mathcal{C} is locally finite at every point of D.

 $\textcircled{\mbox{\sc c}}$ 1979 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received December 22, 1977.

¹ This work was partially supported by the Institute for Medicine and Mathematics, Ohio University.

However, as the following example shows, 2.2 need not hold for a Baire space with a point countable base.

2.5. Example. Let F denote the set of all functions f such that there is an ordinal α , $1 \le \alpha < \omega_1$, such that domain $f = \{\beta: 0 \le \beta < \alpha\}$ and range $f \subseteq N$. For any f in F and n in N, let $U_n(f)$ denote the set of all g in F that are extensions of f for which, if domain $g \sim \text{domain } f$ has a first element α , then $g(\alpha) \ge n$. Then $\mathcal{B} = \{U_n(f): f \in F, n \in N\}$ is a base for a topology \mathcal{F} on F; it was shown in [1, pp. 414-415] that (F, \mathcal{F}) is a hereditarily paracompact Hausdorff space that has a point countable base.

The following statement is readily verified.

2.6. If $\mathcal{P} = \{U_1(f): f \in F\}$, then \mathcal{P} is a pseudo-base for \mathcal{F} such that if \mathscr{C} is a non-empty countable subset of \mathcal{P} that has the finite intersection property, then $\cap \mathscr{C} \in \mathcal{P}$.

Statement 2.6 implies that F is a Baire space (actually that F is pseudocomplete [15, page 460]). The following statement follows from 2.6.

2.7. Suppose (F, \mathcal{F}) is a dense subspace of the regular space (Y, \mathcal{U}) ; then 2.2 fails to hold for (Y, \mathcal{U}) if and only if some element of \mathcal{U}^* is the union of $\leq 2^{\aleph_0}$ nowhere dense sets.

Because F has cardinality 2^{\aleph_0} and (F, \mathscr{F}) has no isolated points, 2.7 implies that 2.2 does not hold for F. (Actually, 2.6 implies that F is strongly non-Blumberg in the sense of [7].) If (F, \mathscr{F}) is a dense subspace of the regular Lindelöf space (Y, \mathscr{U}) , then a slight modification of the argument in [15, Proposition 1.11] shows that no element of \mathscr{U}^* is the union of $\leq \aleph_1$ nowhere dense sets. Hence, if $2^{\aleph_0} = \aleph_1$, it follows from [15, Proposition 1.4] that 2.2 holds for Y. In this connection, it should be mentioned that 2.2 does not hold for any Souslin line [14].

Remarks. (1) It was shown in [11, Theorem 1] that F has no dense developable subspace; it follows easily from 2.6 that no dense subset of F has a quasi- G_{δ} -diagonal.

(2) Suppose (X, \mathcal{T}) is a hereditarily paracompact Hausdorff Baire space. If X has a dense G_{δ} subset that is metrizable, it is clear that 2.2 holds for X. Therefore, if (i) X has a quasi- G_{δ} -diagonal and (ii) there is a countably compact regular Hausdorff space Y such that X is a dense Borel subset of Y, then 2.2 holds for X. Must 2.2 hold if either (i) or (ii) fails to hold (both (i) and (ii) fail to hold form (F, \mathcal{F}))?

(3) Suppose X is a first countable Hausdorff space such that (a) 2.2 holds for X and (b) X is the union of $\leq 2^{\aleph_0}$ nowhere dense subsets. Must X have a dense metrizable subspace? If (b) is deleted from the first sentence, then the answer to the resulting question is "no", as the following example shows. If, in 2.5, ω_1 is replaced by the first ordinal of cardinality $2\mathfrak{c}$, then the resulting space is a completely regular, Hausdorff first countable space such that 2.2

holds for X and every metrizable subspace of X is nowhere dense in X.

(4) In ZF + AC, is there a compact Hausdorff space that is the union of $\leq 2^{\aleph_0}$ nowhere dense subsets for which 2.2 does not hold? This question might accurately be called the real "Blumberg problem".

Added in proof. Example (2.11) of H. R. Bennett's paper A note on point countability in linearly ordered spaces (Proc. Amer. Math. Soc., vol. 28 (1971) pp. 598–606) is a linearly ordered Baire space with a point countable base for which 2.2 does not hold.

3. In [14], it is shown that if X is a linearly ordered topological space (LOTS) such that 2.2 holds for X and X is the union of $\leq 2^{\aleph_0}$ nowhere dense sets, then X has a σ -disjoint pseudo-base. The following statement augments this.

3.1. THEOREM. Suppose (X, \mathcal{T}) is a Baire LOTS with no isolated points. Then the following statements are equivalent.

(1) Blumberg's theorem holds for X and X is the union of $\leq 2^{\aleph_0}$ nowhere dense sets.

(2) X has a dense subset of the first category.

(3) X has a dense metrizable subspace.

(4) X has a σ -disjoint pseudo-base.

Proof. (1) \Rightarrow (2). Let f be a real valued function on X such that $f^{-1}(r)$ is nowhere dense for every r in R, and let D be a dense subset of X such that $f \mid D$ is continuous. Define, by induction, a sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ such that, for each n in N, \mathcal{U}_n is a disjoint collection of closed intervals [a, b] such that $(a, b) \neq \emptyset$ and diam $(f[D \cap (a, b)]) \leq n^{-1}, \cup \mathcal{U}_n$ is dense in X, and \mathcal{U}_{n+1} refines $\{(a, b): [a, b] \in \mathcal{U}_n\}$. Then

$$\cup \{X \sim \cup \{(a, b); [a, b] \in \mathcal{U}_n\}: n \in N\}$$

is a dense subset of X that is of the first category.

 $(2) \Rightarrow (3)$. Suppose $(F_n)_{n \in \mathbb{N}}$ is a non-decreasing sequence of closed nowhere dense subsets of X such that $\bigcup \{F_n : n \in \mathbb{N}\}$ is dense in X. Let \mathcal{U}_n denote the collection of maximal open subintervals of $X \sim F_n$. Then $\bigcup \{\mathcal{U}_n : n \in \mathbb{N}\}$ is a σ -disjoint pseudo-base for \mathcal{T} and $Y = \bigcap \{\bigcup \mathcal{U}_n : n \in \mathbb{N}\}$ is a dense subset such that \mathcal{T} satisfies the first axiom of countability at every point of Y. (If X has no gaps, then Y is metrizable.) By [16, Theorem 2.6] Y has a dense metrizable subspace.

 $(3) \Rightarrow (4)$. This follows from [15, Proposition 1.9(1)].

 $(4) \Rightarrow (1)$. It follows from [15, Proposition 1.7] that 2.2 holds for X. And the argument used to prove [13, Theorem 3.6] shows that X is the union of $\leq 2^{\aleph_0}$ nowhere dense sets (see also [17]).

Remarks. (i) If (X, \mathcal{T}) is any topological space, then there are U, V in \mathcal{T} such that $U \cap V = \emptyset$, $U \cup V$ is dense in X, U is the union of $\leq 2^{\aleph_0}$ nowhere

466

dense sets, and no non-empty open subset of V is the union of $\leq 2^{\aleph_0}$ nowhere dense sets. Then 2.2 holds for V [15, Proposition 1.4], so 2.2 holds for X if and only if it holds for U. Thus 3.1 is more general than it initially appears. Of course, whether or not U is non-empty may depend on what axioms for set theory are used.

(ii) In 3.1, the hypothesis that X is a LOTS can be replaced by the hypothesis that X is a subspace of a LOTS (a GO space, [9]).

(iii) If X is either (a) locally connected or (b) a finite product of LOTS, then (1) implies (2).

(iv) If (X, \mathcal{T}) is a Baire LOTS with no isolated points such that X has a dense metrizable subspace, it may fail to have a dense G_{δ} metrizable subspace, even if it is compact, separable, and first countable. For let \mathcal{T} be the topology on R generated by $\{[a, b): a, b \in \mathbb{R}, a < b\}$. Then [9, (2.9) and (7.2)] there is a compact LOTS (Y, \mathcal{U}) such that (R, \mathcal{T}) is a dense subset of (Y, \mathcal{U}) . If (Y, \mathcal{U}) had a dense G_{δ} metrizable subspace, then so would (R, \mathcal{T}) ; but every metrizable subspace of (R, \mathcal{T}) is countable.

4. We consider briefly the following statement.

4.1. BLUMBERG'S THEOREM (STRONG FORM). If (Y, \mathcal{U}) is a second countable space and $f: (X, \mathcal{T}) \rightarrow (Y, \mathcal{U})$, then there is a dense subset D of X such that $f \mid D$ is continuous.

4.2. THEOREM. If (X, \mathcal{T}) is a Baire space with a σ -disjoint pseudobase, then 4.1 holds for X.

This is clear because the proofs of the theorem in [3] and [15, Proposition 1.7] remain true if R is replaced by any second countable space.

4.3. THEOREM. For any topological space (X, \mathcal{T}) , the following statements are equivalent.

(1) Statement 4.1.

(2) If \mathcal{W} is any second countable topology on X, then there is a \mathcal{T} -dense subset D of X such that $\mathcal{W} \cap D \subset \mathcal{T} \cap D$.

(3) If (Z, \mathcal{V}) is a second countable space and $g: Z \to \mathbf{P}(X)$, then there is a dense subspace D of X such that $g[V] \cap D \in \mathcal{T} \cap D$ for all V in \mathcal{V} .

Proof. (1) \Rightarrow (2). Apply (1) to the identity mapping $i: (X, \mathcal{T}) \rightarrow (X, \mathcal{W})$.

 $(2) \Rightarrow (3)$. Let \mathscr{B} be a countable base for \mathscr{V} and let \mathscr{W} denote the topology generated by $\{X\} \cup \{g[B]: B \in \mathscr{B}\}$. By (2), There is a \mathscr{T} dense subset D of X such that $\mathscr{W} \cap D \subset \mathscr{T} \cap D$; D is the required set.

 $(3) \Rightarrow (1)$. If (Y, \mathcal{U}) is second countable and $f: X \to Y$, apply (3) to the function g defined by $g(y) = f^{-1}(y)$ for every y in Y.

4.4. COROLLARY. Suppose 4.1 holds for X. Suppose that for each n,

 $f_n: (X, \mathcal{T}) \to (Y_n, \mathcal{U}_n) \quad and \quad g_n: (Z_n, \mathcal{V}_n) \to (X, \mathcal{T}),$

where (Y_n, \mathcal{U}_n) and (Z_n, \mathcal{V}_n) are second countable. Then there is a dense subset D of X such that for all n, $f_n \mid D$ is continuous and $g_n[V] \cap D \in \mathcal{T} \cap D$ for all V in \mathcal{V}_n .

Proof. For each n in N, let \mathcal{B}_n be a countable base for \mathcal{U}_n and \mathcal{C}_n be a countable base for \mathcal{V}_n . Let \mathcal{W} be the topology on X generated by

$$\cup \{f_n^{-1}[\mathscr{B}_n] \cup g_n[\mathscr{C}_n]: n \in N\},\$$

and apply 4.3(2).

In [12] is it proven that the conclusion of 4.4 holds for any proper first countable Baire space X. It is easy to see that every proper first countable space has a σ -disjoint pseudo-base (in fact, a T_1 proper first countable space is a Nagata space); hence 4.4 is a generalization of the result in [12].

We conclude with a question. If Blumberg's theorem holds for X, does 4.1 hold for X?

REFERENCES

- 1. C. E. AULL, Topological spaces with a σ -point finite base, Proc. Amer. Math. Soc., vol. 29 (1971), pp. 411–416.
- 2. H. BENNETT, Real-valued functions on certain semi-metric spaces, Comp. Math., vol. 30 (1975), 137–144.
- J. C. BRADFORD and C. GOFFMAN, Metric spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc., vol. 11 (1960), pp. 667–670.
- B. BROWN, Metric spaces in which a strengthened form of Blumberg's theorem holds, Fund. Math., vol. 71 (1971), 243–253.
- 5. W. G. FLEISSNER and G. M. REED, Regular paralindelöf spaces and regular spaces with a σ locally countable base, to appear.
- R. C. HAWORTH and R. A. MCCOY, Baire spaces, Dissertationes Math., vol. 141 (1977), pp. 5-73.
- 7. R. LEVY, Strongly non-Blumberg spaces, Gen. Top. and Appl., 4 (1974), pp. 172-177.
- A totally ordered Baire space for which Blumberg's theorem fails, Proc. Amer. Math. Soc., vol. 41 (1973), p. 304.
- 9. D. J. LUTZER, On generalized ordered spaces, Dissertationes Math., vol. 89 (1971), pp. 5-32.
- A. MISCENKO, Spaces with point-countable base, Dokl. Akad. Nauk SSSR, vol. 144 (1962), pp. 985–988, Soviet Math. Dokl., vol. 3 (1962), pp. 855–858.
- 11. G. M. REED, Concerning first countable spaces III, Trans. Amer. Math. Soc., vol. 210 (1975), pp. 169–177.
- 12. H. M. SCHAERF, Some topological properties of arbitrary functions in Baire spaces, to appear.
- 13. P. ŠTĚPÁNEK and P. VOPĚNKA, Decomposition of metric spaces into nowhere dense sets, Commentationes Math. Univ. Carolinae, vol. 8 (1967), 387–404.
- 14. W. A. R. WEISS, Some applications of set theory to topology, Thesis, University of Toronto, 1975.
- 15. H. E. WHITE, JR., Topological spaces in which Blumberg's theorem holds, Proc. Amer. Math. Soc., vol. 44 (1974), pp. 454–462.
- 16. , First countable spaces that have special pseudo-bases, Can. Math. Bull., to appear.
- 17. , Topological spaces that have σ -disjoint pseudo-bases, in preparation.

3737 PANAMA DRIVE WESTERVILLE, OHIO

468