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TOPOLOGICAL SPACES IN WHICH BLUMBERG’S
THEOREM HOLDS II

BY

H. E. WHITE, JR.

1. This note consists of some "odds and ends" involving Blumberg’s
theorem. Section 2 contains an example of a Baire space with a point
countable base for which Blumberg’s theorem does not hold; Section 3 deals
with Blumberg’s theorem for linearly ordered spaces; Section 4 is concerned
with a strong form of Blumberg’s theorem.

2. If X denotes a set, then P(X) denotes the collection of all subsets of
X. If A cX and Sr c P(X), then fqA denotes .{F fq A; F } and 0*
denotes -{0}. If (X, ) is a topological space, a subset of * is called a
pseudo-base for if if every element of * contains an element of . A
collection of sets of called g-disjoint if it is the union of a countable set of
disjoint collections. The set of real numbers is denoted by R; the set of
positive integers by N.

2.1. THEOREa. If (X, ) is a Baire space that has either a tr-point finite
or tr-locally countable pseudo-base, then the following statement, known as
Blumberg’s theorem, holds for X.

2.2. If 0 is a real valued unction defined on X, then there is a dense
subset D of X such that 01D is continuous.

Proof. This follows from [15, Proposition 1.7] and the following state-
ments.

2.3. If Y has a tr-locally countable pseudo-base, then it has a tr-disjoint
pseudo-base.

Proof. If qg is a locally countable subset of * and /t is a maximal
disjoint subcollection of * such that (c fq U)* is countable for every U in
R, then qg’= U{(qg f3 U)*: U//} is a tr-disjoint subcollection of ’* such
that every element of c contains an element of c,.

Remark. In [5, Theorem 2.1] it is shown that 3r has a r-disjoint
pseudobase whenever it has a tr-locally countable base.

2.4. PROPOSITION [6, Theorem 3.10]. If (X, ) is a Baire space and c is
a point finite subset of *, then them is a dense subset D of X such that c is
locally finite at every point of D.
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However, as the following example shows, 2.2 need not hold for a Baire
space with a point countable base.

2.5. Example. Let F denote the set of all functions f such that there is
an ordinal a, 1 --< a < to1, such that domain f {/3: 0--</3 < a} and range
f c N. For any f in F and n in N, let U,(f) denote the set of all g in F that
are extensions of f for which, if domain g---domain f has a first element
then g(a)_> n. Then ={U,(/): fF, nN} is a base for a topology on
F; it was shown in [1, pp. 414-415] that (F, ;) is a hereditarily paracompact
Hausdorff space that has a point countable base.
The following statement is readily verified.

2.6. If ={UI(/): fF}, then is a pseudo-base for ; such that if qg is
a non-empty countable subset of that has the finite intersection property,
then fqc .

Statement 2.6 implies that F is a Baire space (actually that F is pseudo-
complete [15, page 460]). The following statement follows from 2.6.

2.7. Suppose (F, ) is a dense subspace of the regular space (Y, 0//); then
2.2 fails to hold for (Y, /t) if and only if some dement of /t* is the union of
--<2so nowhere dense sets.

Because F has cardinality 2o and (F, ) has no isolated points, 2.7
implies that 2.2 does not hold for F. (Actually, 2.6 implies that F is strongly
non-Blumberg in the sense of [7].) If (F, r) is a dense subspaee of the
regular Lindel6f space (Y, 0//), then a slight modification of the argument in
[15, Proposition 1.11] shows that no element of 0//. is the union of
nowhere dense sets. Hence, if 2so R1, it follows from [15, Proposition 1.4]
that 2.2 holds for Y. In this connection, it should be mentioned that 2.2 does
not hold for any Souslin line [14].

Remarks. (1) It was shown in [11, Theorem 1] that F has no dense
developable subspace; it follows easily from 2.6 that no dense subset of F
has a quasi-G-diagonal.

(2) Suppose (X, ) is a hereditarily paracompact Hausdorff Baire space.
If X has a dense Gn subset that is metrizable, it is dear that 2.2 holds for X.
Therefore, if (i) X has a quasi-G-diagonal and (ii) there is a countably
compact regular Hausdorff space Y such that X is a dense Borel subset of
Y, then 2.2 holds for X. Must 2.2 hold if either (i) or (ii) fails to hold (both
(i) and (ii) fail to hold form (F, ))?

(3) Suppose X is a first countable Hausdorff space such that (a) 2.2 holds
for X and (b) X is the union of -<2no nowhere dense subsets. Must X have a
dense metrizable subspace? If (b) is deleted from the first sentence, then .the
answer to the resulting question is "no", as the tollowing example shows. If,
in 2.5, o is replaced by the first ordinal of cardinality 2, then the resulting
space is a completely regular, Hausdorff first countable space such that 2.2
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holds for X and every metrizable subspaee of X is nowhere dense in X.
(4) In ZF+AC, is there a compact Hausdorff space that is the union of

<--2o nowhere dense subsets for which 2.2 does not hold? This question
might accurately be called the real "Blumberg problem".

Added in proof. Example (2.11) of H. R. Bennett’s paper A note on point
countability in linearly orderedspaces (Proc. Amer.Math. Sot., vol. 28 (1971)pp.
598-606) is a linearly ordered Baire space with a point countable base for which
2.2 does not hold.

3. In [14], it is shown that if X is a linearly ordered topological space
(LOTS) such that 2.2 holds for X and X is the union of -<2o nowhere dense
sets, then X has a a-disjoint pseudo-base. The ollowing statement aug-
ments this.

3.1. THEOREM. Suppose (X, if) is a Baire LOTS with no isolated points.
Then the following statements, are equivalent.

(1) Blumberg’s theorem holds for X and X is the union of -<2no nowhere
dense sets.

(2) X has a dense subset of the first category.
(3) X has a dense metrizable subspace.
(4) X has a tr-disloint pseudo-base.

Proof. (1) => (2). Let f be a real valued function on X such that f-X(r), is
nowhere dense for every r in R, and let D be a dense subset of X such that
f[D is continuous. Define, by induction, a sequence (9/,),r such that, for
each n in N, is a disjoint collection of dosed intervals [a, b] such that
(a, b) and diam (f[D f’l (a, b)])-< n-t, Uq/ is dense in X, and //+
refines {(a, b): [a, b] ,}. Then

U{X--- U {(a, b); [a, b] q/,}: n N}

is a dense subset of X that is of the first category.
(2):>(3). Suppose (F,),n is a non-decreasing sequence of closed

nowhere dense subsets of X such that U{F: n N} is dense in X. Let
denote the collection of maximal open subintervals of X F,. Then
U{/," n N} is a g-disjoint pseudo-base for if" and Y f3{ U q/," n N} is a
dense subset such that ff satisfies the first axiom of countability at every
point of Y. (If X has no gaps, then Y is metrizable.) By [16, Theorem 2.6] Y
has a dense metrizable subspace.

(3) => (4). This follows from [15, Proposition 1.9(1)].
(4) => (1). It follows from [15, Proposition 1.7] that 2.2 holds for X. And

the argument used to prove [13, Theorem 3.6] shows that X is the union of
<2o nowhere dense sets (see also [17]). 1

Remarks. (i) If (X, Y) is any topological space, then there are U, V in $"

such that UN V , UU V is dense in X, U is the union of <2o nowhere
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dense sets, and no non-empty open subset of V is the union of 2
nowhere dense sets. Then 2.2 holds for V [15, Proposition 1.4], so 2.2 holds
for X if and only if it holds for U. Thus 3.1 is more general than it initially
appears. Of course, whether or not U is non-empty may depend on what
axioms for set theory are used.

(ii) In 3.1, the hypothesis that X is a LOTS can be replaced by the
hypothesis that X is a subspace of a LOTS (a GO space, [9]).

(iii) If X is either (a) locally connected or (b) a finite product of LOTS,
then (1) implies (2).
(iv) If (X, ) is a Baire LOTS with no isolated points such that X has a
dense metrizable subspace, it may fail to have a dense G8 metrizable
subspace, even if it is compact, separable, and first countable. For let ff be
the topology on R generated by {[a, b): a, b R, a < b}. Then [9, (2.9) and
(7.2)] there is a compact LOTS (Y, q/) such that (R, ’) is a dense subset of
(Y, ). If (Y, 0//) had a dense G8 metrizable subspace, then so would (R, Y);
but every metrizable subspace of (R, ) is countable.

4. We consider briefly the following statement.

4.1. BLUMBERG’S THEOREM (STRONG FORM). If (Y, 11) is a second counta-
ble space and f: (X, Y)-- (Y, ql), then there is a dense subset D of X such
that liD is continuous.

4.2. THEOREM. If (X, is a Baire space with a tr-dis]oint pseudobase,
then 4.1 holds for X.

This is dear because the proofs of the theorem in [3] and [15, Proposition
1.7] remain true if R is replaced by any second countable space.

4.3. THEOREM.
are equivalent.

For any topological space (X, if’), the following statements

(1) Statement 4.1.
(2) If f" is any second countable topology on X, then there is a -dense

subset D of X such that f" f3 D c " CI D.
(3) If (Z, ) is a second countable space and g: Z ---> I’(X), then there is a

dense subspace D of X such that g[V]f3D " CID for all V in .
Proof. (1) : (2). Apply (1) to the identity mapping i: (X, Y) --.(X, /4/’).

(2) ::> (3). Let be a countable base for V and let denote the
topology gener,ated by {X}t.J{g[B]: B }. By (2), There is a " dense
subset D of X such that VfD c " tq D; D is the required set.

(3) ::> (1). If (Y, q/) is second countable and f: X-- Y, apply (3) to the
function g defined by g(y)=/-l(y) for every y in Y. I

4.4. COROLLARY. Suppose 4.1 holds for X. Suppose that for each n,

f X, ---> ( Y., ql. and g,,: (Z., "//’,)---> (X, if),
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where (Y,, q/) and (Z,, ) are second countable. Then there is a dense
subset D of X such that for all n, f, D is continuous and g,IV] f3 D f3D
]’or all V in .

Proof. For each n in N, let , be a countable base for , and be a
countable base for . Let be the topology on X generated by

u u n

and apply 4.3(2).

In [12] is it proven that the conclusion of 4.4 holds for any proper st
countable Bake space X. It is easy to see that eve proper st countable
space has a q-disjoint pseudo-base (in fact, a Tx proper st countable space
is a Nagata space); hence 4.4 is a generalation of the reset in [12].
We conclude with a question. If Blumberg’s theorem holds for X, does

4.1 hold for X?
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