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THE STRUCTURE OF MINIMA
FOR BINARY QUADRATIC FORMS

BY

BENNETr SETZER

Abstract

In this paper, we construct examples of binary quadratic forms with positive,
unattained minimum.To this end,weinvestigate the structure of the setofvalues
taken by a certain class of indefinite forms.

1. Introduction

The work in this paper grew out of an attempt to answer a question posed
by Paul Bateman: construct a binary quadratic form with a non-zero,
unattained minimum. Throughout this paper, f will represent the binary
form with real coefficients given by

(1) f(x, y) (x ay)(x

where a and/3 are both real or are complex conjugate. The minimum of f is
defined as tz(f)=inf [f(x, y)[ taken over non-zero integer points (x, y).
Examples of the forms sought have been given by Schur (reported by

Remak in [5]), and, independently of the author, by Larry Pinzur. Their
examples were constructed by choosing a and/3 to have particular bounded
continued fraction expansions. In Remak’s terminology, the forms sought
are ones that are not unimodularly equivalent to minimal forms. The form f,
defined in (1), is a minimal form if If(x, Y)I >- 1 for all non-zero integer points
(x, y). Now, a and/3 have bounded continued fraction expansions if they are
quadratic, that is, each is an irrational solution of a quadratic equation with
rational coefficients. The continued fraction expansions of such numbers are
periodic, therefore, bounded, Again, see [4] for details. Pinzur’s examples,
as the ones presented here, involve only quadratic numbers. In Schur’s
example, ct is chosen to be quadratic while /3 has a bounded but non-
periodic expansion. Throughout the rest of this paper, we assume that both
ct and /3 are quadratic.

/z(f) is an attained minimum if/z(f) I/(Xo, Yo)l for some non-zero integer
point (Xo, Yo). A number of ways of choosing a and/3 can be immediately
eliminated as not answering Bateman’s question. If a and /3 are not real,
then one easily checks that (f) is indeed attained. If a is real, but is "too
well" approximable by rationals, then/z(f) 0. By "too well" approximable,
we mean that for any e > O, lY[ Ix ayl < e has infinitely many integer
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solutions x, y. This is equivalent to. the partial quotients of the continued
fraction expansion being unbounded. In fact, it is true that almost all a are
"too well" approximable (a consequence of Theorem 29, page 60 in [4].
Proofs of the other statements about continued fractions will be found there
also). So, a and /3 must both be chosen from the set (of measure 0) of
irrational real numbers with bounded continued fraction expansions.
We will show, for any f with a and /3 both quadratic, how to compute

/z(f) and to decide whether /(f) is attained. This depends on determining
the structure of the set of values taken by If[: V= {If(x, Y)I: (x, y) a non-zero,
integer point}. A key result concerns the set of accumulation points of V, V’.
To describe V’, we introduce two further forms related to F. If a is
quadratic, the rational quadratic equation it satisfies is essentially unique.
The other root is uniquely determined. This other root, called the conjugate
of a, we denote a*. Now, given a and/3 are quadratic, define

A(x, y)=(x-ay)(x-a*y), B(x, y)=(x-/3y)(x-3*y).

These are quadratic forms with rational coefficients.

THEOREM 1.. (a) Suppose f is defined by (1) and that a and [3 are
quadratic and that [3 a, a*. Then is a limit point of V if and only if

8 8A(Xo, Yo) IA(xo, Yo)(a-13)(a-a*)-ll
or . (Xo, yo) lU(Xo, yo)( t)(t -/*)-1.
V’ is a discrete set.

(b) V is a limit from below if and only if one of the equations

A(x, y)= sgn (A(/3, 1))8

B(x, y) sgn (B(a, 1))3 1(/3 -/3*)(a -/3)-[

is solvable in integers x, y.

The proof of this theorem will be given in Section 2. However, note that,
since A and B have rational coefficients, their values at integer points form
discrete sets. So, given the form of the limit points in V’, the discreteness of
V’ is immediate. One further remark is in order. If /3 a*, then would
itself have rational coefficients, and so V would be discrete (and V’ empty).
If a =/3, then, as a consequence of a theorem of Weyl (p. 90 in [3]) V would
be everywhere dense in the positive real axis. From now on, we will assume
that a and/3 are quadratic and/3 a or a*. The smallest element of V’ is
denoted by % Evidently, /depends on the smallest values taken by IA] and

IBI at integer points. For given a and /3 there are standard methods for
computing these values (and so /). These depend mainly on expanding a

and/3 as continued fractions. See also Section 7 of Chapter 2 in [1]. There is
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a case, however, in which these minimal values are easily computed, a is
said to be quadratic integer if both a + a* and eta* are rational integers. If a
is a quadratic integer, it is plain that the minimal value for IAI is 1. Now, if ^is known, analysis of the small values of Ill reduces to two considerations:
from which direction is /a limit; and, what anomalous minima are there?
We say that If(x1, Y l)I is an anomalous minimum of f if If(xl, Yx)I < "/but

/<A(X, Y) and /<(x, yl).

The remarks after the proof of Theorem 2, below, show that the number of
anomalous minima is finite, and the anomalous minima can be effectively
determined for a given form. Theorem 2 shows the general sort of results
that can be proved.

Notation. f is said to have finitely many attained minima if only finitely
many values of If(x, y)] at integer points (x, y) are less than /. Otherwise, f
has infinitely many attained minima.

THEOREM 2. Let a, [3 be quadratic integers such that a* <a <[3 and
[3* < a. Then f(x, y) has infinitely many attained minima in either of these two
cases"

(a) [3-13"
(b) B(x, y)=-1 has an integral solution.

If neither (a) nor (b) is true, then f(x, y) has only finitely many attained
minima.

Proof. The smallest value taken by [A(x, y)[ and [B(x, y)[ at non-zero
integer points is 1. Thus

as [3-[3*<_a-a* or

(a) If 3 13" a a* then T I(a 13)(a a*)-[ Now,

A(/,

and A (x, y)= 1 is solvable in integers, so, by Theorem l(b), /is a limit from
below. That is, f has infinitely many attained minima.

(b) If B(x, y)=-i is solvable and a-a*<3-l*, then

and is again a limit from below, by Theorem l(b).
Now, if a-a*<l-t* and B(x,y)=-i is not solvable in integers,

3, I(a-13)(13-1")-1. Now, B(a, 1)<0 and A(I, 1)>0.

A(x, y) (+1)(/3 a)(l -/3*)-(a a*)(l -a)-
is not solvable in integers, since the right hand side is less than 1 in absolute
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value.

B(x, y)= (-1)(/3 -a)(/3-/3")-(/3 -/3*)(/3-a)-is not solvable by assumption. This shows that /is not a limit from below.
Since / is the smallest accumulation point of V and is not a limit from
below, there can only be finitely many elements of V less than /.

Actually, a constructive proof can be given that there are only finitely
many anomolous minima. We assume only that a and/3 are quadratic and
/3 a, a*. Suppose

If(x1, yl)l < $B(Xo, yo)< $B(x, y).

Let Bo ]B(x, y=)[/[B(xo, Yo)] where ]B(xa, Y2)I is the next larger value of
IBI after ]B(xo, Yo)[. Then

I -/3[ ]Bo- 11 I/3 -/3"1 )[tx-/31 > min ]x -/31, I/3" -/31, I/3" 1 + ]Bo- 11 I/3 -/3"1-
> 0.

In other words, tt-/31> c >0 where cl depends only on (Xo, Yo) (and f, of
course). Here,. tl x/y. Similarly, if

]f(x, y)] < (Xo, yo) <,(x,

then Itx- a[ > c=> 0, c= depending only on (Xo, Yo)- But

8(Xo, yo) > If(xt, y0[ y Itt-l Its-/3[ >
so [y[ is bounded. Thus, ]x[ is also bounded and there can be, indeed, only
finitely many anomalous minima.

Similar results to Theorem 2 can be obtained by reordering a, a*,/3, and
/3*.
By examining the properties of quadratic integers more closely, the

following stronger version of Theorem 2 can be obtained:

THEOREM 3. Let a and {3 be quadratic integers such that a* <a < [3,
* < a, and a a* < {3 {3". Then, f has at most one anomalous minimum. If

]f(xo, Yo)] is an anomalous minimum of f then A(xo, yo) 1 and /3-/3*<
2(a a*) + 1.

This theorem can be interpreted by using the representation of a and/3
obtained from the quadratic formula. That is, applying the quadratic for-
mula to the equation satisfied by a quadratic integer a, then a 1/2(s +,/-)
and a*=1/2(s-) (assuming that a*<a) where s and m are rational
integers. Further, m is positive but not a perfect square and m --s2 (mod 4).
Similarly,/3 1/2(r +x/-) and/3*= 1/2(r-x/-n). The inequalities in the hypothesis
of Theorem 3 translate to

s+x/m-xn<r<s+x/m+n and x/m<xn.
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Now, if jf has an anomalous minimum, then the conclusion of Theorem 3 is
that xn<2x/+ 1. Evidently, given a quadratic integer ct, there are only
finitely many quadratic integers /3 such that the hypotheses of Theorem 3
are satisfied and such that jf has an anomalous minimum. The table was
constructed to show all forms 1’ with an anomalous minimum and such that ct

and /3 are quadratic integers, as above, and s 0 or 1 and m-<24. With f
defined as in (1), define

[k(x, y) (x -(a + k)y)(x -(/3 + k)y).

Then, if k is a rational integer, fk and 1’ have the same value set V. If a is a
quadratic integer, then the effect of this translation by k is to change s to
s / 2k. That is, the structure of the minima of f can be studied assuming that
s 0 or 1. This observation will be used in the proof o Theorem 3.
As an immediate corollary of Theorems 2 and 3, the following result

shows how to construct numerous examples of forms f with positive unat-
tained minimum.

COROLLARY. Let a and [3 be quadratic integers such that a* <a <13,
/3*<et and 2(a-a*)+l</3-/3*. Assume also that B(x, y)=-I has no
solution in integers. Then ]’, as defined by (1), has a positive, unattained
minimum.

Simple congruence arguments will show that B(x, y)=-1 has no integral
solution if n is divisible by 8 or by a prime congruent to 3 (rood 4).
The following examples will illustrate some of the possibilities"

(1) x/, 1 4i-. B(x, y)=-1 has no solution integers (cI. previous
remark). So, by the Corollary,-f has the unattained minimum

(x/- x/)/2x/ .2959.

(2) ez x/,/3 x/. B(x, y) -1 has no integer solution. But, as will be
found in the table. 1[(3, 2)1.0796 is an anomalous minima.

(3) et =x/-, - l+x/-. B(3, 1)=-1, so j has infinitely many attained
minima. But, as will be seen from the table, []’(2, 1)1 .3312 is an anomalous
minimum. In this case,

3’ (1 + x/-,,/)/Zx/- .3363.

The computations for the table were done on the IBM 370 at the
Computer Center at University of Illinois, Chicago Circle.

2. Proofs of Theorems 1 and 3

Proof of Theorem 1. (a) Suppose 8 lira, If(x., y.)l where the If(x,, Y,)I
are all distinct. Assume that Yn >-0 for all n. Since If(x., Y)I is bounded for
all n, on some subsequence, y, > 0 and lira, y, oo. Replace (x., y,) by this
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subsequence. Setting t, x./y, we have

(2) f(x., y.)l IA(x, y.)(t.-13)(t.-a*)-xl.

If IA(x., Y.)I does not remain bounded, then, replacing (x, y.) by a subse-
quence, if necessary, lim. t. =/3. Similarly, if ]B(x., y.)[ does not remain
bounded, lim. t. =a. Now a#/3 so one of IA(x., y.)l or IB(x., y.)l must
remain bounded. Suppose IA(x, Y.)I is bounded. Since the values taken by
[A(x, y)[ at integer points form a discrete set, replacing (x., y.) by a
subsequenee, we may assume A(x., y.)= Ao for all n. Then

It, al It. *1- [Aol y2 for all n.

But, from (2), ]t.-a*l is bounded away from 0, since /3rsa*. Thus,
lim, t, a. Finally, 8 8A(Xl, Yl), using (2). If [B(x,, y.)[ remains bounded,
then 8 8s(x, y,)for some r.

Conversely, suppose 8 8A (Xo, Yo). Then, by the Corollary to Lemma 3
on page 23 in [2], there is an infinite sequence (x,, y,) of integer points such
that A(x,, y,)=A(xo, Yo) and lim, (xdy,)=a. Using (2) again, for given
(x,, y,), there are at most three other (x, y,) such that [f(x,, y,)[ If(x,
Going to a subsequence of (x,, y,), we may assume that all [f(x,, y,)[ are
distinct. But, by (2), lim, If(x,, y.)l--(Xo, yo) as desired. The case 8

B (Xo, Yo) is similar.

(b) Suppose

(3) I/e(Xo, Yo)l < 8A (Xo, Yo)
and

(4) A (/3, 1)A (Xo, Yo) < 0.

We show that this leads to a contradiction. First, assume Yo # 0. Then, from
(3),

(5) I(to- t3)(a a*)l < I(a -/3)(to-

where to xo/Yo. But, from (4),

(to -/3)(a c*)(a -/3)(o *)> 0,

so, (5) implies that one of these two inequalities is true:

(6) 0 > (to-/3)(a a*) > (a -/3)(to- a*),
(7) O<(to-[3)(ot-a*)<(a-13)(to-a*).

The right hand inequality in each can be simplified to

(8) 0 > (to,- a)(a*- t3),

(9) O<(to-a)(a*-(3)
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respectively. But (6) and (8) together and (7) and (9) together each imply

0< (to- a)(to- a*)(/3 c)(/3 a*)y A(/3, 1)A (Xo, Yo)

which contradicts (4). If Yo 0, then from (3),

-< x< Ixo(a t)(

so Ic-a*l <la-/31. This implies that /3 cannot be between a and a*, so
A(/3, 1)A(xo, 0)=(/3-c)(13-a*)XoL>0, again contradicting (4). From this,
and the similar result for B, it is plain that if V’ is a limit from below,
then either a(Xo, Yo) and A (/3, 1)A (Xo, Yo) > 0 or u (Xo, Yo) and
B(c, 1)B(xo, Yo) >0 which shows necessity.
Now although If(xo, Yo)[ <8(Xo, Yo) implies A (/3, 1)A (Xo, Yo) > 0, the con-

verse is not necessarily true (see the remarks below). However, assuming
[f(Xo, yo)l> aa(Xo, yo) and that to xo/Yo is defined and sufficiently near a,
one can prove

A (/3, 1)A (Xo, Yo) < O.

The idea is this: from [f(xo, Yo)[ >,(Xo, Yo), derive (5), but with the inequal-
ity reversed. If to is sufficiently near a then

(to- t3)(a t3)(to- *)( a*) > 0

after which the derivation proceeds as before, but with appropriate changes
in the direction of the inequalities. To show sufficiency, suppose that
A(/3, 1)A(xo, Yo)>0 for some integer point (Xo, Yo). As in (a), construct a
sequence (x,, y,) of integer points such that lim, (x./y.) a, lim, [f(x,, Y,)I
8A (Xo, YO), and A(x,, y,)= A(xo, Yo) for all n. For large enough n, the above
considerations apply to show that If(x,, Y,)I < 8A (X0, YO)- That is. 8A (X0, Yo) is
a limit from below. Similarly 8B(Xo, Yo) is a limit from below if
B (Xo, yo)B (a, 1) > O.

Remark. A sequence (x,, y,) can be constructed so that A(x,, y,)=
A(xl, yl) for all n and so that lim, (x,/y,)=a*. But then, from (2),
lim, If(x., y.)l--. So, even if

n(x., y.)n(t, l) > 0,

it is evident that If(x., y.)l > 6A(X., y.) for sufficiently large n.

Proof of Theorem 3. As in the remarks following the statement of
Theorem 3, let ct 1/2(s +x/-) and/3 1/2(r + x/). Let If(xo, Yo)l be an anomal-
ous minimum of f. Then, since B (a, 1) < 0, B (Xo, Yo) -b < 0 by Theorem 1.
Indeed, b_>2 since If(xo, Yo)l is anomalous. Since A(/3,1)>0, then
A (Xo, Yo) a -> 1. Since ]f(xo, Yo)l < T < 1, then Yo 0 so to Xo/Yo is defined.
We will assume that yo > 0. Now if to < a* were true, then

If(xo, Yo)l la(to- D)(to- *)-1 > 1 T,
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a contradiction, so a*< to. Since A(xo, Yo)>0 and B(xo, yo)<0, then a <
to<.
Now,

I/(Xo, Yo)[ a(/3-to)(to-a*)- < "
so, solving for to, we have

(10)

Similarly

(11) to -<

and /=( a)( fl*)-*

to >- a(t- t,t*)+ ,*t -,,*

b ot[3 a[3 * [3[3" + aft*
b [3 [3")- 13 + a

Eliminating to from (10) and (11), then solving for a,

(12) a<
b (a-a)+(t-,)(,*- t*)

b 1 3 3 (3 3*)2(b 1)

If a* </3*, then (12) implies that a <b(b-1)--<2 since b>_2. So, a 1.
But, (12) can be rewritten as

a-a* (t3- a*)(- t3*)
a-< +

/3 3" (/3 3*)(b 1)

From this, if fl*<a*, then a<l+ 1, so a 1 in any case, as desired.
A(xo, Yo)= 1 implies that

But, to> a so

(3)

to-a y(to- a*)-.

0 < to- a < (yq)-.
Now, [f(xo, Yo)l < T can be rewritten as

/3 -/3* < to- a* + (to- a)(to- a*)(t3 to)-.
Using A(xo, yo) 1 and B(xo, yo) -b, we have

3 i* < to-- a* + b-X(to i*).
Since b-> 2 and to </3, we then have

1/2(t3 t3*) < to- a* < a* + (ym)-1

by (13). Since m->5, we finally have 1/2/-<x/+1/2 as desired.
Enough has been proved at this point to allow, for a given quadratic

integer a, the determination of all quadratic integers /3 such that f has an
anomalous minimum. The table records all such f for s 0 or I and m -< 24.
Indeed, by the remarks following Theorem 3, this table is enough to verify
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Theorem 3 for all m -- 24 since all that remains is to show that f has at most
one anomalous minimum. We will, therefore, assume that m >-28 for the
remainder of this proof.

Suppose that If(x1, Yl)I is another anomalous minimum o f. Then the
previous discussion is valid for (x, y) as well. We suppose that t- Xl/yl >
to and that y >0. Now, let

XE=XoX+aa*yoy-(a+a*)xoY and y2=yox-xoy.

It is straightforward to check that

(Xo- ayo) (x ay1)(X2 ay2),

using A(x, yl)= 1. Evidently X2 and Y2 are integers, and y2 yoYl(tl-to)>
0, so xa is also positive and t2 x2/y2> a. The formulae for x2 and y2 can be
inverted to give

so

Yo xy2+ x:zyl- (a + ct*)yy2

yo(yy2)-1= t + t--a
so

(14)

We wish to show next that

(15)

yo> x/yl.

y/m> z
Yo

which contradicts (14), since m-- 28. The starting point is the inequality
obtained from (10) (with a- 1) and (13), namely

yx/m(/ a)(/3 a -/3* + a*) _< 2/3 a -/3*
This may be rewritten as

(16) (/3-a-(1]yx/-))(/3-/3*-a +a*-(1/yx/-))_<ya2+(yx/)-*

We claim that/3 a < 5/(2y). Indeed, since n > m >_ 28,

/3 -/* a + a* x/--,f-> 9/(19q-) > (y ,,/--m)-1.

Substituting into (16), we have /3 a < 2.2/,f-< .41. But

r-s 2(/3 a)- (/3 -/3"- a + a*) <.82

is an integer, so r-s <--O. If r s then, by (16),
,n-qc- =/3 -a < 1.5/yo < 1.5/,f,

which implies that m < n -< m + 3. However, this contradicts n m r sam
m (mod 4). So, r s <- 1, that is,/3 -/3 * a + a* -> 1. Finally, using (16) again,
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we have

(17) /3-a <5/2y

Similarly to (13), 0 < q- et < (yx/-)- so

tl- a (y(tl- a*))- > (yZ(m)-t)-a > 2/(3y-m).
But, / > tx, so, by (17), 5/(2y)> 2/(3y,f) which implies (15).
As remarked before, (14) and (15) are contradictory for rn > 28, so the

proof is complete.

Table of Forms with Anomalous Minima

rn n Xo Yo -Bo

1 5 4 8 2 1 2
1 5 0 12 5 3 2
1 5 2 12 2 1 2
1 5 1 17 2 1 2
0 8 0 12 3 2 3
0 12 3 13 2 1 3
0 12 5 13 2 1 3
0 12 1 17 2 1 2
0 12 3 17 2 1 4
0 12 2 20 2 1 4
0 12 1 21 2 1 3
0 12 0 24 2 1 2
0 12 -2 44 2 1 2
0 20 1 21 9 4 35
1 21 2 24 3 1 2
1 21 4 24 3 1 5
1 21 6 24 3 1 6
1 21 8 24 3 1 5
1 21 10 24 3 1 2
1 21 2 28 3 1 3
1 21 4 28 3 1 6
1 21 3 29 3 1 5
1 21 0 32 14 5 4
1 21 2 32 3 1 4
1 21 1 33 3 1 2
1 21 1 37 3 1 3
1 21 0 44 3 1 2
1 21 0 48 3 1 3
1 21 -2 72 3 1 2
0 24 0 28 5 2 3
0 24 0 32 5 2 7
0 24 -2 52 5 2 3

All forms (defined by (1)) having an anomalous minimum are given,
such that ct 1/2(s +x/-) and /3 1/2(r+,f) are quadratic integers, s 0 or 1,
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m _< 24, and the conditions a* < a </3, /3* < a, and a a* </3 -/3* are
satisfied. Each such form actually has only one anomalous minimum,
I]’(Xo, Yo)[. B(Xo, Yo)= Bo in each case.
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