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UNIVALENCE CRITERIA DEPENDING ON
THE SCHWARZIAN DERIVATIVE

BY

ZEEV NEHARIaf

It is known [6, 7] that an analytic function f in A =(z" ]zl< 1} will be
univalent if it satisfies certain conditions of the type

(1) I{f, z}l--<
where {f, z} denotes the Schwarzian derivative

The most important such condition [6] is
2

(3) [{f, z}l--<

This sufficient univalence criterion has two notable features: (a) If the
constant 2 is replaced by 6, (3) is a necessary criterion for univalence [5],
[6]. (b) If 2 is replaced by a smaller positive number, condition (3) guaran-
tees, in addition, that f has a quasi-conformal extension to the entire
complex plane [2], [3], [1].
Two other univalence criteria of the type (1) which, like (3), have the

merit of using functions R of simple character are

(4)

and

(5)

,/F
2

I{f, z}l-<- [6]

In both cases the constants are the best possible. (For the sharpness of (3),
el. [4].)
The general procedure, described in [7], for generating univalence criteria

of the type (1) relied heavily on the theory of linear second-order differen-
tial equations. In particular, the determination o the function R required
the explicit knowledge of a solution of an associated differential equation. In
the present paper we develop an alternative procedure which circumvents
these difficulties. The only use of ideas properly belonging to the theory of
differential equations will appear in the proof of the following lemma.

Received February 23, 1978.
Research supported by a National Science Foundation grant.

t Professor Nehari died September 1, 1978.
t) 1979 by the Board of Trustees of the University of Illinois

Manufactured in the United States of America

345



346 ZEEV NEHARI

LEMMA I. Let g(s) be a non-constant complex-valued function with three
continuous derivatives on a real interval I, and let g’(s)@ 0 on I. If

(6) Re [{g, s}]--< 0, s /,

and a, b are two distinct points of I, then g(a) g(b).

We now state our main result.

THEOREM I. Let f be a non-constant analytic function in A, and let F(t) be
a real-valued function on [0, 1) with the following properties: F has two
continuous derivatives; {F, t} is continuous; F’>0; F"(0)= 0; the expression

(7) {F, t}(1- t2)2

is non-increasing. If
(8) I{f, z}l--< {F, Izl}, z A,

then f is univalent in A.

It will be shown later that the conclusion of Theorem I remains valid if F,
F’, and F" are permitted to have simple discontinuities at a finite number of
points and F" <F at these points. This more general result will also make it
possible to prove Theorem I under the assumption F"(0)--0 rather than the
more restrictive condition F"(0) 0.

In analogy to the three special cases mentioned before, we may say that
condition (8) is sharp if {F, Izl} cannot be replaced by A{F, [zl}, A > 1. While
this is not true in all cases, there is a rather general class of functions F for
which condition (8) is sharp in an even stronger sense.

THEOREM II. Let F(z) be an analytic function in A for which {F, z}> 0 for
z [0, 1) and I{F, z}l -- {F, Izl}. Further, let F([z[) -- oo for [z[--* 1, and let
F(Izl) satisfy all the hypotheses of Theorem I. If G(z) is analytic in h and
positive on (-1, 1), and if e is an arbitrarily small positive number, then the
condition

(9) I{f, z}] <- {F, Izl} + a([zl)
is not sufficient to guarantee the uniralence of f in A.

We list here three examples of a function F which satisfies Theorems I
and II.

If

then

ds
F(t)=

(1_ s2).+ 0<_<_1,

(1 t2)2
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and this has all the required properties. Hence, f is univalent in A if

2(1 + I,)(1- t IzlI{f, z}l-< (1-1z1)2
0 <-- 1,

and this result is sha in the sense of eorem II. For 0 and 1, this
yields criteria (3) and (5), respectively. Another function which may be used
in Theorems I and II is

(l+s)"
F(t)

(1 s) + ds, 0 1.

This function leads to the univalence criterion

2(1-) 2(2+I{f,z}l 2)2 la)2
0< <1

(1-1z (l+lz ----Criterion (4) is obtained by using the function F(t) tan t, for which
{F, t} 2/2.
Turning now to the proof o Theorem I, we note that under a conformal

mapping z + the Schwarzian derivative transforms according to the for-
mula

(10) {f, z} ---d()2, ,}+{,, z}.

{f, z} remains unchanged if f is subjected to a Moebius transformation.
Thus, if (z) is a Moebius transformation, {, z}= {z, z}=0, and (10) sp-
lifie to

(11) {f, z}= -’"-(a,
dz]

}"

Suppose now that
distinct points z,
and the circle orthogonal to [z] 1 which passes through z and z, it is easy
to see that there exist constants , (1= 1, 0p(1) such that the
transformation

(12) z

(which maps onto itself) caies C into the diameter -1 < < 1. Since

ldzl (1-lzl=)-1 IdOl (1-]=)-1,
it follows from (11) mat l{f, z}l (1-z2)2= I{f, }[ (1-12)=. For z e C we
have Re {} and condition (8) is thus seen to be equivalent to

where -1 < < 1.
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(12) shows that, for z C (i.e., t), [zl2- 2= 02(1+ 02t2)-1(1- 4) and
thus Izl>ltl. Since the expression (7) is noninereasing on [0, 1), it follows
that

{F, Iz IzI(X Iz I=)= -< {F, Itl}(l -t=)=,
and (13) is found to imply the inequaity I, t}l {E Itl} for -X < < X. This
may also be written in the fo

(14) I{f, t}l{F, t}, t(-1, 1),

if we require F(0) 0 (which we may do without changing the value of {F, t})
and define F for negative by F(-t) -F(t). With this definition, F’ and
{G t} become even functions and, because of F"(0)=0, F has all the
requisite derivatives at 0.
Let now s(t) be a real-valued function with three continuous derivatives

(and with s’(t) >0) which maps -1 <t < 1 onto some inteal (-a, a), a >0
(where a may be +). By (10) (applied to real variables s, t) we have

{F, t}= {F, sI+{s, t}

and a similar formula for , t}. Since s’(t)> 0, {F, s} will be continuous on
(-a, a). By (14), Re [, t}-{F, t}]0 and thus, by (15) and the correspond-
ing formula for f,

Re [ff, s}-{F, 0.

The function F(t) has three continuous derivatives, and we may therefore
set s(t)=F(t). Since {F, s} {F, F}= 0, we obtain Re [{.f, s}] _< 0 s=F(t),
or, if we write [[z(s)] g(s) (z C),

(17) Re [{g, s}]_< 0,

The existence of two distinct points zl, z2 on C such that f(zO f(z2) is
equivalent to the existence of a, b such that -a < a < b < a and g(a) g(b).
Because of (17) and Lemma I we therefore c0nelude that g is constant on
(a, b). Hence, f is constant on the section of C between zx and z2, i.e., f
must be a constant. The proof of Theorem I will therefore be complete if we
establish the truth of Lemma I.
To do so, we define two functions u and v on the real interval I by

(18) g’= l/v2, u/v g- g(a).

Since g’ 0, v and u have two continuous derivatives on L By the second
formula (18), g’= (vu’- uv’)v-2 and thus vu’- uv’ 1, i.e., vu"- uv"= O, or
u"/u v"/v. Since, by the first formula (18),

(19) 1/2{g, s}=-v"/v,
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this shows that u is a solution of the linear differential equation

(20) u"+g, s}u O.

If g(a)= g(b), it follows from (18) that u(a)= u(b)=0. Multiplying (20)
by fi and integrating from a to b, we obtain

[a. u L- lu’l= ds/1/2 (g, s)lul= ds-0.

Taking real parts, and noting that u(a)= u(b)= 0, we arrive at the identity

lu’l= as 1/2 Re ([{g, s)] iu ds.

But, by (6), this is absurd unless u’(s)---O on [a, b]. Because u(a)=0, this
implies u---0. Thus, by (18), g is constant on [a,b], as asserted. This
completes the proof of Theorem I.
To prove Theorem II, it is sufficient to show that a function f for which

(21) if, z} {F, z}+ ea(z)

(where F and G are as described in Theorem II) cannot be univalent on
(-1,1).
By Theorem I, a function F(z) subject to the hypotheses of Theorem II is

univalent in h. Since F([z[)-- oo for [z[ 1, the mapping s- F(t) transforms
the linear segment (-1, 1) into the real line (-o% oo). Using the transforma-
tion formula (15) we thus find, by (21), that

eG(t) {f, t}-{F, t} s’2(t)[{f, s}-{F, s}] s’2{/, s},

i.e., {g, s}= 2H(s), where g(s)=/[t(s)] and H(s) is positive on (-0% oo). Our
result will be proved if we can show that for such a function g we cannot
have g(a) g(b) for all a, b such that -< a < b <
We choose an arbitrary real value g(a) and define the functions u, v by

(18). As shown before, u and v will then be two independent solutions of
the differential equation (20). Since {g, s} is real, u and v can be chosen to
be real functions, and g is thus real on (-0%00). By (18), g(a)= g(b) is
equivalent to the existence of a solution of (20) for which u(a) u(b) 0.
Because of {g, s}=2H(s), our task thus reduces to showing that a real
solution of

(22) u"+ H(s)u 0, H(s) > O,

must have at least two zeros on the real line.
This is accomplished by constructing a function R(s) such that R(s)<_

H(s), and showing that the equation w"+ R(s)w =0 has a solution which
vanishes twice on (-0% oo). By the Sturm comparison theorem it then follows
that (22) must likewise have a solution with at least two zeros on (-0% oo). if
a is a positive number, we denote by the (positive) minimum of H(s) on
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[a,-ct] and set R(s)= on [-ct, a] and R(s)=0 elsewhere (the discon-
tinuities of R do not affect the Sturm comparison theorem). Clearly,
R(s)<_H(s) on (-oo,). If ax/>_r/2, the solution Wo=COSx/-s of
w"+ R(s)w 0 on [-ct, a] has at least two zeros on this interval, and we are
done. If ax/< r/2, we extend this solution to. the interval (-0% oo) by setting
w Wo(a) + w(a)(t- a) on (a, oo) and w Wo(-a) + w(-a)(t + a) on
(-oo,-a). Since w(a)<0 and w(-et)>0, both these half-lines must in-
tersect the s-axis. Thus, on a sufficiently large interval the solution w has
two zeros, and our proof is complete.

Finally, we have to substantiate the remarkmmade after the statement of
Theorem Imconcerning the possible relaxation of the regularity conditions
imposed on F. Since, for given {F, t}, F is determined only up to an arbitrary
Moebius transformation, the three independent constants entering the latter
may be used to compensate for possible simple discontinuities of the
originally chosen function F and two of its derivatives at a given point. To
explore these possibilities, it is sufficient to consider the case of one such
point, say to. Suppose, then, that F Fo on [0, to] and F F1 on [to, 1), and
that these functions are non-negative and increasing and have three continu-
ous derivatives on their respective intervals. Clearly, we may normalize F1
by the condition F(to) F’l(to). We now replace F1 by the function

(23) F2(t)
Fo(to) +[-1 + Fo(to)][F(t)- Fx(.to)]

1 +/x[F(t)-F(to)]

where /x is a constant. We then have F2(to)=Fo(to), F(to)----F(to), and
{F2, t} {F1, t}. To prevent the denominator from vanishing on (to, 1), we
restrict t to non-negative values. Since

Fz’(t) F(t) 2/zF(t)
F(t) F’(t) 1 + [F(t)-F(to)]

we shall have F’(to) F’(to) if/ is so chosen that 2/xF(to) F’(to) F’(to).
In view of the condition t >-0 and F’>0, this is possible if F’(to) > F(to).
Thus, if we set F Fo on [0, to] and F F2 on [to, 1), F, F’, F" and--because
of the assumed continuity of {F, t}---also F’" will be continuous on [0, 1), as
required in the proof of Theorem I.

This flexibility in choosing the function F for given {F, t} can also be used
to show that the assumption F"(0)= 0 made in Theorem I may be replaced
by F"(0)--> 0. The condition F"(0)= 0 was imposed to ensure the continuity
of F" at 0 if F is defined for negative by F(-t) -F(t). By the procedure
just described, we may replace -F(t) by a Moebius transformation of the
type (23), provided -F"(0) F"(0), i.e., provided F"(0)>_0. The function F
obtained in this way will then have three continuous derivatives on (-1, 1).
It is easily verified that the lack of symmetry of this function has no effect on
the proof of Theorem I.
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