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PLANAR SURFACE IMMERSIONS
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Louis H. KAUFFMAN

Introduotion

In this paper immersions of surfaces with boundary into the plane, R2, will
be classified up to an equivalence relation called image homotopy. When
two immersions are image homotopic, there is a smooth deformation
through immersion images of one image to the other. This deformation may
be drawn or visualized. It gives the appearance of a motion of the immersion
in time. Before proceeding further, the reader might enjoy viewing the long
image homotopy shown in Figure 3. This image homotopy is an example of
mod-2 planar phenomena that we shall deal with in greater detail.

Planar surface immersions are a mixture of integral and mod-2
phenomena. For example, there are infinitely many image homotopy classes
of immersions of a once punctured torus, but only two image homotopy
classes for a surface of genus greater than one having a single boundary
component. In the latter case, these two immersions are distinguished by a
mod-2 quadratic form just as in [KB]. In fact, our results are quite similar to
those of [KB], where immersions into the sphere, S2, are classified up to
image homotopy. Except for the use of quadratic forms, we do not assume
familiarity with [KB]. The paper is organized as follows:

In Section 1 image homotopy is discussed and defined. Proposition 1.6
shows that ,9(N)-(N)/dI(N) where #(N) denotes image homotopy
classes of immersions of N, denotes regular homotopy, and (N) is the
mapping class group of N (acting on (N) by composition).

Section 2 discusses the role of curves on the surface. The Whitney-
Graustein Theorem [W] is recalled and used to compute (N). A boundary
invariant, B(f), of an immersion f:N-- l2 is defined in terms of the
boundary curves of N. Proposition 2.3 computes (N) for a k-holed disk in
terms of the boundary invariant.

Section 3 discusses the generators of the mapping class group (N) and
then considers three important examples: (1) If N= T, a punctured torus,
then L(N)SL(2,Z) and (N)=Z+. (2) If N= T#A (a torus with two
holes), then the extra boundary component acts as a catalyst to reduce the
toral part of the immersion modulo two. (3) If N T# T, a once-punctured
double torus, then (N) contains no more than two elements. These
examples reflect the way particular sorts of diffeomorphisms of N act on
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dr(N). In each case, the diffeomorphisms are expressed by visualizable
handle-sliding moves.
The mod-2 quadratic form is introduced in Section 4. An image

homotopy classification (Theorem 4.2) is obtained by combining the reduc-
tions, exemplified in Section 3, with obstructions provided by the quadratic
form and boundary invariant.
Throughout the paper the symbol stands for isotopy, isomorphism or

diffeomorphism, while stands for image homotopy, and stands for one-
to-one correspondence. All surfaces are compact and differentiable.

1. Image homotopy

Let N be an orientable surface with boundary. A differentiable mapping
f: N-- R2 is said to be an immersion if the differential, df, is non-singular
for each point of N. Thus f is locally one-to-one, but a point in R2 may have
many points in its pre-image. It is often convenient to deal directly with the
image f(N) cR2.
One draws a picture of an immersion by illustrating f(N)cR2. The

overlapping parts of the image are indicated by shading, or tacit convention,
so that there is no ambiguity about what surface is being immersed.
Nevertheless, a picture does not allow a unique reconstruction of the
mapping f :N-- R2. For example, a change in parametrization on N is given
by a diffeomorphism h:N-- N; but f and f h have identical images. This
fact and the considerations below will lead us to divide out by the
diffeomorphisms of the surface.
We would like to think of an immersion as a self-overlapping rubber sheet

surface on the plane. Deformations of the immersion should correspond to
stretchings of this idealized elastic sheet that are confined to the two
dimensions of motion in the plane. This imaginary sheet needs also the
property of being able to pass through itself without damage, in order to
avoid entangling the overlappings. Such a deformation will be called an
image homotopy of the immersion. Figure 1 (bottom line) illustrates an
image homotopy of a punctured torus. Figure 3 gives twenty-four stages in
the history of a more complex image homotopy.

It is fascinating to explore image homotopies of surfaces, but a precise
definition is called for. I shall give a preliminary definition that is close to the
intuition and then abstract this to a more general definition that is easier to
handle.
The first thing to notice about the elastic sheet deformation is that it really

does not happen in the plane! If it did, then overlapping parts of the surface
would have to move in unison, while we certainly want to be able to slide
them separately. One way to clarify this is to see the image homotopy as the
projection of an ambient isotopy of surfaces embedded in R3.



650 LOUS H. KAUFFMAN

Figure 1

Recall that if M and M’ are surfaces embedded in R3, then M is said to be
ambient isotopic to M’ if there is a family of diffeomorphisms h,: R3 -- R3,
0-< t-< 1, so that ho is the identity and hi(M)- M’, with h, and dh, varying
continuously with t. In Figure 1 we show an ambient isotopy of surfaces in
R3 so that each stage of the isotopy projects to an immersion in R3.

DEFINITION 1.1. Let p’R3--- R2 be the projection defined by p(x, y, z)=
(x, y). Let M,M’cR3 be embedded surfaces so that pl =p[M and 192=
p M’ are immersions. We say that p and P2 are image homotopic if there is
an ambient isotopy ht:R3-, R3 from M to M’ so that p lh,(M) is an
immersion for each t, 0-< 1.

This definition is difficult to work with. It is not always obvious what
embedding should be chosen. For example, in Figure 2 we have covered an
image homotopy of an annulus with an ambient isotopy in 2A; if we had
chosen the embedding of 2B then no such isotopy could have been produced
(the boundary curves of the second embedding are linked). The final
definition provides a way out. Recall that two immersions f, g: N---R2 are
regularly homotopic if there is a family of immersions f" N---> R2, 0-----t--< 1,
so that fo- , ]:1 =g and ]’, and dr, vary continuously with t.

DEFINITION 1.2. Let N be an oriented surface with boundary, and let
f, g" N--->R2 be two orientation-preserving immersions of N into the plane.
We say that f and g are image homotopic (fg) if there exists an
orientation-preserving diffeomorphism h" N---> N such that f is regularly
homotopic to g h.
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Figure 2A

Figure 2B

Definition 1.1 is a special case of Definition 1.2. The diffeomorphism h
arises naturally from the ambient isotopy.

PROPOSITION 1.3. Let M, M’cR3 be ambient isotopic embeddings of a
surface N into R3. Let i" N-. R3 and ]" N---> R3 represent these embeddings
so that i(N)=M and ](N)= M’. Suppose that M and M’ pro]ect to image
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Figure 3

homotopic immersions in the sense o1’ 1.1. Let Pl, P2, ht be as in 1.1. Let

f=ploi, g=p2o, h=-ohoi
and assume that 1’ and g preserve orientation. Then ]: is regularly homotopic to
g h. Hence ]’, g: N R2 are image homotopic in the sense o]’ 1.2.

Proof. Define/t: N ---> R2 by the equation f, p h i. Then 1’o = while

f (p j) (j- h i) g h.
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Thus f and g h are regularly homotopic as desired.

The maps in Proposition 1.3 are illustrated in Figure 1.
By using the second definition (1.2), immersions can be classified up to

image homotopy by looking at the action of the diffeomorphisms of N on
the regular homotopy classes. We shall formulate this in terms of the
mapping class group of N (see [B], [L]).

DEFINITION 1.4. Let N be an oriented surface. Two diffeomorphisms
h, h’: N N are isotopic if there is a family of diffeomorphisms hi: N-- N,
0<_t<_l, with h, and dh, varying continuously with t, and ho h, ha h’.
The mapping class group of N, dig(N), is the set of isotopy classes of
orientation-preserving diffeomorphisms of N.

DEFINITION 1.5. Given an oriented surface with boundary N, let (N)
denote the set of regular homotopy classes of orientation-preserving immer-
sions f: N-R2. Let 5(N) denote the set of image homotopy classes of
orientation-preserving immersions into R2.

Note that R(N) acts on (N) by composition. That is, if [h] /,(N) and
[f] (N) are represented by h: N N and : N R2 respectively, then
we define [hi- [f] by the equation [h]. If] [f hi.

PROPOSITION 1.6.
(N)Dt/t(N).

If N is an oriented surface with boundary, then (N)-

Proof. This follows at once from the definitions.

2. Curves on the surface

In order to study immersions of a surface it is necessary to first
understand immersions of closed curves. Given an immersion a" S R2 of
an oriented circle into the plane, Whitney [W] defined a degree, D(o) Z.
The degree measures the total number of times (counted with sign) that the
image unit tangent vector turns through 2r as the curve is traversed. Our
convention gives a counterclockwise circle about the origin degree +1.
Whitney and Graustein proved the fundamental result: Two curves
a,/3: $1,- R are regularly homotopic if and only if D(a)= D(13).
An oriented surface with boundary N has normal form as depicted in

Figure 4. A collection of canonical curves

K(N) {a, b, a2, b2, ag, bz., c, c}

is obtained by choosing an oriented core curve for each band from the torus
groups, and oriented boundary curves cx,..., ck. The surface is given with
k + 1 boundary components and an orientation. Hence each boundary
component inherits an orientation from the surface. Note that in this
normal form, the curves c ck actually also correspond to cores of the
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C
Figure 4

extra bands. We shall refer to the remaining boundary curve Co as the "outer
boundary".
With orientations chosen as in Figure 4, we call immersions that look like

direct projections of the disk part of Figure 4 with modifications on the
bands, orientation preserving. Thus the immersion indicated in Figure 8 is
orientation preserving. With these conventions it is easy to read the degrees
of the canonical curves directly from the picture. For example, in Figure 8,
K(N)={al, bl; cl, c2} and D(al)=0, D(bl) 1, D(cl) 2, D(c2) =-1.
Let qg(N) denote the set of oriented curves embedded in N. Elements of

qg(N) are represented by maps a: S -- N. Given an immersion f: N 112
and a CO(N), we obtain a curve f a: $1-- R2 and we let De(a)= D(foa)
denote the degree of this immersion.

PROPOSITION 2.1. Let N be an oriented surface with boundary, having
canonical curves K(N). Let f, g: N-- 112 be two orientation-preserving imer-
sions. Then f is regularly homotopic to g if and only if De(a)= D,(a) for all
a K(N).
The proof of this result is sketched in [KB]. It follows that the regular

homotopy classes (N)are in one-to-one correspondence with (2g + k)-
tuples of integers

where, for a representative immersion f,

a, D(), i, D(b,), D(c,).

Figure 5



PLANAR SURFACE IMMERSIONS 655

Figure 6

For ease in handling this correspondence we shall use the notation

When two such vectors represent image homotopic immersions, we shall
write x y.
As a first example, we shall calculate (N) when N is a disk with k-holes.

We view N as an oriented sphere with (k + 1)-holes and oriented boundary
curves Co, ca,..., ck as in Figure 5. The mapping class group is generated by
"braiding" these holes (see [B]). That is, one can choose any deformation of
the surface that moves the holes around, finally returning them (possibly
permuted) to their original configuration. (See Figure 6.) On the band
representation, the result of such a diffeomorphism is to permute the
ca,..., ck among themselves, or to interchange the outer boundary Co with
one of c ck as in Figure 7.
The next lemma gives a key relationship.

LEMMA 2.2 Let N be an oriented surface with oriented boundary curves
Co, cl, c. Let f" N R be an orientation-preserving immersion, and let
/, Dr(c,) for i=0, 1,..., k. Then "ro+’rl+""" +-r =(k-l).

,,,ERM U,T^ T0

NDLE-SLIDING BOUNDARy EXCHANGE
Figure 7
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Figure 8

Figure 9
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We shall omit the proof of this lemma. The result is illustrated in Figure 8.

DEFINITION 2.3. Let Bk denote the collection of sets of integers
{no, nl nk} satisfying =o ni (k- 1). Given an oriented surface N with
oriented boundary components Co, cl,..., ck define the boundary invariant
of an immersion f: N -- R2 by the equation B (f) {D(co),..., D(c)} e B.
Note that if f corresponds to [al,/31[’" [egg,/3g /1, /k]e (N), then

k

B (f) {/o, /1,- /k} where /o (k 1) . h.
1=1

This follows from Lemma 2.2. The boundary invariant is obviously an
invariant of image homotopy.

PROPOSITION 2.3. Let N be an oriented k-holed disk. Then two immersions
f, g: N-- R2 are image homotopic if and only if B(f) B(g). Hence o(N)-
B.

Proof. This follows at once from the remark that braiding diffeomorph-
isms can accomplish any permutation of the boundary components.

Remark. When N A, an annulus, then k 1 and

B1 {{n, n}} {n n >--0, n Z}= Z+.
Thus (A) Z+.

3. The mapping class group

We shall describe generators of (N) for N any oriented surface with
boundary. This can be done in terms of braiding diffeomorphisms (as in the
last section) plus twist mappings along curves in (N). These will be
described in some detail and related to handle-sliding moves.
Suppose that N is modelled as in Figure 10, a sphere with g torus handles

and k + 1 holes. The braiding diffeomorphisms include those described in
section 2 plus a new set obtained by moving a hole along any closed curve
and returning it to its original position. For example, in Figure 11 we
illustrate the handle-sliding move that corresponds to such a braiding
diffeomorphism on a doubly punctured torus.
The twist mappings were invented by Dehn and later re-discovered by

Lickorish (see [B] and [L]). Let A =Sl[0, 1] denote an annulus, and
define r: A -- A by -(h, t)= (-e2ruh, t). This is a twist diffeomorphism of A.
Notice that the boundary of the annulus remains fixed (See Figure 13). More
generally, choose an embedded curve a CO(N) contained in the interior of
N. Let As be an annular neighborhood of a and -:N--- N be the
diffeomorphism obtained by applying to A and the identity to the rest of
N. The map is called a twist along a.

Since there is some choice as to the direction of the twist, a convention is
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Figure 10

called for. The convention is that a segment transverse to ct shall turn to the
right along a when is applied to it. Turning to the right is meant to apply
to an observer on the surface whose head points in the positive normal
direction as he or she approaches c along the transverse segment. (See
Figure 14.) Note that does not depend upon the orientation of
The next lemma shows how the twist mappings act on (N).

LEMMA 3.1. Let a, [3 qg(N) be transversely intersecting curves on N, an

Figure 11
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Figure 12

oriented surface with boundary. Let f: N-- R2 be an orientation-preserving
immersion, and let D denote Dr, and a [3 Z denote the intersection number
of a and [3 on N. Then D(z(/3))= (a .13)D(a)+D([3).

The proof of this lemma will be omitted.
The fundamental theorem for /(N) is as follows (see [B])"

THEOREM 3.2. Let N be an oriented surface with boundary. IfN has genus
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Figure 13

g, then (N) is generated by braiding diffeomorphisms and the 3g-1 twists
along the 3g-1 curves illustrated in Figure 10.

Examples. (1) Let N T, a singly punctured torus with canonical band
curves a and b. Then /t(T) is generated by ra and % (the braiding
diffeomorphisms are isotopic to the identity). In fact, (T) SL(2, Z). The
handle sliding moves corresponding to ra and % consist in sliding the foot of
one band all the way around the other band as in Figure 1. From this, or
from Lemma 3.1, it is easy to see that they induce image homotopies
[a,/3][a+/3,/3] and [a,[3][ot,+a+[3]. Thus (T)SL(2, Z) acts on
(T)-Z Z in standard fashion. By Euclid’s algorithm we see that
[a,/3] [d, 0] where d =gcd (a,/3) (gcd is the non-negative greatest common
divisor). Hence (T) 7’,+.

(2) Let N T#A be a doubly punctured torus (viewed as the boundary
connected sum (#) of T and an annulus A). Then (N) {[a, /3 /]} as in
Section 2. We can perform unimodular transformations on [a,/3] as in
Example 1. But we also have a relation

coming from braiding as illustrated in Figures 11 and 12. Furthermore,
[a, t3 /][a,/3 I-/] via boundary exchange braiding as in Section 2.

Figure 14
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LEMMA 3.3. Let d gcd (a, 13). Then

[. [0, 0 1] if d is even,
[ ]

([1,1l/] if d isodd.

If 3’ is even, then [0, 0 /] [1, 1 /].

Proof. Let A 1 . Then 1 + -h+ 2 and

[, ][ +, ] [ +, l-v]

Hence [a, y][a-2, IY]. Bm [a, }y][d, 0ly]. Hence

[a, 0l u]=[a-2, 0Iv]=-.. =[0, 013 or [a, 011.
Since [1, 01]=[1, 11], this proves the first part of the lemma. If y is
even then

[1,01y][l+l-y, 0ly]=[e, 0ly]
where e is even. Hence [1, 0ly][0, 017], completing the proof of the
lemma.

This lemma shows that the image homotopy class of an iersion of
T#A is determined by the boundary invarient when it is even. For odd
boundary invariant, the two possibilities [0, 0ly] and [1, l lv] are in fact
distinct and will be distinguished by the mod-2 quadratic form described in
Section 4. The extra boundary component introduced by taking connected
sum with A acts as a catalyst, reducing the toral part of the immersion
modulo two.

(3) Let N T# T, a once-punctured double torus. Then (N) contains
twists about the canonical cues a, b, a2, b2 and the curve e shown in
Figure 15. (e corresponds to d of Figure 10.) The canonical curves act as
SL(2, Z) SL(2, Z) on N(N)={[a, 17, 8]}. e cue e involves the two
toral groups. Rather than describing % directly, we give a related handle-
sliding maneuver : N N. It is shown in Figure 16.
As in Figure 16, we perform ff by first sliding the 1-2 group over band 3

Figure 15
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Figure 16

so that it sits under band 4. Then the left foot of band 1 is slid over band 3,
and the right foot of band 4 is slid over band 2. Now the 3-4 group sits
under band 1. It is slid out across band 2, completing the move.
An analysis (that we omit) shows that " corresponds to a diffeomorphism

that is isotopic to --1 % %1. Thus the twist part of (T# T) is generated
by handle-sliding moves.
The image homotopy of Figure 3 is based on . Steps 1 through 14

consist of 9" combined with the regular homotopy in steps 9-12. Note that
1 ---> 14 gives an image homotopy [0, 010, 0] [-1, 0]0, 1]. In general, "has the effect

[,, t Iv, a]=[a + r-1, I "y,- # +a+ 1].

This image homotopy effects an interaction between the two torus groups
that reduces o(T# T) to only two elements!

LEMMA 3.4. For any choice of a, [3, % ,3

[,, t ,, a]--E, -11, ] or [o, oi 1, 1].

_Proof. Let x [a,/3[% i]. We first show that

x[o, olo, 1] or [o, olo,2].
Let d gcd (a,/3), d’ gcd (% i). Then

x [d, 0ld’, 0]-[d + d’- , 01d’, 1]
[d+d’-l, 0 0, 1]

[d + d’- 1, o l-(d + d’)+ 2, 1
[0, 0 I-(d + d’)+ 2, 2]
[o, olo, 2] or [o, olo, 1].
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The same calculation shows that

[1, 111, 1]-[0, 01 O, 2]

while

[0, 010, 1] [0, 011, 1].

This proves the lemma.
Thus (T# T) has at most two elements. The mod-2 quadratic form will

distinguish them.
These examples are basic or the image homotopy classification ot sur-

faces. The next section provides the tools needed to complete the job.

4. The mod-2 quadratic form

Given an immersion/e: N 112, there is an associated mod-2 quadratic
form

q: Hi(N; Z2) Z2.
This form is constructed just as the quadratic form in [KB] for immersions
into S2. That is, if [a]HI(N;Z2) is represented by an embedded curve
ct e qg(N), then q([a])--= D(a)+ 1 (mod 2).

If ( ): Hi(N; Z2) HI(N; Z2) --* Z2 denotes the mod-2 intersection
pairing on the surface N, then q(x+y)=q(x)+q(y)+(x, y) for x, y e
Hi(N; Z2). When two immersions f and g are image homotopic, their
quadratic forms are isomorphic.
The reader is referred to [KB] for further information on mod-2 forms.

Given a form q, we let A(q) denote the Arf invariant of q (when it is
defined).
The quadratic form deans up the examples of Section 3: Let T [1, 1]

and T [0, 0]. We have shown that T # T TO# T, but
T# T1 TI# T1 because q(T # T) has Arf invariant 1, while q(T’# T)
has Arf invariant 0. Hence by Lemma 3.4, 5(T# T)=Z2.

Similarly, if / s odd, then the quadratic form q([a,/31/]) has zero
radical, and hence a well-defined Arf invariant that is equal to the Arf
invariant of q([a,/3]). This shows that [1, 11/] and [0, 0l] are not image
homotopic for odd / (see Lemma 3.3).

DEFrNrrION 4.1. Let f: N-- R2 be an immersion of an oriented surface
with boundary. Let /3(f) denote the number of boundary components C of
N such that Dt(C)=--O (mod 2).

Recall that we have also defined the boundary invariant B(f)= {Dt(C) IC
is a boundary component of N}.
The next theorem completes the image homotopy classification.
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THEOREM 4.2. Let , f’: N-- R2 be orientation-preserving immersions o[
an oriented surface with boundary into RE

(i) If N has genus 1 and connected boundary, then d: #(N) Z+, where d
assigns to an immersion the greatest common divisor o[ the Whitney degrees o[
the two canonical curves on N.

(ii) If N has genus > t and connected boundary, then ,9(N)-----Z2: Two
immersions are image homotopic if and only if their quadratic forms have the
same Arf invariant.

(iii) If N has more than one boundary component then:
(a) If [3(f)= [3(f’)= O, then M(qf) and sg(q,) are defined. In this case f f’

if and only if B(f)= B(f’) and (qf)= (qr).
(b) If 13 (f) : 0 then f f’ if and only if B (f) B (f’).

Proof. Part (i) has already been shown in Example 1 of Section 3. To
prove (ii) note that in Example 3 of Section 3 we showed that any
immersion of T# T is image homotopic to T# T or to T# T where
T= [1, 1] and T= [0, 0]. In fact, if Ta [d, 0] then Ta # Ta, [d, Old’, 0]
TO# TO exactly when d + d’ is even (see Lemma 3.4). If N T# T#- # T
(g factors and g >-2) then the same arguments apply: Any two torus groups
can be made adjacent by permutation sliding. Then apply Lemma 3.4 to
such pairs. The result is that the immersion X is image homotopic to
T*#--.#T- where e=0 or 1. But TI#TxT#TO Hence, using
more permutations, XT#T#...#T#T where e=0 or 1. But
M(q) e and hence #(N)-Z2 as desired.
We have already shown part (iii) when g genus (N)= 1 (Example 2 of

Section 3). For g > 1, we proceed slightly differently: The immersion is
represented by

X[dx, 0ld=, 01"" Ida, 01 ,..., ].
By the same argument as in part (ii) (g > 1)

x[1,111,1l...ll, lle, 0[,/1,...,,/] where =0 or 1.

If/3(X) : 0 then /i 0 (mod 2) for some 0, 1 k. By permutation, or
boundary exchange we may assume that / is even. But Lemma 3.3 shows
that

[1, 01/][0, 0[/] for /even.

In our context (g > 1) we can still use [a,/3 /][a + 1-% 13 3’]. Hence

X=[1, 111, 11"" I, 11 s+l-/1, 0 /, /,..., &].

Let d e + 1- /. If e 0 then d is odd; if e 1 then d is even. Since

[1, 1 d, 0] [1, 1 e’, 0] where e’ 0 or 1 and e’ d (mod 2)

we conclude that X[1,111, l l’" Is’, 0l ,..., ]. Hence
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Since these are distinguished precisely by the boundary invariant, we have
shown part (b) o (iii).

If /3(X)=0 then qx has no radical. Hence qx has a well-defined
Arf invariant that is equal to the Arf invariant of Y=
[1,111, 1[... I1, lie, 0]. Since (qv)= 1-e, this proves part (a).

This completes the proof of the theorem.

Remark. There is an interesting relationship between the quadratic form
of an immersion and the Seifert pairing used in knot theory. Suppose that
NcR3 is embedded so that the projection f =pIN: N---R2 is, an immer-
sion. The Seifert pairing (see [K])

0" Hi(N; Z) Hi(N; Z) Z

is defined by the equation O(x, y) l(ix, y) where i: N I3-N is obtained
by translating away from N in the positive normal direction, and l(
denotes linking number in l3. Then q()mO(x, x) (mod 2) where
H(N; Z2) and x Hx(N; Z) is a representative of . It follows from this that
the Arf invariant of a knot or link (see [K]) is, the Arf invariant of an
immersion of some spanning surface into 112. The Seifert pairing can also be
used to find obstructions to covering a given image homotopy by an ambient
isotopy in l3 Of a given embedding N Ra.
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