ON THE DENSITY OF SEQUENCE $\left\{n_{k} \xi\right\}$

BY
A. D. Pollington

Introduction

In his paper Problems and results in Diophantine approximations II which appeared in [2] Erdös asked the following:

Given a sequence of integers $n_{1}<n_{2}<n_{2} \cdots$ satisfying $n_{k+1} / n_{k} \geq \alpha>1$, $k=1,2, \ldots$, is it true that there always exists an irrational ξ for which the sequence $\left\{n_{k} \xi\right\}$ is not everywhere dense?

Here $\{x\}$ denotes the fractional part of x.
Strzelecki [5] has shown that if $\alpha \geq(5)^{1 / 3}$, and $\left(t_{k}\right)$ is a sequence of positive real numbers, not necessarily integers, with $t_{k+1} / t_{k}>\alpha$ then there is a ξ such that $\left\{t_{k} \xi\right\} \in[\beta, 1-\beta], k=1,2, \ldots$, for some $\beta>0$.

It is the purpose of this paper to provide a complete answer to the question of Erdös by providing the following.
Theorem. Let $\left(t_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
q_{n}=t_{n+1} / t_{n} \geq \alpha>1 \text { for } n=1,2, \ldots \tag{1}
\end{equation*}
$$

and let s_{0} be a real number $0<s_{0}<1$ then there exists a real number $\beta=\beta\left(\alpha, s_{0}\right)>0$ and a set T of Hausdorff dimension at least s_{0} such that if $\xi \in T$ then

$$
\begin{equation*}
\left\{t_{k} \xi\right\} \in[\beta, 1-\beta] \quad \text { for } \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

We have the following immediate corollary.
Corollary. The set of numbers ξ such that $\left\{t_{k} \xi\right\}$ is not dense in the unit interval has Hausdorff dimension 1.

A similar result has recently been obtained independently by B. de Mathan [3], [4].

Proof of the Theorem. We note that it is sufficient to prove the theorem under the additional restriction that $q_{n} \leq \alpha^{2}$, for we can form a new sequence $\left(t_{n}^{\prime}\right)$ from $\left(t_{n}\right)$ by introducing new terms between t_{k} and t_{k+1} if $t_{\mathrm{k}+1} / t_{\mathrm{k}}>\alpha^{2}$, so that $\alpha \leq t_{n+1}^{\prime} / t_{n}^{\prime} \leq \alpha^{2}, n=1,2, \ldots$. Obviously if the assertion of the theorem holds for some sequence $\left(t_{n}^{\prime}\right)$ it holds for any sub-sequence $\left(t_{n}\right)$ of $\left(t_{n}^{\prime}\right)$.

Choose $r \in \mathbf{N}$ so large that

$$
\begin{equation*}
\alpha^{r}-(r+2)>\alpha^{r s_{o}} \tag{3}
\end{equation*}
$$

and put

$$
\begin{equation*}
N=\alpha^{2} \quad \text { and } \quad \varepsilon=N^{-r}(r+1)^{-1} \tag{4}
\end{equation*}
$$

We will show that (2) holds with

$$
\begin{equation*}
\beta=\frac{1}{2} N^{-r} \varepsilon \tag{4a}
\end{equation*}
$$

and with ξ belonging to the intersection of a sequence of certain closed intervals. We will construct these intervals using the following lemma.

Lemma. There is a sequence of pairs $\left(a_{k}, b_{k}\right)$ of real numbers satisfying:
$\left(\mathrm{A}_{k+1}\right) \quad a_{k} q_{k} \leq a_{k+1}<b_{k+1} \leq b_{k} q_{k} ;$
(B) $\left[a_{k}, b_{k}\right]$ has no integer interior points;
(C) $l\left(\left[a_{r j+1}, b_{r j+1}\right]\right)=b_{r j+1}-a_{r j+1}=N^{-r}, j=0,1,2, \ldots$;
$\left(\mathrm{D}_{m}\right) \quad$ if $r(j-1)+1 \leq m \leq r j$
then

$$
b_{r j+1} \leq \frac{t_{r j+1}}{t_{m}}\left(b_{m}-\beta\right) \quad \text { and } \quad a_{r j+1} \geq \frac{t_{r j+1}}{t_{m}}\left(a_{m}+\beta\right)
$$

Proof. Choose $\left[a_{1}, b_{1}\right]$ to have no integer interior points and length N^{-r}.
Suppose that $a_{1}, b_{1}, \ldots, a_{r j+1}, b_{r j+1}$ have been constructed to satisfy the conditions $\left(\mathrm{A}_{i+1}\right)$, (B), (C), $\left(\mathrm{D}_{i}\right), 1 \leq i \leq r j$.

Put $k=r j+1$. We will construct $\left[a_{k+1}, b_{k+1}\right], \ldots,\left[a_{k+r}, b_{k+r}\right]$ so that $\left(A_{k+1}, \ldots,\left(A_{k+r}\right),(B),(C)\right.$, and $\left(D_{k}\right), \ldots,\left(D_{k+r-1}\right)$ are satisfied.

Put

$$
\begin{aligned}
& \Delta=\left[a_{k}, b_{k}\right] \\
& \Delta(1)=q_{k} \Delta=\left[a_{k} q_{k}, b_{k} q_{k}\right] \\
& \Delta(2)=q_{k+1} \Delta(1) \\
& \cdot \\
& \Delta(r)=q_{k+r-1} \Delta(r-1)
\end{aligned}
$$

Now $l(\Delta(1))<l(\Delta(2))<\cdots<l(\Delta(r)) \leq 1$ since

$$
l(\Delta(r))=N^{-r} q_{k} \cdots q_{k+r-1} \leq N^{-r} \cdot N^{r}=1
$$

Hence each of the intervals $\Delta(i)$ contains at most one integer interior point, N_{i} say. (If there is no integer in $\Delta(i)$ choose N_{i} arbitrarily in $\Delta(i)$.)

In $\Delta(i)$ order the points

$$
\begin{gathered}
a_{k} q_{k} \cdots q_{k+i-1}, N_{1} q_{k+1} \cdots q_{k+i-1} \\
N_{2} q_{k+2} \cdots q_{k+i-1}, \ldots, N_{i}, b_{k} q_{k} \cdots q_{k+i-1}
\end{gathered}
$$

and relabel them $P_{0}^{(i)} \leq P_{1}^{(i)} \leq \cdots \leq P_{i+1}^{(i)}, 1 \leq i \leq r$. Clearly $\left[P_{j}^{(i)}, P_{j+1}^{(i)}\right]$ has no integer interior points and for all i, j there is an $l=l(i, j)$ such that

$$
\begin{equation*}
\left[\boldsymbol{P}_{j}^{(i)}, P_{j+1}^{(i)}\right] \subset q_{k+i-1}\left[P_{l}^{(i-1)}, P_{l+1}^{(i-1)}\right] \tag{5}
\end{equation*}
$$

Put

$$
J(r)=\left[P_{0}^{(r)}+\varepsilon / 2, P_{1}^{(r)}-\varepsilon / 2\right] \cup \cdots \cup\left[P_{r}^{(r)}+\varepsilon / 2, P_{r+1}^{(r)}-\varepsilon / 2\right]
$$

where we take $[a, b]=\emptyset$ if $a>b$. Then $J(r)$ is the union of at most $r+1$ intervals and has measure $m(J(r)) \geq l(\Delta(r))-(r+1) \varepsilon$. Let

$$
l\left[P_{i}^{(r)}+\varepsilon / 2, P_{i+1}^{(r)}-\varepsilon / 2\right]=l_{i} N^{-r} .
$$

Then $m(J(r))=\sum_{i=0}^{r} l_{i} N^{-r}$ and so

$$
\begin{aligned}
\sum_{i=0}^{r}\left[l_{i}\right] & >\frac{l(\Delta(r))}{N^{-r}}-\frac{(r+1) \varepsilon}{N^{-r}}-(r+1) \\
& =\frac{l(\Delta(r))}{N^{-r}}-(r+2) \quad \text { by }
\end{aligned}
$$

Hence we can find at least $l(\Delta(r)) / N^{-r}-(r+2)$ disjoint sub-intervals of $\Delta(r)$ of length N^{-r} whose distance from any point $P_{i}^{(r)}$ is at least $\varepsilon / 2$.

Choose one of these arbitrarily to be $\left[a_{k+r}, b_{k+r}\right.$] then

$$
\begin{equation*}
\left[a_{k+r}, b_{k+r}\right] \subset\left[P_{i}^{(r)}, P_{i+1}^{(r)}\right] \text { for some } i . \tag{6}
\end{equation*}
$$

Now suppose that $\left[a_{k+j}, b_{k+j}\right] \subset\left[P_{i}^{(i)}, P_{i+1}^{(i)}\right]$; then, by (5),

$$
\begin{equation*}
\left[a_{k+j}, b_{k+j}\right] \subset q_{k+j-1}\left[P_{l}^{(i-1)}, P_{l+1}^{(i-1)}\right], \quad l=l(i, j) \tag{7}
\end{equation*}
$$

Put

$$
\begin{equation*}
a_{k+\mathrm{g}-1}=P_{l}^{(\mathrm{g}-1)} \quad \text { and } \quad b_{k+\mathrm{g}-1}=P_{l+1}^{(\mathrm{g}-1)} \tag{8}
\end{equation*}
$$

Thus starting with $\left[a_{k+r}, b_{k+r}\right]$ define $\left[a_{k+r-1}, b_{k+r-1}\right], \ldots,\left[a_{k+1}, b_{k+1}\right]$. Clearly (A_{m}), (B) and (C) are satisfied for $\left[a_{m}, b_{m}\right], 1 \leq m \leq k+r=$ $(j+1) r+1$. We now have to show that $\left(D_{m}\right)$ is satisfied for $r j+1 \leq m \leq$ $r(j+1)$. Now by (6), (7) and (8), $b_{k+r}+\frac{1}{2} \varepsilon \leq b_{k+r-1} q_{k+r-1}$ and $b_{k+j} \leq$ $b_{k+j-1} q_{k+j-1}, 1 \leq j<r$. Thus by (1), (4) and (4a),

$$
\begin{aligned}
b_{k+r} & \leq b_{m} \frac{t_{\mathrm{k}+r}}{t_{m}}-\frac{\varepsilon}{2} \\
& \leq \frac{t_{k+r}}{t_{m}}\left(b_{m}-\frac{\varepsilon}{2 q_{m} \cdots q_{k+r-1}}\right) \\
& \leq \frac{t_{k+r}}{t_{m}}\left(b_{m}-\beta\right)
\end{aligned}
$$

Similarly $a_{k+r} \geq\left(t_{k+r} / t_{m}\right)\left(a_{m}+\beta\right)$. Hence $\left(\mathrm{A}_{k+1}\right), \ldots,\left(\mathrm{A}_{k+r}\right)$, (B), (C), $\left(D_{k}\right), \ldots,\left(D_{k+r-1}\right)$ are satisfied as required.

We have constructed a sequence of intervals ($\left[a_{n}, b_{n}\right]$) satisfying $a_{n} a_{n} \leq$ $a_{n+1}<b_{n+1} \leq q_{n} b_{n}$. Thus by (1),

$$
\frac{a_{n}}{t_{n}} \leq \frac{a_{n+1}}{t_{n+1}}<\frac{b_{n+1}}{t_{n+1}} \leq \frac{b_{n}}{t_{n}}
$$

So ($\left[a_{n} / t_{n}, b_{n} / t_{n}\right]$) forms a sequence of closed nested intervals. Consequently there is a number ξ belonging to all the intervals of this sequence. We now have to verify that $\left\{\xi t_{m}\right\} \in[\beta, 1-\beta], m=1,2, \ldots$ By the condition $\left(D_{m}\right)$, $r j+1 \leq m<r(j+1)$,

$$
\frac{1}{t_{r j+1}} \frac{t_{r j+1}}{t_{m}}\left(a_{m}+\beta\right)<\frac{a_{r j+1}}{t_{r j+1}}<\xi<\frac{1}{t_{r j+1}} \frac{t_{r j+1}}{t_{m}}\left(b_{m}-\beta\right),
$$

thus $a_{m}+\beta \leq t_{m} \xi \leq b_{m}-\beta$. But by (B), $\left[a_{m}, b_{m}\right]$ has no integer interior points. Hence $\left\{t_{m} \xi\right\} \in[\beta, 1-\beta], m=1,2, \ldots$.

To show that there are uncountably many such ξ we only have to note that at each stage in the construction there are two disjoint choices for $\left[a_{r i+1}, b_{r j+1}\right], j=0,1,2, \ldots$, and consequently for $\left[a_{r i+1} / t_{r i+1}, b_{r j+1} / t_{r j+1}\right], j=$ $0,1,2, \ldots$.

We will now use a result due to H. G. Eggleston [1] to show that the set of ξ satisfying the above conditions has Hausdorff dimension, at least s_{0}.

Theorem (Eggleston). Let A_{k} be a set of intervals, N_{k} in number, each of length δ_{k}. Let each interval contain $n_{k+1}>0$ disjoint intervals of length $\delta_{k+1}\left(A_{k+1}\right)$. Suppose that $0<s_{0} \leq 1$ and that for all $s<s_{0}$ the sum

$$
\sum_{k} \frac{\delta_{k-1}}{\delta_{k}}\left(N_{k}\left(\delta_{k}\right)^{s}\right)^{-1}
$$

converges. Then $P=\bigcap_{k=1}^{\infty} A_{k}$ has dimension greater than or equal to s_{0}.
We apply this theorem with
$A_{k}=\left\{\right.$ set of possible intervals $\left[\frac{a_{r k+1}}{t_{r k+1}}, \frac{b_{r k+1}}{t_{r k+1}}\right]$ after $\left[a_{1}, b_{1}\right]$ has been selected $\}$.
Then $P \subset T, N_{k} \geq \prod_{i=1}^{k}\left(q_{r(i-1) i} \cdots q_{r i}-(r+2)\right)$, and

$$
\delta_{k}=N^{-r}\left(q_{1} \cdots q_{r k+1}\right)^{-1}
$$

Now $\alpha^{r}-(r+2)>\alpha^{r s_{0}}$ by (3) and so since $q_{(i-1) r+1} \cdots q_{i r}>\alpha^{r}$ by (1) then

$$
q_{(i-1) r+1} \cdots q_{i r}-(r+2)>q_{(i-1) r+1} \cdots q_{i r}
$$

and so $N_{k}>\left(q_{1} q_{2} \cdots q_{r k}\right)^{s_{o}}$.

Let $0<s<s_{0}$. Then

$$
\begin{aligned}
\sum_{k} \frac{\delta_{k-1}}{\delta_{k}}\left(N_{k}\left(\delta_{k}\right)^{s}\right)^{-1} & \leq \alpha^{2 r+2 r s} \sum_{k}\left(q_{1} \cdots q_{r k}\right)^{s-s_{0}} \\
& \leq \alpha^{2 r+2 r s} \sum_{k}\left(\alpha^{r\left(s-s_{0}\right)}\right)^{k}
\end{aligned}
$$

which converges and so T has dimension at least s_{0}.

References

1. H. G. Eggleston, Sets of fractional dimension which occur in some problems of number theory, Proc. London Math. Soc., vol. 54 (1951-52). pp. 42-93.
2. P. Erdös, Repartition modulo 1, Lecture Notes in Mathematics Vol. 475, Springer Verlag, New York, 1975.
3. B. De Mathan, Sur un problème de densité modulo 1, C. R. Acad. Sc. Paris Series A, t. 287 (1978), pp. 277-279.
4. - , numbers contravening a condition in density modulo 1, to appear.
5. E. Strzelecki, On sequences $\left\{\xi_{n}(\bmod 1)\right\}$, Canad. Math. Bull., vol. 18, (1975), pp. 727-738.

Illinois State University
Normal, Illinois

