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ISOMETRY GROUPS OF SIMPLY CONNECTED
MANIFOLDS OF NONPOSITIVE CURVATURE

BY

SU-SHING CHEN AND PATRICK EBERLEIN

Introduction

Let H be a complete simply connected Riemannian manifold of nonpositive
sectional curvature, and let D be a subgroup of I(H), the group of isometries of
H. Let H(c)denote the set ofpoints at infinity for H(Section 1). In this paper we
consider subgroups D that satisfy the duality condition and investigate the effects
on and relationships between the algebraic structure of D, the structure of the
orbits of D in H() and the geometry of H or HID if the latter is a smooth
manifold. The idea of aflat point in H(c) (Section 3) plays an important part
in this investigation.

In the context of homogeneous or symmetric spaces it is interesting to ask if
the duality condition on isometry groups and the idea of fiat points at infinity
can be related to other properties of such spaces that have been studied.
Heintze [18] has shown that ifH is a symmetric space and ifD Io(H)satisfies
the Selberg property (S), then D satisfies the duality condition. It is unknown
under what conditions the converse is true. The description of fiat points at
infinity is trivial if H is symmetric (Section 3) but has not been considered ifH
is homogeneous but not symmetric. One may hope that the methods of
Azencott-Wilson [2], [3] can provide such a description.
A subgroup D

_
I(H) satisfies the duality condition if for every geodesic of

n there exists a sequence {qb,}
_
D such that for any point p of H, b,(p)

converges to (oo) and b-l(p) converges to y(-oo)(see Section 1 for
definitions). If M HID is a smooth manifold, then D satisfies the duality
condition if and only if every vector in SM, the unit tangent bundle of M, is
nonwandering relative to the geodesic flow. In particular D satisfies the duality
condition if HID is a smooth manifold that is either compact or has finite
volume.
The duality condition may appear at first glance to be a fairly mild restric-

tion, but actually it is quite a strong one. For example, if H is a homogeneous
space, then the full isometry group I(H) satisfies the duality condition if and
only if H is the Riemannian product of a Euclidean space or line H1 and a
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symmetric space H2, where either factor may be trivial (Theorem 5.4). In
particular if H is a homogeneous space but is not a Riemannian product of this
type, then H admits no smooth quotient manifolds M such that every vector in
SM is nonwandering relative to the geodesic flow.
A subgroup D that satisfies the duality condition must satisfy certain alge-

braic properties. One of the most useful (Theorem 2.4) is that any normal
abelian subgroup A 1 of D must consist of Clifford translations of H. An
isometry b 1 of H is a Clifford translation if the displacement function
p d(p, p) is constant in H. By a theorem of J. Wolf the Clifford translations
ofH act as translations on the Euclidean de Rham factor of H. As a corollary to
Theorem 2.4 one can show that if D admits a solvable subgroup of finite index
and satisfies the duality condition, then H is isometric to a Euclidean space.
This result has been proved by S-T. Yau and D. Gromoll-J. Wolf in the case
that HID is a compact smooth manifold.
When considering subgroups D

_
I(H) that satisfy the duality condition we

can for most practical purposes reduce to the case that H has no Euclidean
(flat) factor in its de Rham decomposition. Express H as a Riemannian product
H1 x H2, where H1 is the Euclidean factor and H2 is the product of all non
Euclidean factors in the de Rham decomposition of H. Each isometry t of H
can be written b= qb x (2, where cki6 I(Hi), i--1, 2. For any group
O
_

I(H) we define Oi {bi: qb 6 O}, 1, 2. IfD satisfies the duality condition
in H, then each group Di satisfies the duality condition in Hi, and we can
usually restrict our attention to the group D2 acting on H2. If H has no flat de
Rham factor and if I(H) satisfies the duality condition, then either I(H) is
discrete or Io(H) is a noncompact semisimple Lie group with trivial center
(Proposition 2.5).
For an arbitrary manifold H one can show that if D

_
I(H) is any noncom-

pact closed connected semisimple group with finite center, then D(x)= K(x)
for every x in the limit set L(D)_ H(o), where K is a maximal compact
subgroup of O (Theorem 4.5). It follows that Io(H) always has a compact orbit
in H(o) if I(H) satisfies the duality condition. Clearly this is true if Io(H) is
trivial or if H has a flat de Rham factor. If H has no flat de Rham factor, then
one applies the preceding two results.

If I(H) satisfies the duality condition and acts minimally on H(oo), then all
orbits of Io(H) in H(oo) are compact. This follows in the manner of the
previous paragraph from Proposition 4.10, which states that if I(H)satisfies the
duality condition and acts minimally on H(o), then either I(H) is discrete or H
is isometric to a Euclidean space or Io(H) is a noncompact semisimple Lie
group with trivial center whose limit set is H(oo). In the last case we conjecture
that H is a rank one symmetric space.
For arbitrary subgroups D

_
I(H) the duality condition also restricts the

possible D-orbits in H(oo). For example (Theorem 4.3), if D satisfies the duality
condition and has a finite orbit in H(oo), then H is a Riemannian product
H1 x H2, where H1 is either R or a flat Euclidean space of dimension k _> 2,
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and each element b ofD can be written b b x b 2, where b is an isometry of
H, 1, 2. Moreover let D {b: 4) D}, i= 1, 2. Then (a) D satisfies the
duality condition in H, (b) Da admits a subgroup D’ of finite index consisting
of translations of Ha and Hx/DI is compact. If D has’a fixed point in H(o),
then D D. (c) D2 has no finite orbits in H2().

Flat points at infinity are important in describing the orbit structure in H(o)
of a group D that satisfies the duality condition. A geodesic 7 of H is said to
bound an imbedded flat half plane if there exists a totally geodesic isometric
imbedding F:[0, o) x R - n with F(0, t) (t) for all t. An asymptote class
x H(o) is aflat point (at infinity) if every geodesic ), belonging to x bounds an
imbedded flat half plane. Spaces for which all points at infinity are flat include
nontrivial Riemannian product manifolds, and noncompact symmetric spaces
of rank at least two. If all sectional curvatures at a single point p of H are
negative, then no point in H(oo) is a flat point.
Our main result regarding flat points (Theorem 3.2) says that if O

_
I(H)

satisfies the duality condition and if A
_
H(o) is a closed set invariant under

D, then any boundary point of A must be a flat point. In particular if H(o) has
no flat points, then O and hence I(H)acts minimally on H(). Theorem 3.2
and its corollary have various consequences. For example, if H() has no flat
points and if every vector in the unit tangent bundle SM of M HID is
nonwandering relative to the geodesic flow, then the geodesic flow has a dense
orbit in SM (Theorem 5.15). Another consequence is that if Io(H)satisfies the
duality condition and if some point of H(o) is not flat, then H is isometric to a
rank one symmetric space (Corollary 4.14).
The paper is in six sections. The first contains definitions and preliminary

results. The second section discusses the duality condition for subgroups
D
_

I(H) and relates it to the existence of Euclidean factors in the de Rham
decomposition of H. In the third section we consider flat points at infinity and
in the fourth the properties of orbits in H(o) of isometry groups D satisfying
the duality condition. The fifth section contains results on the structure of I(H)
under various conditions and on the fundamental groups, geodesic flows and
isometry groups of quotient manifolds M HID whose deckgroup satisfies the
duality condition. The sixth section concludes with some open questions.

I. Preliminaries
We establish some notation and basic facts. For details see [14]. A Hadamard

manifold is a complete simply connected Riemannian manifold of nonpositive
sectional curvature and will be dnoted by H. There is a unique geodesic
joining any two distinct points of a Hadamard manifold. M will always denote
a complete nonsimply connected Riemannian manifold of nonpositive sec-
tional curvature. Both H and M will be connected and C, and all geodesics
will have unit speed. SH and SM will denote the unit tangent bundles ofH and
M, and f will denote the subset of SM consisting of those vectors that are
nonwandering relative to the geodesic flow in SM.
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Geodesics y and a of H are asymptotes if d(yt, at) <_ c for some c > 0 and all
> 0. An equivalence class of asymptotes is a point at infinity for H, and H(oo)

denotes the set of all points at infinity. The space/ H w H(o) together with
the cone topology is a compactification ofH that is homeomorphic to the closed
ball of dimension n dimension H. For any geodesic 7 of H the points 7(oo)
and (-o) are the asymptote classes of the geodesics and 7-t’t- 7(-t)
respectively. For any points p H and x H(oo) we define 7p to be the unique
geodesic with (0) p that belongs to x. We define V(p, x) to be the unit vector
7x’(0). For any point p e H and any points q, r in/ distinct from p we define
z (q, r), the angle subtended at p by q and r, to be the angle subtended at p by
the unique geodesics joining p to q and p to r.
Two points x y of H(oo) can be joined (by a geodesic of H) if there exists a

geodesic of H such that ()= x and (-)= y. H satisfies the Visibility
axiom if any two distinct points of H() can be joined, and H or any of its
quotient manifolds is called a Visibility manifold. For an equivalent definition
of this axiom see Definition 4.2 of [14]. If the sectional curvature is uniformly
bounded above by a negative constant for all 2-planes, then H satisfies the
Visibility axiom.

I(H) and Io(H) will denote the isometry group of H and the connected
component containing the identity respectively. Both are Lie groups with the
compact open topology. I(M) and Io(M) have analogous meanings. For each
element e I(H) there is an associated displacement function g,’p d(p, dpp).
An isometry is called elliptic, axial or parabolic if g, has zero minimum,
positive minimum or no minimum respectively. Isometrics of H extend to
homeomorphisms of/ by defining 4((o0))= (4o )(o) for any isometry 4
and any point 7(oo) in H(oo). A subgroup D

_
I(H) determines a limit set

L(D) H() that is closed in H() and invariant under D. By definition L(D)
is the set of points in H(oo) that are cluster points of an orbit D(p). The
definition of L(D) does not depend on the choice of the point p H. It is
straightforward to show that L(D) is nonempty if and only if D is noneompact
in I(H). If D and D* are subgroups of I(H) such that D* is a normal subgroup
of D, then L(D*) is invariant under D.

Every point x H(oo) determines a family {f" H --, R} of Busemann func-
tions at x, one for each point p of H. The difference of any two Busemann
functions at the same point x H(oo) is constant in H. Any Busemann function

fat a point x is convex [12], C2 [19], and grad f(p) V(p, x) for any point p
in H [14, Section 3]. The horosphere determined by p and x is the set

L(p, x) {q H :f(q) f(p)},

and the interior N(p, x)is the set {q e H:f(q)<f(p)}. The closed convex set
B(p, x) is defined to be

L(p, x) w N(p, x)= {q H :f(q)<f(p)}.

If is any geodesic belonging to x, thenf(ys) -f(t) t s for all numbers s, t.
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2. The duality condition and fiat de Rham factors

In this section we describe some situations under which a Hadamard mani-
fold H admits a fiat factor in its de Rham decomposition. Our starting point is
a theorem of J. Wolf [29] which we state as follows:

THEOREM 2.1. Let H be a Hadamard manifold and let H H x H2 be the
de Rham decomposition ofH into the Euclideanfactor H and the product H2 of
irreducible non-Euclidean factors. Let dp 1 be an isometry of H. Then the
following are equivalent:

(1)
(2)
(3)
(4)

49 is a Clifford translation.
dp is a bounded isometry.
The action of ck is an ordinary translation of the Euclidean factor.
The associated vector field X in H is parallel.

We recall from [29] that b is a Clifford translation if d(p, ckp) is constant for
all p H and is a bounded isometry if d(p, p) < c for all p H and some c > 0.
The associated vector field X is determined by the condition exp (X(p))=
4(P) for every p. Note that X has constant length if and only if 4 is a Clifford
translation.

If Y is a parallel vector field in H, then Y is a Killing vector field of constant
norm, and by Corollary 5.4 of [4] each integral curve of Y is a constant speed
geodesic of H. By Proposition 4.2 of [4] each flow transformation 4, is a
Clifford translation of H. By Proposition 6.7 of [14] all geodesic integral curves
belong to a single asymptote class x H(), assuming Y to be normalized, and
therefore Y(p) V(p, x) for all points p in H. Conversely if Y is a vector field in
H whose flow transformations {4,} are Clifford translations of H, then all
integral curves of Y must be constant speed geodesics in H, and by Corollary
5.4 of [4] Y must have constant norm. It follows that Y must be the vector field
X associated to the Clifford translation tha, and by Theorem 2.1, Y must be
parallel.
The previous paragraph shows that a vector field Y in H is parallel if and

only if the flow transformations of Y are Clifford translations of H. Moreover, if
Y is a parallel vector field ofnorm one, then Y(p) V(p, x)for some x H()
and all points p in H. We extend this observation slightly. Let us say that a
point x n() has an antipodal point y n()if ),(-)= y whenever
() x for any geodesic of H. Clearly x is an antipodal point of y if y is an
antipodal point of x. In Euclidean space every point x H() has an antipo-
dal point. Using the discussion above together with Propositions 5.1 and 6.7 of
[14] we obtain the next result.

PROPOSITION 2.2. Let H be a Hadamard manifold, and let x be any point of
H(). Then the following are equivalent:

(1) The point x has an antipodal point y.
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(3)
The vector field p--. V(p, x) is a parallel vector field in H.
The flow transformations of p V(p, x) are Clifford translations of n.

The following result will be useful.

PROPOSITION 2.3. Let D I(H) be a subgroup with noncompact, and let Z
be the centralizer ofD in I(H). Then:

(1) If dp 4= 1 lies in Z then dpfixes every point ofL(D). Every point ofL(Z) is a

fixed point of D.
(2) If L(D)= H(m) then every element ofZ is a Clifford translation of H.

Proof. (1) Let 1 4: b e Z and x L(D) be given; we observed earlier that
L(D) is nonempty since i5 is noncompact. If {tp,} E D is a sequence so that

p---, x for any point p H, then

Cx lim btk,p lim b(bp)= x.

It follows similarly that Ox x for any D and x e L(Z).
(2) Fix p e H. Let 1 =ptp Z and q H, q 4: P, be given. It suffices to show

that d(p, )p)> d(q, ckq). Let ), be the geodesic ray starting at p and passing
through q. Let x 7(o). Since 1 g: 4 e Z we see by (1) that th fixes x, and
therefore the geodesics 7 and b 7 are asymptotic. The function f:t
d2(Tt, 49Tt) is bounded for > 0 and convex by Proposition 4.2 of [4]. Hencefis
nonincreasing, d2(q, dpq)= f(c) where c d(p, q), and f(c) <f(O)= d2(p,

Remark. For any Hadamard manifold H the subgroup C of Clifford trans-
lations is normal in I(H), and as a consequence L(C)is invariant under I(H) by
the discussion of Section 1.

DEFINITION OF THE DUALITY CONDITION. Points x, y in H(o)are dual
relative to a subgroup D of I(H) if there exists a sequence {b.} D such that
b. p x and b- p y for every p H. A subgroup D of I(H) will be said to
satisfy the duality condition if y() and y(-) are dual relative to D for any
geodesic of H.

We remark that distinct points x, y that are dual relative to a group D cannot
always be joined by a geodesic of H. Note also .that L(D) H(m) if D satisfies
the duality condition, but the converse is not true as we shall see. The duality
condition arises from the study of geodesic flows and acts as an extension of
and substitute for compactness. If D acts freely and properly discontinuously
on H, then D satisfies the duality condition if and only if every vector in the unit
tangent bundle ofM HID is nonwandering relative to the geodesic flow. See
Proposition 4.9 of [12]. In particular, D satisfies the duality condition if HID is
compact or has finite volume. Because of these special cases we regard the
duality condition as a natural hypothesis and shall require it in most of our
results.
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If H is a symmetric space and if D
_

Io(H) satisfies the Selberg condition (S)
[5], then D satisfies the duality condition as Heintze proves in [18]. It is not
clear under what conditions the converse is true.
The main result of this section is the following:

THEOREM 2.4. Let G
_

I(H) be a subgroup with nontrivial center A such
that the normalizer ofG in I(H) satisfies the duality condition. Then A consists of
Clifford translations.

Let D be the normalizer of A in I(H). Then D contains the normalizer of G
and hence also satisfies the duality condition. It suffices therefore to consider
the case that G A, an abelian subgroup.
We shall need several lemmas.

LEMMA 2.4a. Let x H(00) be arbitrary and let y H(00) be a point that can
be joined to x. If z H(00) is any point that can be joined to x, then z D(y).

,Proof. Let and a be geodesics of H with (00)= y, tr(00)= z and
(- 00) a(- 00) x. There exists a sequence (b.}

_
D such that ,p - z and

b;-xp
_

x for any point p in H since D satisfies the duality condition. If we
choose p to lie on , then

p(dp,,p, dp.y)= 4,.-p(P, Y) <- p(ck; Xp, x) 0

since

,(4,; y)+ y) <-
It follows that b.y z.

LEMMA 2.4b.
identity.

The subgroup A contains no elliptic elements except the

Proof Let E be the set of elliptic elements in A. We show that E has a fixed
point q 6 H. Assuming this has been established, it follows that E fixes every
point of D(q) and hence every point of the segments ,q,gq, 9 6 D. It follows that
E fixes every point of H since L(D) H(00), and therefore E contains only the
identity element of D.
To show that E has a fixed point q H, let q 6 E be arbitrary and let Co be

the set of fixed points of tk in H. Now Co is a closed totally geodesic submani-
fold of H [22], and C is invariant under the commuting set E. Let H* be a
closed totally geodesic submanifold ofH of smallest dimension that is invariant
under E. If q/6 E is arbitrary, then C, H* is nonempty by Lemma 1 of [15]
and is clearly a closed, totally geodesic submanifold ofH that is invariant under
E. Hence H* is a point since it is contained in each C.
LEMMA 2.4C. For each point x L(A) there exists a unique point y L(A)

such that x can be joined to y.
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Proof We prove uniqueness first. Suppose that x L(A) can be joined to
y L(A), and let {b.} c_: A be any sequence such that b.p x for all p H. Let
y be a geodesic of H joining x to y, and let p be a point of y. Recalling that A
fixes every point of L(A) by Proposition 2.3 we observe that

e(ck; lp, y)= p(cD; Ip, ok; y)= cnp(P, Y) < p(dpnp, x) 0

by the argument of Lemma 2.4a. Therefore y is unique.
To show the existence of y let x and {bn} be as above and let b-p- y

L(A) by passing to a subsequence if necessary. We show that x can be joined to
y. Let z be any point of H(00) that can be joined to y. Then as above,

p(dp.p, dp.z)= " -1,(P, z) O,

which implies that b.z x. Now L(A) is left invariant by D, the normalizer of
A in I(H), and it follows from Lemma 2.4a that z can be joined only to points in
D(y)

_
L(A). Therefore b, z can be joined only to points in L(A) for each n. Fix

a point pn and let y,*=Vp,z(-00). Then y*. L(A)and y,*y*=
Vp,(- oo). Therefore x can be joined to y* L(A) and by the uniqueness asser-
tion y* y.

LEMMA 2.4d. For every point x L(A) the C vector field p V(p, x) is
parallel in H and theflow transformations dpt" p - Vex(t) are Clifford translations.

Proof The vector field p V(p, x) is C since V(p, x) -grad f(p) for any
Busemann function f at x [14]. Busemann functions are C2 by [19]. Now let
x L(A) be given and let y be the unique point of L(A)that can be joined to x.
By Proposition 2.2 it suffices to show that y is an antipodal point of x. If
z n() is any point that can be joined to y, then z D(x)

_
L(A) by Lemma

2.4a. Therefore z x by Lemma 2.4c and x, y are antipodal points.

Proof of Theorem 2.4. By Lemma 2.4d, I(H) contains Clifford translations,
and therefore we may write H as a product H x H2, where H is a flat
Euclidean space and H2 has no fiat factor. The factor H2 may be trivial and the
proof then continues as in the next paragraph. Assume now that H2. is not
trivial. It is not difficult to show that the flat subspaces H x {q}, q H2, are
permuted by the elements of I(H). Therefore each element b ofD can be written
tk thx x b2, where b, n,(tk) is an isometry of H,. Now A2 n2(A) is normal
in D2 n2(D), and it is easy to show that D2 satisfies the duality condition in
H2 since D satisfies it in H. If A2 is nontrivial then the argument above will
show that H2 admits a fiat de Rham factor. Hence A2 {1} and A

_
I(Hx) x

{1}
_

I(n)operates only on the flat factor n.
No isometry of a Euclidean space is parabolic. The fact that D satisfies the

duality condition in H also implies that D n x(D) satisfies the duality condi-
tion in Hx. It follows by Lemma 2.4b that every isometry of A is axial. Let
b 4:1 A be given, and let V be a geodesic of H such that (tko V)(t) V(t + c)
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for some c > 0 and all t. Let x y(oo) L(A). Then b(p) tx,c(p) for all points
p e y, where 4, is the Clifford translation q y(c). The theorem will be
proved when we show that 4 4,.

Let A*
_

I(H) be the group generated by A and the Clifford translations
{by,, :y L(A), t R}. If A then

(o y,t)(p)= (o y,,)(t)= yq,,,y(t)= (by,, t)(p)

since A fixes each point of L(A). Therefore each by, centralizes A. Clifford
translations commute with each other since they act as translations of the flat
de Rham factor (Theorem 2.1), and therefore A* is an abelian group.

It suffices to show that D*, the normalizer of A* in I(H), contains D, the
normalizer of A in I(H). The group D* will then satisfy the duality condition
and since q b, fi- is an elliptic element of A* it will follow by Lemma
2.4b that @ is the identity. Now let =/= 1 be an arbitrary element of D. If A
then @- A

_
A*. If q is a Clifford translation that translates a geodesic y

with endpoints in L(A), then q- is a Clifford translation that translates
y, whose endpoints lie in L(A). Conjugation by carries the generators of

A* into A* and therefore normalizes A*. This completes the proof of
Theorem 2.4.

Let H be an arbitrary Hadamard manifold and write H as a Riemannian
product Ha x Hz, where H1 is a flat Euclidean space and Hz has no fiat de
Rham factor. The group I(n) is the product of the subgroups I(n) x {1} and
{1} x I(H), and if t(n)satisfies the duality condition in H, then I(H)satisfies
the duality condition in Hz. Therefore if I(H) satisfies the duality condition,
then the structure of the group I(H) reduces to the case where H has no flat
factor.

PROPOSITION 2.5. Let H be a Hadamard manifold such that I(H) satisfies the
duality condition. The followino are equivalent:

(1) H admits no fiat de Rham factor.
Either I(H) is discrete or Io(H) is a noncompact semisimple Lie oroup
with trivial center.

Proof Clearly (2) implies (1) by the discussion above. Suppose now that H
has no flat de Rham factor and that I(H) is not discrete. By the first part ofthe
proof of Lemma 2.4b, Io(H) has no fixed point in H and is therefore noncom-
pact. We assert that lo(H) is semisimple. If Io(H) were not semisimple, then
there would exist an abelian subgroup A invariant under all continuous auto-
morphisms of Io(n) [6]. In particular, A would be normal in I(n) and by
Theorem 2.4 would consist of Clifford translations, contradicting the assump-
tion that H has no flat de Rham factor. For the same reason the center ofI0(H)
is trivial. Therefore (1) implies (2).
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3. Flat points at infinity

Let M be a complete manifold ofnonpositive sectional curvature, and let
y:R- M be a unit speed geodesic. We say that y bounds an imbedded (im-
mersed) flat half plane if there exists an isometric totally geodesic imbedding
(immersion) F:R x [0, oo) - M with F(t, 0) (t) for all t 6 R. If the domain
of F is R x [0, c] for some c > 0, then we say that bounds an imbedded
(immersed) fiat strip.

If H is an arbitrary Hadamard manifold we define a point x 6 H(oo) to be a
flat point (at infinity) if every geodesic of H that belongs to x bounds an
imbedded flat half plane.

Examples. We present some examples and nonexamples of flat points at
infinity.

(1) Euclidean space Rn. Clearly every point at infinity is a flat point.
(2) Product manifolds. Let H H1 x H2 be a nontrivial Riemannian pro-

duct of two Hadamard manifolds. Then every x H(oo) is a flat point.
(3) Let H be a symmetric space of noncompact type and rank k > 2. Then

every point x H(oo) is a flat point.
(4) Let H be a symmetric space of noncompact type and rank 1, or more

generally let H be a Visibility manifold. Then no point in H(oo) is a flat point.

To show that every point x H(oo) is a flat point in Example 2, it suffices to
show that every geodesic y of H bounds a flat strip of arbitrarily large width. If
y(t) (Yl(t), q), where 71 is a unit speed geodesic of H1, then let y.(t)=
(y(t), q.), where q. is a divergent sequence of points in H2. Then y, and y
bound a flat strip of width d(q, q.). Similarly if y(t)= (p, y2(t)). If y(t)=
(y(t), y2(t)), where both and 72 are geodesics with positive speed, then let
Yn(t) (1( -- g/), 2 t). If n is fixed then t --, d(y, t, y) is a bounded convex func-
tion on R and hence is constant. Therefore Yn and y bound a flat strip and the
width as a function of n is unbounded.

In Example 3, write H as a coset space G/K and let y be an arbitrary unit
speed geodesic of H. Choose / G so that g(y(0)) p, the base point of G/K,
and let v (g y)’(0). Then both v and the geodesic g y are tangent to a flat
totally geodesic submanifold Ho of dimension k > 2 by Theorem 6.2 (ii) of [20,
p. 210]. Therefore y is tangent to /-l(Ho) and it follows that every point of
H(oo) is flat.

In Example 4, the Euclidean geometry that holds in any flat half plane is
incompatible with the Visibility axiom as defined in [14, p. 61].
We continue with some elementary observations.

PROPOSITION 3.1. The set of flat points in H() is closed in H()and
invariant under I(H). IfI(H) satisfies the duality condition and ify is any geodesic
of H, then either both endpoints (y(oo), y(-oo)} are fiat points at infinity or
neither endpoint is a fiat point at infinity.
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Proof. The first assertion is clear. Suppose now that I(H) satisfies the dua-
lity condition, and let 7 be an arbitrary geodesic of H. Assume further that one
endpoint, say 7(o)= x, is a flat point. Let y denote 7(-) and let p 6 H be
arbitrary. If z 7py(-), then by Lemma 2.4a the point z lies in I(H)(x) and
hence is a flat point. Therefore the maximal geodesic 7pz 7py bounds an
imbedded flat half plane, which shows that y is a flat point at infinity.

The main result of this section is:

THEOREM 3.2. Let D
_

I(H) be a sub#roup that satisfies the duality condition,
and let A be a closed subset ofH( that is invariant under D. IrA has nonempty
boundary, c3A, then every point of c3A is a fiat point at infinity.

We need some preliminary results.

LEMMA 3.2a. Let x, y be distinct points ofH() and p any point ofH. Letfbe
a Busemannfunction at x, and let C B(p, x) B(p, y). Iffhas a local minimum
in C at a point q, then q lies on a [teodesic joinin[t x to y.

Remark. falways has a maximum on C at p so the lemma does not hold for
local maxima.

Proof. Suppose that g q(x, y) < n and choose a geodesic 7 starting at q so
that 7’(0) makes an angle less than r/2 with both V(q, x) and V(q, y). Let g be
any Busemann function at y. It follows that (fo y)(t)and (#o y)(t)are strictly
decreasing on [0, e] for some e > 0 since grad f(q) V(q, x) and (grad #)
(q) -V(q, y). For any t (0, e] we have f(yt)< f(q)< f(p) and a(yt)<
#(q) < #(p). Hence y(t) C and f(yt) < f(q), a contradiction. Therefore

(x, y) r and q lies on a geodesic joining x to y.

LEMMA 3.2b. Let 7 be a maximal geodesic of H that does not bound an
imbedded fiat half plane, and let p be a point of 7. Ifx 7(oo) and y 7(-),
then we canfind neighborhoods U

_
H( ofx and V

_
H( ofy and a number

R > 0 such that for any points x* U and y* V there exists a geodesic 7"
joining x* to y* with d(p, 7*) < R.

Remark. By modifying the proof of this lemma we can also prove that (a)
the lemma remains true if U, V are neighborhoods in the larger space
/-/= H w H(o), (b) x H() is a flat point if and only if B(p, x) c B(p, y) is
noncompact for all p H and all y =/: x 6 H().

Proofi Suppose that the assertion is false. Then we can find sequences
{x}

_
n(oo) and {y}

_
n(oo) such that x x, y --} y and no geodesic with

d(p, ) < n joins x to y. By the preceding lemma the set B(p, x) B(p, y) is
not contained in the closed (compact) ball of radius n and center p. Hence we
may choose qn B(p, xn) c B(p, y) with d(p, q) > n. The geodesic segment
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’v. is contained in the convex set B(p, x.) c B(p, y,) since the endpoints are in
this set. If q. z H(oo), passing to a subsequence, then y,[0, oo) __c_ B(p, x) c
B(p, y) by continuity. It follows from the fact that 7 does not bound an im-
bedded flat half plane and from Proposition 5.1 of [14] that for some to > 0
there exists no geodesic through yz(to) that joins x to y. Letfbe any Busemann
function at x. We will obtain a contradiction from Lemma 3.2a when we show
that f =- f(p) in B(p, x) c B(p, y). If q 4: P is any point of B(p, x) c B(p, y),
then the convex function f is nonincreasing on the geodesic segment tr yv
and hence

0 _> (fo a)’(0)= (a’(0), grad f(p)) (a’(0), V(p, x)).

It follows that g v(q, x) < 7/2. Similarly g v(q, Y) -< n/2 since any Busemann
function 9 at y is also nonincreasing on tr. Therefore v(q, x)= :
v(q, Y) r/2 since these angles sum to . Consequently we have 0 (f tr)’(0),
which implies that f is constant on o since (fo o)"(t)> 0 and f is
nonincreasing.

Proof of Theorem 3.2. We show that an arbitrary point x OA is a flat
point. Let y be an arbitrary geodesic that belongs to x. If y does not bound an
imbedded fiat half plane, then by Lemma 3.2b there exists a neighborhood
U
_
H() of x such that y can be joined to every point x* U. By Lemma

2.4a, U
_

D(x) A. However, U must contain points of H() A since
x OA, a contradiction. Therefore y bounds an imbedded fiat half plane, and x
is a fiat point at infinity.

4. Orbit structure

In this section we discuss the orbits in H() of certain subgroups D of I(H),
in particular subgroups that are semisimple or satisfy the duality condition. We
obtain characterizations of flat Euclidean spaces and rank one symmetric
spaces in terms of the action of I(n) on n().
Our first result is a restatement of Theorem 3.2.

PROPOSITION 4.1. Let D
_

I(H) be a suboroup satisfyin9 the duality condi-
tion, and let A

_
H() be a closed subset invariant under D. Ifx A is not aflat

point at infinity, then x is an interior point of A.

The next two results describe the simplest case where an orbit is a point or a
finite set of points. We remark that if H H x H2 is a Riemannian product
manifold, then each geodesic y of H beginning at a point p determines a
geodesic of H: (yt, P2) beginning at (p, P2) for any point p2 of H2.
A similar remark applies to the geodesics of H2. We then obtain natural
inclusions of H(z) and H2(o) into H().
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THEOREM 4.2.
are equivalent:

Let D
_

I(H) satisfy the duality condition. Then thefollowin#

(1) D has a centralizer Z 1 in I(H).
(2) D has a fixed point in H().
(3) H is a Riemannian product H x H2 such that H is either R or flat

Euclidean space of dimension k

_
2, and each element d/) of D can be written

( d?l x d2, where dl is a translation of H1 and d?2 is an isometry ofH2. The
quotient space H /D is compact, where

Under any of the conditions above the set of points fixed in H() by D is

H1 ), and the centralizer Z ofD consists ofthe translations ofH 1. Equivalently
D2 (b2 b

_
D) has trivial centralizer in the isometry troup ofH2 arid has no

fixed points in H2(oo).

Proof. We prove the equivalence ofthe three statements before establishing
the final assertion of the theorem.

Consider (1)= (2). Let b be a nonidentity element in Z, the centralizer ofD.
It follows from Proposition 2.3 that b is a Clifford translation since L(D)---
H(oo). Now b translates the geodesics joining p to p for every p H, and
these geodesics , all belong to a single asymptote class x 6 H(oo) by Proposi-
tion 6.7 of [14]. If 6 D is arbitrary then (,) since commutes with b,
and it follows that fix x since ff permutes the oriented axes of b.
The assertion (3)= (1) is obvious so it remains only to prove that (2)= (3).

Let x 6 H(oo) be a fixed point of D, and let y 6 H(oo) be any.p0int that can be
joined to x. By Lemma 2.4a, y can be joined only to points in D(x) {x}, which
means that x and y are antipodal points. By Proposition 2.2 the vector field
p--, V(p, x) is parallel in H, and its flow transformations are Clifford transla-
tions of H.
We define a distribution N in H by

N(p) span (V(p, x): D fixes

for any point p in H. From the previous paragraph it is clear that the distribu-
tion N is spanned by the parallel vector fields p V(p, xi), 1 < < k, for suit-
able fixed points x1,..., Xk of D, and therefore N is involutive and invariant
under the holonomy group at each point. IfN- denotes the orthogonal distrib-
ution, then N is also involutive and invariant under the action of the holon-
omy group at each point. If H and H2 are maximal integral manifolds of N
and N respectively, then H is isometric to the Riemannian product H x H2
by the de Rham decomposition theorem. See [23].

If V is any parallel vector field in a Riemannian manifold, then the sectional
curvature of any 2-plane containing V(p) is zero. It follows that either H has
dimension one or H is isometric to Rk, k > 2, with the usual fiat metric.
Because b. N(p)= N(pp) for all points p and all tk D it follows that each
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isometry ff D can be written as 4) x x (])2, where 4)i is an isometry of Hi,
i= 1, 2. If is a geodesic of H that starts at p (px, P2) and belongs to an
asymptote class x H() fixed by D, then by the definition of N, 7 is tangent to
the Euclidean factor H through each of its points and may be written as
y(t) (yx(t), P2), where y is a geodesic of H. It follows that x fixes yx(o)
H(). Moreover, must be a translation of Hx and Hx/Dt must be com-
pact since the foliation N is spanned by the vector fields p V(p, x)where D
fixes x. This completes the proof of (2)= (3).
We establish the final assertion of the theorem. From (3) it is clear that

H() equals the fixed point set of D and that the translations of H are
contained in the centralizer Z of D. Conversely let q be a nonidentity element
of Z. Now Z leaves the fixed point set of D invariant, and hence @,N(p)=
N(qp) for all points p in H. Therefore q can be written q x x /2, where ffi
is an isometry of Hi, 1, 2. If Di= {: e D} and Z= {: q Z}, 1, 2,
then Z centralizes D i. Now D2 satisfies the duality condition in H2 since D
satisfies the duality condition in H. If Z2 were not the identity, then by the
implication (1) (2), D2 and hence D would have a fixed point in H2(oo),
which is disjoint from Ha (o0). Therefore Z2 is the identity. The group Z Z
must consist of translations since D is a group of translations and H/D is
compact. This completes the proof of the theorem.

THEOREM 4.3. Let D c_ I(H) satisfy the duality condition. Then thefollowin9
are equivalent:

(1) D has a finite orbit in
(2) H is a Riemannian product H x H2 such that Hx is either R or a flat

Euclidean space of dimension k >_ 2, and each element d of D can be written as
x b2, where d?i is an isometry of Hi, 1, 2. Moreover,

Hx(oo) {x 6 H(): D(x)is a finite set},
and D2 {t2 : 6 D} has no finite orbits in H2(oo). If

D*= { 6 D:d fixes every point of H(oo)},
then D* is a normal suboroup offinite index in D, D {t b 6 D*} is a 9roup of
translations ofH and the quotient space Hx/D is compact.

Proof Clearly (2)= (1) so it remains to prove (1)= (2). Let

A {x e H(): D(x)is finite}.
We show first that p V(p, x) is a parallel vector field in H for every x A. Let
x A be given, and let y e H(o) be a point that can be joined to x. By
Proposition 2.2 it suffices to show that x and y are antipodal points. Any point
z n() to which y can be joined must lie in D(x) D(x) by Lemma 2.4a, and
in particular y can be joined to at most finitely many points in H(). If
r(-) x and r(-) z then ,,(-) x, is a curve in H() from x
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to z if tr is any curve in H from p to q. Therefore y can be joined to each of the
points x, which implies that z x. Hence x and y are antipodal points.
Now define a distribution in H by N(p) span {V(p, x):x A}. By the argu-

ment ofthe previous theorem, H is a Riemanniaan product H x H2, where for
each point p (Pl, P2) we have Tpl(H1)= N(p) and Tp2(H2)= N(p), the
orthogonal distribution. Similarly each isometry b of D can be written
b b x b2, where bz is an isometry of H, i= 1, 2. The factor H is again
either R or a fiat Euclidean space.
Now choose points x, Xk in A so that the foliation N is spanned by the

parallel vector fields p V(p, xi), 1 < < k. If D’ is the stability group of xi in
D, then each D’ has finite index in D, and therefore D* 0k=l D* has finite
index in D. Clearly A

_
H1() by the definition of N and H 1- We assert that

D*= {b 6 D: b fixes every point of H()}. From this it will follow that
A H (o) since D* has finite index in D. This implies immediately that D2 has
no finite orbits in H2(oe).

If b is an element of D that fixes every point of H1(o ), then 4 clearly lies in
D*. Conversely let b 6 D* and x 6 H(oe) be given. Write 4 as a product
b x b2, where b is an isometry of H. Since b fixes the points x, Xk in
A c_ Hl(oo) it follows that bl 6 D’ also fixes these points. Therefore bl is a
translation ofH since the vector fields p --, V(p, x), 1 < < k, span the tangent
space of H. It follows that b and hence b fixes every point of H(o). More-
over D consists of translations of H and H/D’ is compact. It remains only
to show that D* is a normal subgroup of D. If ff 6 D is arbitrary, then
-1D*q {th D: b fixes every point of- H1(oo)}. However - n ()
-(A) A H(), which shows that q-D*q D*.
We investigate next the orbits in H(o) of a semisimple group G

_
I(H). We

recall that if G is a connected noncompact semisimple Lie group with finite
center and if K is a maximal compact subgroup of G, then the coset space
H G/K is a symmetric space of noncompact type and in particular a Hada-
mard manifold. H is equipped with a Riemannian metric such that for each
# G we have an isometry z given by (hK) #hK. The map z is a homomor-
phism of G onto the semisimple group G* Io(H), and K* z(K) is a maxi-
mal compact subgroup of G*.
We assert that Z*, the center of G*, is trivial. The group G* satisfies the

duality condition as is shown in the proof of Theorem 5.4 below, and therefore
if Z* is nontrivial then it is not discrete by Theorem 4.2, contradicting the
semisimplicity of G*.

PROPOSITION 4.4. Let H be a symmetric space of noncompact type. Let
G Io(H) and let K be a maximal compact sub#roup ofG. Then G(x) K(x)for
every x H(m). In particular every orbit of G in H(m) is compact.

Remark. This result is essentially contained in Lemma 5 of [25] expressed in
different language and notation.
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Proof. Let p 6 H be a fixed point of K. The maximality of K in G implies
that K is the isotropy subgroup of G at p. It will suffice to show that given 9 6 G
and x 6 H() we can find k 6 K such that 0x kx. Let 0, x be given and
choose X 6 (b, the Lie algebra of G, so that the unit speed geodesic

--, exp (tX)(p) belongs to the asymptote class x. For each > 0 let bt denote
exp (tX) and let xt 6 H(o) be the asymptote class of the geodesic ray joining p
and 9(( P). From the one parameter subgroup of G that translates px, we may
choose an element fit so that pt(p)= 9(d?tp)and t(Xt) Xt. The element
kt G-x ct fixes p and hence lies in K. We observe that

4: p(k,x, x,)= 4:. o,,(O,k,x, O,x,)= 4: a,,(g,x, x,)

: o4,,(9x, x,)= : o4,,(P, 9P) 0 as t- + o

by the law of cosines [14, p. 48]. Now

xt-Ox as t-+oo

since p(gx, x,)= p(gx, gcDtp) 0 as - + o. Therefore k,x - gx as
+ c by the set of inequalities above, and hence there exists k K with

kx 9x since K is compact.

We can extend this result as follows for an arbitrary space H.

THEOREM 4.5. Let G
_

I(H) be a noncompact closed connected semisimple
troup with finite center. Let K be a maximal compact sublroup of G. Then
G(x) K(x) for every x in L(G).

Proof The set L(G) is nonempty since G is closed and noncompact. Let
p H be a fixed point of K. Let 9 e G and x L(G) be given. The orbit
H*= G(p) is a noncompact symmetric space G/K relative to the metric
induced from H, and H* is thus a Hadamard manifold imbedded in H. Let d*
denote the metric in H*, and let x* denote a typical point in H*(). Now
choose a sequence {b.}

_
G such that b.p x in the cone topology of

/-/= H w H(oo). Let y,* be the unit speed H*-geodesie such that y,*(0) p and
y.*(t.) b.p, where t. d*(p, dp,p) +. Let x.* H*(o) be the asymptote
class of 7.*. By the preceding result we may choose k. K so that k.(x*.)=
9(x*. ). Now let k. k K by passing to a subsequence.
We assert that kx Ox. Let ., ft. denote the H -geodesics O Y.*, k. y.*

respectively. The function d*(.t, ft.) is a continuous convex function by
Proposition 4.7 of [4] and is bounded for t > 0 hence noninereasing in t since .
and ft. are asymptotes in H*. If {s.}

_
R is a sequence for which d*(.t., ft,)

d*(,t., fl.s.), then it follows from the monotonicity of t d*(.t, ft.) that

d*(.t,, fl.s.) < d*(.(0), ft.) < d*(.(0), ft.(0))= d*(op, p).
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Furthermore, Is, t.I Id*(fl, s, p)- d*(nt, #P)I < 2d*(#p; p) by the
triangle inequality. This implies that

Finally

d(%t., flt.) < d*(t, flt.) <_ 3d*(p, p).

kx lim kn(4).P)= lim k.(*.t.)= lim fl.(t.)

lim %(t.)= lim 0(T.*t.)=

All limits in the last step take place in the cone topology of H.

COROLLARY 4.6. Let I(H) satisfy the duality condition. Then Io(H) has a
compact orbit in H(m ).

Proof If Io(H) is the identity then Io(H) clearly has a compact orbit in
H(). If H has a flat de Rharn factor H x, then H() is a eornpaet orbit of
lo(H). If H has no flat de Rham factor and Io(H) is not the identity, then Io(H)
has a compact orbit by Proposition 2.5 and Theorem 4.5. The set L(lo(H))is
nonempty by the argument in the first paragraph of the proof of Proposition
4.10 below.

Minimal actions on H(az). Except for a point or a finite set of points, the
simplest orbit of a subgroup D I(H) is a dense subset of H(oo). If every orbit
of D in H(oo) is dense, then by definition D acts minimally on H(oo). For
applications to geodesic flows we shall frequently use the fact that if M HID
is a smooth manifold, then D acts minimally on H(oo) if and only if the geodesic
flow has a dense orbit in the unit tangent bundle ofM. For a proof see Theorem
4.14 of [12], which includes the next result in the case that HID is a smooth
manifold.

PROPOSITION 4.7. Let D
_

I(H) be a subgroup such that is noncompact.
Then the followin9 are equivalent:

(2)
H(oo).

D acts minimally on H().
D satisfies the duality condition and some orbit ofD in H(o) is dense in

Proof Suppose that D acts minimally on H(oo). Clearly D has a dense orbit
in H(oo). Now let be a geodesic of H with endpoints x ()and
y (-oo). The fact that/3 is noncompact means that L(D)is nonempty in
n(oo), and in fact L(D) n(oo) since D acts minimally and leaves L(D) invar-
iant. Let {q.}

___
D be a sequence such that tpp x, and let q- ap z n(oo)

by passing to a subsequence. The point p in H is arbitrary. It is easy to see that
the point x is dual to any point in D(z) H(o) and in particular to y. Therefore
D satisfies the duality condition.
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Conversely let D satisfy the duality condition, and let x H(oo) be chosen so
that D(x)= H(). We shall show that D(y)= H(o) for an arbitrary point
y n(). Let y n() be given, and let , be any geodesic with (oo) y. If z
denotes (-o), then by hypothesis z is dual to y.

First we show that z is dual to any point w in n(). Let {qg.}
_
D be a

sequence such that qg.x y. Fix a point p on and let z. Vp,.x(-o). By
continuity z, z since qg.x y. Now z, is dual to b,x by the duality condition
and also to any point in D(ck,x) dp, D(x) H(). Ifw is an arbitrary point of
H(), then w is dual to each z, and hence to z since the points dual to w are a
closed subset of H(oo).

Finally let w be an arbitrary point of H(oo), and let {bn} - D be a sequence
such that bn p w and b- lp z. Since p lies on , it follows as in the proof of
Lemma 2.4a that

(p, y) _< (z, 0.

Therefore w lim.-.oo bnp lim._.oo b.y, which shows that D(y)= H().

The following observation is useful.

PROPOSITION 4.8. Let D
_

I(H) be a subgroup that acts minimally on H().
Then any subgroup ofD offinite index also acts minimally on H().

Proof. Let D* be a subgroup of D of finite index, and let D be the union of
the cosets {b,. D*" 1 < < n). Given x n(oo) let F D*(x). It is clear that
H(oo) ’= dpi(F) since D(x)= H(), and therefore F has nonempty inter-
ior. If the boundary, OF, is empty we are done so assume that there exists
z t3F. It follows that G D*(z)

_
tF, and we argue as above to conclude that

G contains an interior point. This contradiction shows that F H() and that
D* acts minimally.

Our final result of a general nature is"

PROPOSITION 4.9.
equivalent:

If H() has no flat points then the following are

(1)
(2)

D
_

I(H) satisfies the duality condition.
D
_

I(H) has noncompact closure and D acts minimally on H().

Proof. If D is noncompact and D acts minimally on H(oo), then D satisfies
the duality condition by Proposition 4.7. If H(oo) has no flat points and D
satisfies the duality condition, then D has no proper closed invariant sets in
n() by Theorem 3.2. Clearly/ is noncompact since L(D)= n(oo) when D
satisfies the duality condition. Therefore (1)implies (2).

We now turn to results of a more specialized nature.
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PROPOSITION 4.10. Let I(H) be noncompact and let I(H) act minimally on
H(). Then on of the following/must occur:

(1) I(H) is discrete.
(2) H is isometric to R with the usual metric.
(3) Io(H) is a noncompact semisimple Lie group with trivial center. Moreover

L(Io(H)) H() and all orbits of Io(H) in H() are compact.

Proof. By Proposition 4.7, I(H) satisfies the duality condition and in parti-
cular L(I(H))= H(oo). Suppose now that I(H)is not discrete. If Io(H) were
compact, then its fixed point set S in H would be a nonempty totally geodesic
submanifold invariant under I(H) [22]. It would follow that S H since
L(I(H)) H(o). This contradiction implies that Io(H) is noncompact, and it
follows that L(Io(H)) is nonempty and in fact equals H() since it is invariant
under I(n).

Either Io(H) is semisimple or it is not. Suppose first that Io(H) is semisimple.
The center of Io(H)must consist of Clifford translations by Proposition 2.3. We
assert that Io(H) has in fact a trivial center. Suppose that b is a nonidentity
element in the center of Io(H). The geodesics yp joining p to bp are translated
by tk for every point p in H. These geodesics all belong to a single asymptote
class x H(o) and x has an antipodal point y in H(o), by Proposition 6.7 of
[14]. Therefore by Proposition 2.2, ,: p--. yp(t) is a Clifford translation for
every and b ba for some number a 0. If @ e !o(H) is arbitrary, then define, t -1 for every number t. For each point p the geodesics btp
and t---} @p must be equal since they both contain the points p and
b.p @,p =/= p. Therefore b, , and {b} lies in the center of Io(n), contra-
dicting the fact that a semisimple group must have discrete center. It follows
from Theorem 4.5 that the orbits of Io(H) in H(o) are compact.

Suppose now that Io(H) is not semisimple, and let A 1 be an abelian
subgroup invariant under all continuous automorphisms of Io(H) [6]. In parti-
cular A is normal in I(H). The argument above shows that A has no fixed
points in n and that L(A) n(). By Lemma 2.4d the vector field p --} V(p, x)
is parallel in H for every x H(). (One could also derive this from the fact
that A consists of Clifford translations by Proposition 2.3.) For any point p and
any 2-plane rt in Tp(n) choose x n(o) so that V(p, x) lies in t. Then
K(n) 0 since p --. V(p, x) is parallel, and hence H is isometric to Rn with the
standard flat metric.

COROLLARY 4.11.
in H() are compact.

Let I(H) act minimally on H(). Then all orbits oflo(H)

Proofi The result is trivial if Io(H) is the identity. If I(H) is compact then so
is Io(H), and the result is again trivial. Assume that I(H) is noncompact and
that Io(H) is not the identity. The result now follows from Proposition 4.10.
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PROPOSITION 4.12. Let Io(H) be noncompact and act transitively on H().
Then H is isometric either to R with the usual metric or to a rank one symmetric
space.

Remarks. (1) If H R or a rank one symmetric space, then in either case a
maximal compact subgroup K of Io(H) acts transitively on the unit vectors of
T(H), where p is a fixed point of K. Hence K acts transitively on H(oo).

(2) The condition that Io(H) be noncompact is necessary. There are 2-
dimensional spaces H of nonconstant curvature for which I(H)= Io(H) is
compact and acts transitively on H(oo). See the discussion of central points in
[4, p. 34].

Proof of the proposition. By Proposition 4.10 either H is flat or Io(H) is a
noncompact semisimple Lie group with trivial center and L(Io(H))= H(o).
Suppose that H is not flat. Let K be a maximal compact subgroup of Io(H), and
let p 6 H be a fixed point of K. The orbit M Io(H)(p) is a noncompact
symmetric space Io(H)/K relative to the metric induced from H, and the differ-
ential maps of K carry Tp(M) into itself. By Theorem 4.5, K is transitive on
H(oo) since Io(H) is transitive on H(oo), and therefore the differential maps of
K act transitively on the unit vectors of Tp(H). It follows that H M, a symme-
tric space and also a two point homogeneous space. By [21], H must be a rank
one symmetric space.

THEOREM 4.13. The group Io(H) is noncompact and acts transitively on H()
under any of the following conditions:

(1)
(2)
(3)

group.
(4)

point.

I(H) is noncompact and Io(H acts minimally on H().
I(H) is noncompact and acts transitively on H(o).
I(H) is noncompact, acts minimally on H()and I(H)/Io(H) is a finite

H is homogeneous and I(H)acts minimally on H().
Io(H) satisfies the duality condition and some point of,H() is not aflat

Proof. Case (1). The set L(I(H))is nonempty since I(tt)is noncompact and
in fact L(I(H))= H(oo) since Io(H) acts minimally and leaves L(I(H))invar-
iant. By the argument of Proposition 4.10, Io(H) has no fixed point in H and
must therefore be noncompact. By Proposition 4.10, either H is isometric to Rn

with the usual metric and we are done, or the orbits in H(oo) of Io(H) are all
compact. In the latter case Io(H) also acts transitively on H(oo) since the orbits
of Io(H) in H(oo) are all dense by hypothesis.
Case (2). The group Io(H) is not the identity since I(H)is second countable

in the compact-open topology [20, p. 167] and I(H)acts transitively on H(oo)
by hypothesis. By Proposition 4.10, either H is isometric to R with the usual
metric and we are done, or Io(H) is a noncompact sernisimple Lie group with
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trivial center and L(Io(H))= H(oo). In the latter case all orbits of Io(H)in
H(oo) are compact. However, some orbit of Io(H) has nonempty interior and
must therefore be open since I(H)/Io(n) is a countable group. Hence Io(n) acts
transitively on n().
Case (3). By Proposition 4.8, Io(H) acts minimally on H(oo), and the result

now follows from case (1).
Case (4). This is an immediate corollary of case 3).
Case (5). Clearly Io(H)is noncompact and L(Io(H))= H(oo)since Io(H)

satisfies the duality condition. We assert that Io(H) is semisimple. If it were not
semisimple, then it would contain an abelian normal subgroup consisting of
Clifford translations by Theorem 2.4, and by Theorem 2.1 H would admit a flat
de Rham factor. By the second example of Section 3 every point ofH(oo) is fiat
if H is a nontrivial Riemannian product manifold. This contradicts our hypoth-
esis and shows that Io(H) is semisimple. Similarly the center of Io(H) must
contain only Clifford translations by Theorem 2.4 and is therefore also trivial.
It follows from Theorem 4.5 that every orbit of Io(H) in H(oo) is compact. If
x H() is not fiat, then by Proposition 4.1, x is an interior point of the orbit
Io(H)(x), which must therefore be open. Hence Io(H)(x)= H(oo).
Combining Proposition 4.12 and Theorem 4.13 we obtain characterizations

of Euclidean or rank one symmetric spaces. In particular we have:

COROLLARY 4.14. Let Io(H) satisfy the duality condition and suppose that
some point ofH( is notflat. Then H is isometric to a rank one symmetric space.

We conclude this section with a characterization of Euclidean space.

THEOREM 4.15. Let A
_

I(H) be a subgroup whose normalizer acts minimally
on H( and has noncompact closure. IfA 1 and its centralizer Z 1, then H
is isometric to R with the usual metric and A is a subgroup of translations.

Remarks. (1) Compare this result to Theorem 2.4.
(2) The result is false if I(H) is compact. See the discussion of central points

in [4, pp. 33-34].

Proofi Let D be the normalizer of A in I(H). L(D)is nonempty since/ is
noncompact and L(D) H() since D acts minimally on H(oo). The argument
of Proposition 4.10 shows that A fixes no point of H and that L(A)= H(oo). If
b =fi 1 lies in Z, then fixes every point of L(A) and hence is a Clifford
translation by Proposition 2.3. If C denotes the subgroup of I(H) consisting of
Clifford translations, then L(C)= H() since D normalizes C and con-
sequently leaves L(C) invariant. The group C is abelian by Theorem 2.1, and
the argument of Proposition 4.10 now shows that H is fiat.
We have seen that Z consists of Clifford translations or in this case ordinary

translations of R". Now D normalizes Z since it normalizes A, and hence D
leaves L(Z) invariant. It follows that L(Z)= n(oo) and the vectors
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{T(0)/II T(0)II T Z} are dense in the unit sphere in Rn. If a 4:1 is an arbitrary
element of A it follows by continuity that a commutes with all translations of
displacement 1 in R, and therefore a must be a translation.

COROLLARY 4.16. Let D
_

I(H) act minimally on H(), and let be non-
compact, if A q: 1 is a normal abelian subgroup of D, then H is isometric to R
with the usual metric and A is a subgroup of translations.

5. Applicatiom

The results of this section fall into two categories: (1) the structure of I(H),
(2) fundamental groups, geodesic flows and isometry groups of quotient mani-
folds M HID. In the second category we assume that fl SM; that is, every
point of SM is nonwandering relative to the geodesic flow.

The structure of I(H).
THEOREM 5.1. Let D

_
I(H) satisfy the duality condition, and let S be a

solvable subgroup ofD offinite index. Then H is isometric to R with the usual
metric.

Proof. Let D be the union of the cosets {dS: 1 < < k} and let S dSd7, 1.
Then S* k_ St is a normal solvable subgroup of D of finite index in D.
Define Co S* and C [C_ , C_ ], the commutator. The fact that S* is
solvable means that C,+ {1} and C is an abelian group for some n. The
subgroups C are invariant under any automorphism of S* and in particular
under any inner automorphism of D. By Theorem 2.4, C consists of Clifford
translations. By Theorem 2.1, H is a Riemannian product H x H2, where H
is a fiat Euclidean space and H2 has no fiat factor. We shall assume that H2 has
positive dimension and obtain a contradiction. Every isometry of D can be
written as b bl x )2, where tk rri(b) I(n), 1, 2. It is easy to see that
D2 n2(D)G I(H2) satisfies the duality condition and that $2 rr2(S)is a
solvable subgroup of D2 of finite index. Repeating the argument above we find
that H2 has a flat de Rham factor, contrary to the hypothesis on H2.

Remark.
nilpotent.

Our proof is similar to that of Wolf in [30] for the case that S is

THEOREM 5.2. Let D
_

I(H) be a subgroup satisfying the duality condition
and suppose that L(Io(H))= H(). Then either H is fiat and D has a solvable
subgroup offinite index or D contains a nonabelian free group.

Proof. Let fro denote the Lie algebra of Io(H), the space of Killing vector
fields on H. If G denotes I(H), then Ad: G Aut (15) is a homomorphism
whose kernel Z consists of the centralizer of Io(H) in G. By Proposition 2.3, an
element b 4:1 ofZ fixes every point ofL(Io(n)) n() and must therefore be
a Clifford translation ofH. By Theorem 2.1 the Clifford translations ofH are an



ISOMETRY GROUPS OF SIMPLY CONNECTED MANIFOLDS 95

abelian subgroup of I(H), and therefore Z is abelian. By a theorem of Tits [28]
the matrix group Ad (D)

_
Aut (() contains either a solvable subgroup $ of

finite index or a nonabelian free group F. Suppose that the first possibility
occurs, and let S* Ad-1 (S)_ D. If

S, [S,_ , S,_ ] and S’ [S’_ , S’_ ]
are the derived series for S, S* respectively, then Ad (S)= St for every i. By
hypothesis S.= {1} for some n and hence S*

_
ker Ad Z. It follows that

S*+ {1} and S* is solvable since Z is abelian. Moreover, H is flat by the
preceding result since S* has finite index in D. Suppose next that Ad (D)
contains a nonabelian free group F. We may assume by passing to a subgroup
of F that F is generated by two elements x and y. Let x*, y* be elements ofD so
that Ad (x*)= x and Ad (y*)= y. The group F* generated by x* and y* is a
nonabelian free subgroup of D, for any word relations between x* and y* must
also exist between x and y.

COROLLARY 5.3. Let I(H) be nondiscrete and act minimally on H(). Let
D
_

I(H) be a subgroup that satisfies the duality condition. Then either H is fiat
and D contains a solvable subgroup offinite index or D contains a nonabelianfree
#roup.

Proof. By the argument of Proposition 4.10, Io(H) cannot have a fixed
point in H and must therefore be noncompact. Hence the limit set of Io(H) is
H(o) since it is nonempty, closed and invariant under I(H). The result now
follows from Theorem 5.2.

THEOREM 5.4. Let H be homogeneous. Then I(H) satisfies the duality condi-
tion if and only if H is the Riemannian product of a fiat Euclidean space and a
symmetric space of noncompact type (either factor may be trivial).

Proofi If H is R" with the usual metric, then I(H) satisfies the duality
condition since any geodesic ofH is translated by some Euclidean translation.
If H is a symmetric space, then let there be given a geodesic , with p ,(0). Let
s be the geodesic symmetry fixing p and s. the geodesic symmetry fixing ,(n) for
any positive integer n. If b. s.o s then we have .(p)= ),(2n)and b (p)=
?(- 2n), which shows that the points ?(oo) and (-) are dual relative to I(H).
If H is a flat Euclidean space and H2 is a symmetric space, then I(H)=
I(H) x I(H2) where H is the Riemannian product H x H2, and it is easy to
verify that I(H) satisfies the duality condition since both of its factors do.

Conversely suppose that H is a homogeneous space such that I(H)satisfies
the duality condition. If Io(H) is semisimple, then H is a symmetric space and
we are done. If Io(H) is not semisimple, then there exists an abelian subgroup
A Io(H) that is invariant under all continuous automorphisms of Io(H) and
in particular is normal in I(H). By Theorem 2.4, A must consist of Clifford
translations, and by Theorem 2.1 we can write H as a Riemannian product



96 SU-SHING CHEN AND PATRICK EBERLEIN

H1 x n2, where H1 is a flat Euclidean space of positive dimension and H2 has
no fiat de Rham factor. We may assume that H2 has positive dimension for
otherwise we are done. Now I(H)= I(Hx) x I(H2), where I(H)= I(H) x {1}
and I(n2)= {1} x I(n2). Moreover H2 is homogeneous since both n and n
are homogeneous, and I(H2) satisfies the duality condition since I(H) satisfies
it. If Io(H2) were not semisimple, then by repeating the argument above we
would be able to produce a fiat de Rham factor for H2, a contradiction.
Therefore Io(H2) is semisimple and H2 is a symmetric space.

THEOREM 5.5. Let D
_

I(H) be a sublroup that satisfies the duality condition.
If H(oo) contains no fiat points, then D acts minimally on H().

Proof. Let x H(oo) be arbitrary, and let A D(x). The set A has empty
boundary by Theorem 3.2 since H(oo) has no flat points, and therefore
A H(oo).

COROLLARY 5.6. Let H admit a point p such that all sectional curvatures at p
are ne#ative. Let D

_
I(H) be a sub#roup that satisfies the duality condition.

Then D acts minimally on H().

THEOREM 5.7. Let D
_

I(H) be a subgroup such that is noncompact. Then
D does not act minimally on H()under either of thefollowin# conditions:

(1) D is a direct product of nontrivial sublroups D and D2.

(2) H is the Riemannian product of two manifolds of positive dimension.

Proof. Suppose (1) holds and O acts minimally on H(oo). IfA O then O2

centralizes A while D normalizes A and has noncompact closure in I(H). By
Theorem 4.15, H is isometric to Rn, and D1 is a subgroup of translations. A
similar argument shows that D2 and hence D is a subgroup of translations.
Therefore D fixes every point of H(oo), a contradiction.
Now suppose that (2) holds and let H Ho x H x ...x Hk be the de

Rham decomposition of H, which by hypothesis has at least two factors.

G I(Ho) x I(Hx) x I(Hk)
is the subgroup of I(H) that leaves invariant the foliations 9J/ of H induced by
the tangent spaces of the factors H, 0 _< _< k. G has finite index in I(H)since
each isometry ofH permutes the foliations 9J/ [23, p. 192]. IfD acted minimally
on H(oo), then I(H) would also act minimally. By Proposition 4.8, G would act
minimally on H(oo), contradicting part (1)of this result.

THEOREM 5.8. Let M H/D be a Visibility manifold with f SM. Then
either I(H) is discrete or H is a rank one symmetric space.

COROLLARY 5.9. Let M HID be a complete Riemannian manifold with sec-
tional curvature K g c < 0 andfinite volume. Then either I(H) is discrete or H is
a rank one symmetric space.
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Remark. The corollary includes a result of Heintze [16] while the theorem
preceding it includes part of Theorem 4.1 of [8].

Proof of the Theorem. By Theorem 6.3 of [12] there is a vector v .SM
whose orbit under the geodesic flow is dense in SM. Then D acts minimally on
H(o) by Theorem 4.14 of [12]. As we observed at the beginning of Section 3 the
Visibility axiom implies that H(o) has no flat points. Assume now that I(H) is
not discrete. By Proposition 4.10, L(Io(H)) H(m). The set of points in H(o)
fixed by lo(H) is dosed and invariant under D, hence empty since Io(H) contains
no Clifford translations. By Proposition 2.6 of [11], lo(H)satisfies the duality
condition. Now apply Corollary 4.14.

Quotient manifolds. In all of the results of this subsection we assume that
M HID has nonpositive sectional curvature and satisfies no further condi-
tions such as the Visibility axiom unless explicitly stated.

THEOREM 5.10. Let f SM and let A :fi 1 be a normal abelian subgroup of
x(M). Then there exists a regular finite covering M’ M ofM, where tx(M’
has center ofrank k >_ 1. Both M and M’ arefoliated byfiat totally geodesic tori

of dimension k.

Remark. This result and its proof extends the center theorem of [24] to
manifolds M with f SM and fundamental group having nontrivial center.

Proof Expressing M as a quotient manifold HID it follows from Proposi-
tion 4.9 of [12] that the deckgroup D satisfies the duality condition. Let A 1
be a normal abelian subgroup of D nl (M). By Theorem 2.4, A consists of
Clifford translations. If Z is the centralizer in D of A, then Z is a normal
subgroup of D and Z has finite index in D by the argument ofLemma 3 of [32].
If M’ H/Z, then M’ is a regular finite covering ofM, and A is contained in the
center of r (M’). The remaining assertions follow as in [29] or [24].

THEOREM 5.11. Let f SM and let M have solvable fundamental group.
Then M is compact and fiat.

Remark. This result has been proved in [15] and [32] under the hypothesis
that M be compact.

Proof Expressing M as a quotient manifold HID the deckgroup D is solv-
able by hypothesis and satisfies the duality condition since f SM. By
Theorem 5.1, both M and H are fiat. By Theorem 1 of [15], D leaves invariant a
fiat totally geodesic submanifold E of H such that E/D is compact. It follows
that E H since L(D)= H().

THEOREM 5.12. Let M H/D be locally homogeneous with f SM. Then
either M is a compact fiat manifold or (M) contains a nonabelian free group.
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Proof. D satisfies the duality condition since f SM and L(Io(H))=
H(oo) since Io(H) is transitive on H. Therefore by Theorem 5.2 either M and H
are flat and D rl(M) contains a solvable subgroup of finite index or D
contains a nonabelian free group. In the former case M is compact by the
argument of the preceding result.

THEOREM 5.13. Let the geodesic flow ofM HID have a dense orbit in SM.
Then either I(H) is discrete or nI(M) contains a nonabelian free group.

Proof. We know that f SM since all vectors tangent to a dense orbit of
the geodesic flow lie in f. Therefore D acts minimally on H(oo) by Theorem
4.14 of [12]. If Io(H)4: 1, then L(Io(H))= H(oo)since L(Io(H))is invariant
under D. We now apply Theorem 5.2. If H were fiat, then M would be compact
by the argument above, and the Bieberbach group D would contain a normal
subgroup of finite index consisting of translations of the Euclidean space H.
The orbits of D in H() would then be finite, contradicting the minimality of
D, since a translation fixes all points of H(oo). Therefore H is not flat and
D n(M) contains a nonabelian free group by Theorem 5.2.

THEOREM 5.14. Let M HID be locally homogeneous with f SM. Then H
is a Riemannian product H x H2, where H is isometric to a Euclidean space with
the usual metric and H2 is a symmetric space.

Remark. This result has been proved in [16] for the case that M has finite
volume and strictly negative sectional curvature and in [3, p. 28] for the case
that M has finite volume and nonpositive sectional curvature.

Proof. The deckgroup D and hence I(H) satisfy the duality condition since
SM. The result now follows from Theorem 5.4.

THEOREM 5.15. Let SM. If H() has no flat points, then the geodesic
flow has a dense orbit in SM.

COROLLARY 5.16. Let t)= SM and suppose that all sectional curvatures at
some point p ofM are negative. Then the geodesicflow has a dense orbit in SM.

Proof of the Theorem. D satisfies the duality condition, where M H/D,
since f SM. By Theorem 5.5, D acts minimally on H(oo) and by Theorem
4.14 of [12] the geodesic flow has a dense orbit in SM.

Remark. Both Theorem 5.15 and its corollary generalize the well known
result that if M is a compact Riemannian manifold with negative sectional
curvature, then the geodesic flow has a dense orbit in SM [1]. This result
remains true if M is a Visibility manifold with f SM [12], and this extension
itself is a corollary of Theorem 5.15. It is reasonable to ask if the converse to
Theorem 5.15 is true.
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THEOREM 5.17. Let M HID be a complete manifold ofnonpositive sectional
curvature. Then the #eodesicflow in SM has no dense orbit in SM under either of
the followint conditions"

(1) n(M) is a direct product of nontrivial subgroups.
(2) H is the Riemannian product H x H of two manifolds of positive

dimension.

Proof. If the geodesic flow has a dense orbit in SM, then f SM and by
Theorem 4.14 of [12] D acts minimally on H(oo). However, D cannot act
minimally under either condition by Theorem 5.7 above.

Remark. This result is a generalization of a theorem of Preissmann which
says that if M M x M2 is a compact C product manifold, then M admits
no metric of negative sectional curvature. One can derive Preissmann’s result
from ours and the remark following Corollary 5.16.

The structure of I(M
THEOREM 5.18. Let f SM. IfI(M) is not discrete, then every Killing vector

field on M is a parallel vector field on M.

Remark. In the case that M is compact this result is the starting point for
Theorem 3 of [24], which says that the center of nl(M) has rank k if and only if
M admits k linearly independent parallel vector fields. This result has been
extended to compact manifolds without focal points in [26] and to manifolds
with finitely generated fundamental group and finite volume in [24]. Is the
result still valid if M has nonpositive sectional curvature and f SM?

Proof. Suppose that I(M) is not discrete and let {b}
_
I(M) be a nontrivial

one parameter subgrou.p. Let X be the Killing vector on M with flow transfor-
mations {q,}, and let X be the lift of X to H such that r,.(p)= Xnp), where
rt" H M is the projection. If {} are the flow transformations of X it follows
that n b, bt and

for all isometrics 6 in D, where M HID. We conclude that {} are isometries
of H that centralize the deckgroup D of M. By Propositions 4.2 and 2.2 the
isometries {,} are Clifford translations and . is a parallel vector field in H of
the form p V(p, x) for some x e H(oo) fixed by D. Therefore X is parallel in
H.

This result could also have been proved by using the facts thatf= Ilsll is a
continuous convex function on M [4, Proposition 5.5] and that all continuous
convex functions on a manifold M with f SM are constant.

COROLLARY 5.19.
ing conditions:

Let f SM. Then I(M) is discrete under any ofthefollow-
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(3)
(4)

H has no fiat de Rham factor.
Some geodesic ofM does not bound an immersed fiat half plane.
The geodesic flow has a dense orbit in SM.
M has negative definite Ricci Tensor.

Remark. See also Corollary 3 of Theorem 4 of [24].

Proof The flow transformations of a parallel vector field on H are Clifford
translations. If H has no flat de Rham factor, then H admits no parallel vector
fields by Theorem 2.1 and this establishes case (1).

Condition (2) holds if and only if some point of H(oo) is not fiat. It follows by
Example 2 of Section 3 that H is not a Riemannian product ofmanifolds and in
particular has no flat de Rham factor. The result now follows from (1).

Condition (3) implies that the deckgroup D ofM acts minimally on H(oo) by
Theorem 4.14 of [12]. Suppose that I(M) is not discrete. Then H admits a
parallel vector field, and by Theorem 2.1 H is a Riemannian product H x H2,
where H is fiat and H2 has no fiat de Rham factor. If the factor H2 were trivial,
then by Corollary 3.3.4 of [31] and our Theorem 2.4, D would admit a subgroup
of Euclidean translations of finite index in D. This would imply that any orbit
of D in H(oo) is finite, contradicting the fact that D acts minimally on H(oo).
Therefore H2 is nontrivial and every isometry b of D can be written
9 t]} X 2, where bi e I(ni), i-- 1, 2. The group D2 (t]92: ]9 D} satisfies
the duality condition in H2 since D satisfies the duality condition in H
(t SM). In particular 02 is a nontrivial subgroup of I(H), identifying tk with
{1} x tk. The group D2 is normalized by D and centralized by D1 O1 x {1},
and by Theorem 4.15, H must be flat, contradicting the fact that H2 is nontri-
vial. Therefore I(M) is discrete.

Condition (4) implies that M admits no parallel vector fields. If X is a
parallel vector field and p any point of M, then the sectional curvature of any
2-plane of Tv(M that contains X(p) is zero. Therefore X(p) has Ricci curvature
zero for any p, which contradicts our hypothesis.

6. Problems

We conclude with some problems and questions. Two obvious problems of a
general nature deserve further attention. The first is to describe the structure of
fiat points in H(oo) under various conditions on H or I(H). The second is to
understand in more depth the structure of the orbits in H(oo) of an isometry
group D

_
I(H) that satisfies the duality condition.

The discussion in Section 3 completely settles the first problem in symmetric
spaces; either all points of n(oo) are flat (rank > 2) or none of them are (rank
1). As a next step it is reasonable to ask what one can say about fiat points in
H(oo) if H is homogeneous. A homogeneous Hadamard manifold H has a
simply transitive solvable group of isometries [17], [29] and hence H can be
viewed as a connected solvable Lie group G with a left invariant metric. One
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can then give necessary and sufficient algebraic conditions on the Lie algebra of
G for the left invariant metric on G to have strictly negative sectional curvature
[2], [3], [17]. Using the methods of [2], [3], [17] can one find analogous alge-
braic criteria that describe H() and determine which points of H(oo)are fiat?
A starting point for the second problem seems less clear. For example, what

can one say beyond Propositions 4.4 and 4.5 in the symmetric space case? For
a locally symmetric space M HID that is compact or has finite volume
Mautner has described the ergodic parts of the geodesic flow in SM in terms of
the orbit structure of lo(H) acting in SH by differential maps [25]. If f SM,
where M H/D, then it should be possible to transfer information about the
orbit structure of D in H(oo) into information about the geodesic flow on SM.
We also list in fairly random order a number of specific questions in the form

of assertions to be proved or disproved.

(1) Let H be a symmetric space ofnoncompact type, and let D
_

Io(H) be a
subgroup. Then the duality condition and the Selberg property (S) relative to
Io(H) are equivalent conditions on D.

(2) If H is not the Riemannian product oftwo manifolds of positive dimen-
sion and if I(H) satisfies the duality condition, then either I(H) is discrete or H
is a symmetric space of noncompact type.

(3) Let Io(H) satisfy the duality condition. Then H is a Riemannian pro-
duct H x H2, where H is a Euclidean space with the standard fiat metric and
H2 is a symmetric space of noncompact type (this would follow from 2). Com-
pare also Corollary 4.14 and Theorem 5.4).

(4) If I(H) is noncompact and acts minimally on H(), then either H is a
Euclidean space with the standard fiat metric or H(o) has no flat points (this
would prove the converse of Theorem 5.15).

(5) If I(H)is noncompact and acts minimally on H(oo), then either I(H)is
discrete or H is a Euclidean space with the standard flat metric or H is a rank
one symmetric space (compare with Proposition 4.10).

(6) Let f SM and suppose that M admits exactly k linearly independent
parallel vector fields. Then the center of n I(M) is a free abelian group of rank k.

(7) Let H1 and H2 be Hadamard manifolds with different Riemannian
metrics but the same underlying C manifold H. Let D be a group of diffeo-
morphisms of H such that the topological quotient space HID is compact and
D is a noncompact subgroup of both I(H) and I(H2). If D acts minimally on
H(), then it also acts minimally on H2(oo). (Compare Theorem 5.1 of [10].
In view of Theorem 4.14 of [12] an affirmative answer to this question would
imply that if a compact C manifold M has a dense geodesic flow orbit in SM
for some nonpositive curvature metric #, then there is a dense geodesic flow
orbit in SM for any nonpositive curvature metric #.)
Added in proof. The dissertation of Werner Ballmann, University of Bonn,

1978, strengthens certain results of this paper. Ballmann has proved the
following:
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THEOREM. Suppose that some point ofH(oo) is notflat, and let D c_ I(H) be a
subgroup satisfying the duality condition. Then (1) D acts minimally on H(o (2)
the geodesic flow in T H is topologically mixing modulo D; that is, given open
sets O, U in SH we can choose a number T T(O, U) > 0 such that for each
number t with [t >_ T we can find @ c(t) D with the property that
(c), T,(O) c U is nonempty.

Ballmann’s theorem implies immediately that if I(H) satisfies the duality
condition and if some point of H(oo) is not flat, then every point of H(oo) is not
flat. Proposition 3.1 and Theorem 3.2 of this paper now follow directly.
Moreover, Proposition 4.9 and Theorems 5.5, 5.8 and 5.15 of this paper remain
true under the weaker hypothesis that some point of H(oo) is not flat. (We
remark that some point of H(oo) is not flat if and only if some geodesic ofH
does not bound an imbedded flat half plane.) In Theorem 5.15 and Corollary
5.16, it is also true by Ballmann’s result that the geodesic flow in SM is topolo-
gically mixing.

Added in proof.
elsewhere.

We have proved assertion (5) above. Details will appear
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