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ENDO-TRIVIAL MODULES OVER (p, p)-GROUPS

BY

JON F. CARLSON

1. Introduction

Let K be a field of characteristic p > 0 and let G be a finite p-group. IfM and
N are KG-modules, then the space HomK (M, N) is a KG-module under the
action (#f)(m)= .f(#-m) for all # s G, f s Homr (M, N) and m s M. A
finitely generated KG-module M is said to be an endo-trivial module ifthe ring
Homr (M, M), of K-endomorphism of M, is isomorphic to the direct sum of
the one-dimensional trivial KG-module and a free module. These modules were
called invertible modules by Alperin in [2].

In [6], E. C. Dade has proved that if G is an abelian p-group then every
endo-trivial module is the direct sum of a syzygy ofthe trivial module and a free
module. The author has independently proved this theorem using somewhat
different techniques. Presented in this paper is that portion of the author’s
proof which differs most significantly from that of Dade. Specifically we con-
sider the case in which G is elementary abelian of order p2. This is an important
step since the proof of the larger theorem involves an induction argument
which begins with this case. The proof presented here consists of characterizing
the syzygies of the trivial module in terms of their restrictions to proper sub-
groups of G and a mapping property.

2. Notation and preliminaries

Throughout this paper K is a field of characteristic p and G is a finite
p-group. All KG-modules are assumed to be finitely generated. The radical of
KG is denoted Rad KG. IfM is a KG-module, then Rad M Rad KG M is
the set of nongenerators of M. We define the rank of M to be Rk M
Dimr M/Rad M. The socle of M is the set Soc M {m M[gm m for all
g s G}. If H is a subgroup of G, then hn h KG, I(H) is the one-
dimensional trivial KH-module, and Mn is the restriction of M to a
KH-module.

If F is a free KG-module and if b" F --, M is an epimorphism, then the kernel
of q9 is isomorphic to the direct sum ofa free module and a module f(M) which
has no projective components. Similarly we define f- (M) to be the sum ofthe
nonprojective components ofthe cokernel of a monomorphism ofM into a free
(and hence injective) module. It is well known that f(M), f- (M) are indepen-
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dent of the choices of free modules and the homomorphisms (see [8]). Induc-
tively we define f(M)= ta(t) (M)) and Ia-"(M)= f-(t)-/ (M)) for all
n > 0. Let f(M) be the sum of the nonprojective components of M. Now
fn(M) is the n-th syzygy of module M.

Let M be an endo-trivial KG-module. Then Homr (M, M) I(G) F
where F is a free KG-module. Clearly HomrG (M, M)= Soc (Hom (M, M)).
Hence t. F (. Hom (M, M) is a submodule of Homr (M, M) with co-
dimension one.
Suppose P is a projective cover of M. We have an exact sequence

(2.1) 0f(M) PM0.
This yields a commutative diagram

0 Hom (M, f(M))- Hom (M, P) Homg (M, M)0

0 Homx (M, t2(M)) Hom (M, P) **--" -" Homr, (M, M)
---, Ext: (M, f(M))-, 0

where the vertical maps are multiplication by t7 (see [12, chapter III]). The
image of if* contains tT.Homr (M, M) and hence the dimension of
Ext (M, f(M)) is at most 1. This dimension cannot be zero since otherwise
(2.1) would split. Since Ext: distributes over direct sums we have the
following.

LEMMA 2.2. Let M be an endo-trivial KG-module. Then the dimension of
Ext (M, f(M)) is 1 and M is the direct sum ofan indecomposable endotrivial
module and a free module.

Suppose p 2 and G is noncyclic of order 4. The modules over KG have
been classified by Basev in [3] and Heller and Reiner in [9]. Every indecompos-
able KG-module of odd dimension is of the form tan(1 (G)) for some n (see also
[10]).
Suppose G is cyclic of order p. If M is an endo-trivial KG-module then

Dim Homr (M, M)= (Dim M)2 1 mod p.

Therefore Dim M + 1 mod p.

LEMMA 2.3. Let M be an indecomposable endo-trivial KG-module. If G is
cyclic oforder p, then the dimension ofM is either 1 or p 1 and M fk(l(G))
for either k 0 or k 1. IfG is a noncyclic oroup oforder 4 then M - fn(l(G))
for some n.
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Suppose that G is abelian and M is an endo-trivial KG-module. Let
End (M)= Homr (M, M). Now Ext: (M, f(M)) is an End (M)-
End (D(M))-bimodule (see [12]). There exist homomorphisms a: KG
End (D(M)) and z: KG End (M) where for each KG, a() and z(ct)are
multiplication by g. Hence ExtG (M, f(M))is a KG-KG-bimodule of dimen-
sion 1. If ct is in Rad KG, then cr(ct), z(ct) must annihilate Extk (M, f(M)).
More specifically we get a diagram

E:Ofl(M) PLM

Ea(oO: 0 n(M) B M 0

where B is the pushout. If ct 6 Rad KG, then Ea(g)splits and the splitting gives
a homomorphism 0: P D(M) such that Oi cr() is multiplication by . We
get a similar diagram using and the pullback.

PROPOSITION 2.4. Let G be an abelian p-oroup and let M be an endo-trivial
KG-module. For any Rad KG, there exist homomorphisms O: P- f(M),
#: M P (see (2.1)) such that Oi and la are multiplication by on (M)andM
respectively.

Actually/z can be taken to be g iO applied to the cosets ofP modulo D(M).

3. The main results

Assume throughout this section, that K is a field of characteristic p and
G (x, y) is a noncyclic group of order p2. We shall prove the following.

THEOREM 3.1.
conditions.

Suppose p > 2. Let M be a KG-module satisfying thefollowing

(1) Rk M > Rk f-(M).
(2) For any element g G with g 4: 1, M<g> k(l((#))) Fg where k O,

1 and F is a free K(0)-module.
(3) Let

O- O(M) PLM-.O
be exact, where F is a free KG-module. For any element g G there exists
homomorphisms crg: P (M) and %: M - P such that trgi and d/zgare multipli-
cation by g 1 on (M) and M respectively.

Then M - fY(I(G)) Lfor some t > 0 and some KG-module L whose restric-
tion to any proper subgroup of G is free.

Before beginning the proof of this theorem, let us consider an endo,trivial

KG-module M. The results of the last section show that M satisfies both
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conditions (2) and (3). Let M* Homr (M, I(G)) be the K-dual ofM. It is well
known that Homr (M, M).2 M (R) M*. If

0 P M 0
is xact with P a fre modul, thn

0 - f(M) (R) M* - P (R) M* - M (R) M* 0

is also exact, and P (R) M* is a free module by Frobenius reciprocity (see [5]).
Hence f(M)(R)r M* f(M (R) M*) F - f(l(G)) F for some free KG-
module F. Similarly the reader may check that if n, m are any integers, then

(3.2) f(M) (R) f"(M*) t+(l(G)) F2

for some free module F2. By duality (f(M))* - f-(M*). By setting m -n
we see that f(M) is also an endo-trivial module. Now the dimensions of
fn(l(G)) become arbitrarily large as n increases (see [11]). From equation (3.2)
it follows that the dimensions of f(M) must increase as n becomes large.
Consequently for some n, f(M) satisfies condition (1). The above argument,
combined with Lemmas 2.2 and 2.3 and Theorem 3.1, imply the following.

THEOREM 3.3. Let G be a noncyclic #roup of order p2 and let K be afield of
characteristic p. Any endo-trivial KG-module is isomorphic to the direct sum ofa
free KG-module and fn(l(G))for some n.

Most of the remainder of this section is devoted to the proof ofTheorem 3.1.
We shall use the notation in the three conditions of the theorem without further
reference.

LEMMA 3.4. A KG-module M satisfies condition (2) (respectively, (3))of
Theorem 3.1 ifand only ift)(M)satisfies condition (2)(respectively, (3))for all n.

Proof The statement about condition (2) is obvious. Suppose that M
satisfies condition (3). For any # s G, # 1 we have a diagram

P

where P is a free KG-module. Since P is projective there exists a homomor-
phism 0: P P with 0 trg. Now let/g= Oi. Then g= Oi ggi is
multiplication by g 1 on fl(M). Now 1t : P P by (f)= (g 1)f-
(f), for allf P. Sine 0, O(P) i,(fl(M)). If v= i7 then
vgi is multiplication by g 1 on fl2(M). Therefore fl(M) satisfies condition
(3). Remembering that every free KG-module is injective, we can prove by a
similar argument, that fl-(M) satisfies condition (3). An induction argument
completes the proof of the lemma.
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LEMMA 3.5. Let M be a KG-module which satisfies condition (2). Let a be a
K(x)-#enerator for the fk(l((x))) component of some decomposition ofM<>.
Then M .satisfies condition (1) if and only if every such element a satisfies the
following.

(i) a is a generator for M; i.e. a q Rad M.
(ii) If Dim M_= 1 mod p, (i.e. k=0) then (y-1)a4:O, while if

Dim M -1 mod p then (y- 1)(x 1)-2a 4= 0.

Proof. Let Mo {m 6 M[xm m}. We have exact sequences

(3.6) 0 I(G) M/(x 1)M - (x 1)-M 0,

where the homomorphism on the right is induced by multiplication by
(x 1)- , and

(3.7) 0 --* (x 1)v- 1M -- M0 -- I(G) 0.

The I(G) part in (3.6) is generated by the class of a. The I(G) factor in (3.7) is
generated either by a if k 0, or by (x 1)v-2a if k 1. Since x acts trivially
on the modules in these sequences, each is a direct sum ofcyclic K(y)-module.
The rank of each is the number of K(y)-components and is also the dimension
of the socle of each.

Let 0 -, M Q -, fl- (M) -, 0 be exact where Q is a free KG-module. Now

Rk t)-X(M)= Rk Q Dim Soc Q- Dim Soc M0 > Rk (x- 1)v- M.
Also Rk M Rk M/(x- 1)M > Rk (x- 1)v-M. The only way that we
could get Rk M > Rk f-(M) is to have sequence (3.6) split while sequence
(3.7) does not split. This requires a to be a generator for M while neither a nor
(x 1)v-2a (if Dim M 1 mod p) is in the socle of Mo.

(3.8) Let M be a KG-module which satisfies condition (2). Let a be an
element of M which generates the fk(l((x)))component of some decomposi-
tion of M<x>. Let b be the same for y instead of x. We shall say that M satisfies
condition (4) if one of the following holds.

(i) Dim M 1 mod p, and a, b are generators for M. If m is any generator
for M then either (x 1}-m 4:0 or (y 1)’- lm 0.

(ii) Dim M= -l mod p, and

(x- 1)’-l(y- 1)t’-2b 4: 04: (x- 1)’-2(y 1)’-’a.

LEMMA 3.9. Let M be a KG-module which has nofree submodules and which
satisfies condition (4). Then M satisfies (1).

Proof. This follows directly from Lemma 3.5. For suppose that Dim M
1 mod p, and that a’ is a generator for the l((x))component in some other
decomposition ofM<>. Then a’ a mod (x 1)’-M for some K, 4: 0.
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So a’ is also a generator for M, and (y- 1)’-aa’= (y- 1)’-aa q: 0. If
Dim M -1 mod p, then a’ aa mod (x 1)M, and

(x- 1)v-2(y 1)V-aa’ a(x- 1)v-2(y 1)V-aa O.

Thus a’ is a generator for M since (M (x 1)’- a(y 1)p-aM 0.

PROPOSITION 3.10. Let M be a KG-module with Dim M 1 mod p. IfM
satisfies conditions (1), (2), and (3), then M also satisfies (4) and f(M)satisfies
conditions (1), (2)and (3).

Proof Let a be a generator for the ta(l((x))) component of M<,>. By
Lemma 3.5, a is a generator for M. Choose an elementf P such that k(f) a.
Thenfis a generator for P. Also (x 1)’- af f(M) while (x 1)’- 2f q ta(M).
Let zx: M P be defined as in condition (3). Now z(a) (x 1)f+ u where
u 6 n(M) P. So zx((x 1)- a)= (x 1)- ’u 0. Thus u 6 (x 1)P.
Now (x 1)- fmust generate the l((x)) component of some decomposi-

tion of fl(M).>. Therefore

fl(M) (x 1)P r (x 1)v-f+ (x 1)fl(M).
Write u a(x 1)v-f+ (x 1)v for some a K and v fl(M). Now

,((y- 1)v-’(x- l-2a) df+ dv

If (y 1)v- (x 1)v- a 0, then f= dv # 0, and KGv is a free submod-
ule of (M). Since this is impossible, (y- 1)v-(x 1)V-a O. e same
argument for b proves that M satisfies condition (4).
We claim that (x 1)v-f is a generator for (M) P. Suppose not. Then

there exists elements l, m (M) such that

(x- 1)v-xf= (x- 1)/+ (y- 1)m.

So (x l)V- X(y a)v- f= (y 1)v- X(x 1)l. Let

= (x- 1)v-Z(y l-f (y- 1)v-/.
Since (x 1 (y 1) 0, the element is in Soc (P)= d. P (m).
This is a contradiction since (x 1)v- (y 1)v- xf (m). Therefore
(x 1)v-f is a generator for O(M).

If u is any generator for the l((x)) component of(M)<>, then we can write
u for some. 4 0 ana some
Hence (y- 1)v- u af4 0. By Lemma 3.5, (m) satisfies condition (1).
Lemma 3.4 completes the proof of the proposition.

PROPOSITION 3.11. Let M be a KG-module which satisfies conditions (1), (2)
and (3). For any n > O, fn(M) satisfies these conditions. If n > 0 and
Dim f"(M) 1 mod p, then "(M) also satisfies (4).
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Proof. By Lemma 3.4 and Proposition 3.10 it is only necessary to prove
that if M satisfies conditions (1), (2) and (3) and if Dim M 1 mod p, then
I(M) satisfies (1). By Lemma 3.5, M has a generator a such that (x 1)a 0
and (y 1)a 4: 0. Letfbe a generator of P with (f)= a. Then (x 1)fis in
f(M)_ P, and since f is a generator for P,

tf= (x- 1)v-2(y- 1)v-t[(x- 1)f] =p O.

Thus (x 1)fis a generator for f(M). Now (x 1)fgenerates the f(l(<x>))
component of some decomposition of f(M)<>. Suppose u is another such
generator by another decomposition. There exist elements K, # 0, and
v (M)such that u 0(x- 1)f+ (x- 1)v. Then (x- 1)v-2(y- 1)v- lu
(f4: 0, and u must be a generator for f(M). By Lemma 3.5 we are done.

PROPOSITION 3.12. Suppose that M satisfies conditions (1), (2), (3)and (4)and
that Dim M 1 mod p. Then f-I(M) satisfies all four conditions.

Proof By Lemmas 3.4 and 3.9 it is only necessary to show that fl(M)
satisfies condition (4). Let 0 M Q & f- X(M) 0 be exact where Q is a free
KG-module. We shall identify M with its image in Q. NowM has a generator a
such that (x-1)a=0. Hence there exists an element f Q with
a (x 1)P-xf Then (y 1)P-a df4:0 andfmust be a generator for Q.
Now O(f) generates the f(l((x))) component of some decomposition of
f-(M)<>. By (3.8)we need only prove that u (x 1)p-2(y 1)p- fis not
in M.
Suppose that u is in M. Then (x 1)2u 0 (y 1)u. From condition (4)

we conclude that u is not a generator for M, and hence u (y- 1)P-v for
some v M. Let f’ (x 1)P- 2f_ v. Since (x 1)f’ a mod (x 1)M,
(x 1)f’ is a generator for M. But then

(y-1)v-X(x-1)f’=0 and (x-1)v-X(x-1)f’=0,
and we have a contradiction to condition (4). Therefore u q M, and -I(M)
satisfies (4).

PROPOSITION 3.13. Suppose that M is a KG-module which satisfies conditions
(1), (2), (3) and (4). Assume that Dim M _= -1 moO p. Then either fl-X(M)
satisfies all four conditions or f-t(M) has a component which is isomorphic to

I(G).

Proof Let

be exact where Q is a free KG-module. Lemma 3.4 says that -(M)satisfies
conditions (2) and (3). For 9 G, 9 1, let a: Q M be a homomorphism as
in condition (3).
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Let a M be a generator for the fl(l((x)))component of some decomposi-
tion of M<x>. Then a (x 1)f for somef Q. Also

tf= (x 1)p-2(y 1)p- la 4: 0.

Sofis a generator for Q and q(f)is a generator for-X(M). If (y 1)q(f) 0
then (f) Soc )-(M)and K. (f) I(G)is a direct summand of-a(M).
So assume for the rest of this proof that for any such element f, (y 1)f q M.
We shall prove that fl-(M) satisfies all four conditions. By Lemma 3.9 we
need only show that -(M)satisfies condition (4).
Now a((x 1)f) (y 1)(x 1)f and hence a(f) (y 1)f+ u M

where (x- 1)u 0. Suppose that (y- 1)P-if M. Then

a((y 1)p- if) 0 (y 1)p-

Hence u (x 1)p- (y- 1)Q and there is an element v (x 1)p- Q with
(y- 1)v u. If f’=f+ v, then f’ is also a generator for Q and (y- 1)/’=
a(f) M. But (x 1)/’= (x 1)/= a M. This contradicts our assump-
tion and we can conclude that (y 1)p- f q M. Therefore- (M) satisfies the
first statement of condition (4)in (3.8, i).
Now suppose that m is a generator for fl-I(M) with the property that

(x 1)"-lm 0 (y 1)"-lm. Let o be a generator for Q with q(o)= m.
Since (y- 1)-lco M,

ax((y 1 )P-1o9) (x 1 )(y 1)P-1o =/= O.

Write a(o)= (x 1)o + u where u (y 1)Q. Since (x 1)p- lo M we
have

(x 1)p- lu ax((X 1)"- lco) 0.

So there exists an element v (y 1)Q such that (x 1)v u. Let o’ o + v.
Then (x 1)co’ (x 1)co + u ax(co) M and

(y 1)’- 1o’ (y 1)P- 1o M.

Now q(o’)is a generator for- (M). Also (x 1)q(o’) 0 (x 1)q(f). By
condition (2), there exists a nonzero element a K such that (f- ao’) is in
(x 1)"-fl-(M). But then

0 4= (y 1)v- l,(f) (y 1)p-lq/(f_ aco’) 6 (f-’(M).
Since f- (M) has no free direct summands, this is impossible. This completes
the proof of the proposition.

Proofof Theorem 3.1. Let M be a KG-module satisfying conditions (1), (2),
and (3). By Proposition 3.11, f"(M) satisfies these three conditions for all n > 0,
and either f(M) or f2(M)satisfies condition (4). Note that condition (1)
implies that neither M nor f(M) has a component which is isomorphic to I(G).
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Suppose no f-n(M) has such a component for n > 0. By Propositions 3.11 and
3.12, f-n(M) satisfies all four conditions for all n > 0. Hence

Rk (M)> Rk ()(M))> Rk ()2(M))>"-
This is clearly impossible. So there must be n > 0 such that f-(M)
I(G) @ L. By condition (2) and the Krull-Schmidt Theorem the restriction ofL
to any proper subgroup of G must be free. This completes the proof.

Recent results indicate that the assumption ofcondition (1) in the theorem is
unnecessary. That is, we have the following.

THEOREM 3.14. Let M be a KG-module which satisfies conditions (2)and (3).
Then for some integer n, M - f"(l(G)) L where the restriction of L to any
proper subgroup of G is free.

Proof By [1], M is not periodic since otherwise p would divide the dimen-
sion of M. So there is no bound on the dimensions of the modules f(M) for
t > 0 (see [4] or [7]). Consequently some f’(M) satisfies condition (1). Now
apply Theorem 3.1.

REFERENCES

1. J. L. ALPERIN, Periodicity in troups, Illinois J. Math., vol. 21 (1977), pp. 776-783.
2. ., Invertible modules for groups, Notices Amer. Math. Soc., vol. 24 (1977),. p. A-64.
3. V. A. BASEV, Representations ofZ x Z in afield ofcharacteristic 2, Dokl. Akad, Nauk. SSSR,

vol. 141 (1961), pp. 1015-1018, Soviet Math. (A.M.S.), vol. 2, No. 6 (1962),
pp. 1589-1593.

4. J. F. CARLSON, The dimensions ofperiodic modules over modular group algebras, Illinois J. Math.,
vol. 23 (1979), pp. 295-306.

5. C. W. CURTIS and I. REINER, Representation theory offinite groups and associative allebras,
Interscience, New York, 1966.

6. E. C. DADE, Endo-permutation modules over p-groups II, Ann of Math., vol. 108 (1978),
pp. 317-346.

7. D. EISENaUD, Homololical altebra on a complete intersection, with an application to group
representations, to appear.

8. A. HEELER, lndecomposable representations and the loop-space operation, Proc. Amer. Math.
Soc., vol. 12 (1961) pp. 460-463.

9. A. HEELER and I. REINER, Indecomposable representations, Illinois J. Math., vol. 5 (1961),
pp. 314-323.

10. D. L. JOHNSON, Indecomposable representations ofthefour-group overfields ofcharacteristic 2, J.
London Math. Soc., vol. 44 (1969), pp. 295-298.

11. D. L. JOHNSON, Indecomposable representations ofthe group (p, p) over afield ofcharacteristic p,
J. London Math. Soc. (2), vol. (1969), pp. 43-50.

12. S. MACLANE, Homology, Springer-Verlag, New York, 1963.

UNIVERSITY OF GEORGIA
ATHENS, GEORGIA


