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HANKEL OPERATORS WITH HILBERT SPACE RANGE
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1. Introduction

In what follows, L2 will denote the class of Lebesgue measurable functions on
the unit circle in the complex plane, and H2 will denote the Hardy (closed)
subspace of L2 consisting of those functions whose Fourier coefficients vanish
on the negative integers. Functions that differ only on zero sets will be con-
sidered equal.

Given a function b e L-, we define the corresponding Toeplitz operator
T,: H2--* H2 by T4,x-- P + ck(e’)x(e), where P+: L2 H2 is the orthogonal
projection. When 4 is in H, then the corresponding operator T, is said to be
analytic Toeplitz, and, in such a case, the projection P + is unnecessary. Like-
wise, given a function 4, we define the corresponding Hankel operator H,:
H2 H2 by H, x P+ ck(ei)x(e-). Clearly, two functions q x, $ 2 having the
same projection onto H2 determine the same Hankel operator. For each ofthe
above operators To, H, we refer to the function as the corresponding symbol.

Toeplitz operators and, to a somewhat lesser extent, Hankel operators have
been the object of extensive study in the last twenty years, and a vast literature
exists concerning them. In particular, it is well known and not difficult to show
that the operators T,, with 4 e E, are characterized by the property that
U*+ T, U + To, where U + is the unilateral shift, given on H2 by multiplication
by ei, and that To Likewise, a Hankel operator H, is characterized
by the equation Ho U / U*+ Ho. In the latter case, however, Hmay exist as a
bounded operator on H2 even though is not in E. Since, as noted above, the
values of Ho are independent of the part of b in L2 H2, this is not surprising.
An explicit criterion for the boundedness ofH in terms ofthe symbol function
b is given by the following famous theorem of Z. Nehari.

NEHARI’S THEOREM [3]. A Hankel operator H is bounded if, and only if,
there exists a function t L2 H2 such that ck + q/ L. In such a case, the
function q/ can be chosen so that 1] + q/[[oo [[H 1[.

Generalizations and alternative proofs to this theorem have been obtained
by several authors, of. [1], [4]. In the following sections, we offer an extension of
the Nehari theorem quite different from these earlier results. We do this by
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defining, in Section 2, a class of operators, called "generalized Hankel opera-
tors", mapping the Hardy space H2 into an arbitrary (separable, complex)
Hilbert space X. This class will include (choosing X H2) the analytic Toe-
plitz and the Hankel operators. In Section 3, we shall prove a boundedness
criterion for the generalized Hankel operators that yields the Nehari theorem
in the classical Hankel case.

2. Generalized Hankei operators: Definition

In order to obtain operators Hmapping the Hardy space H2 to an arbitrary
Hilbert space X and including among them the classical Hankel operators, we
need certain results from the functional calculus developed by Sz.-Nagy and
Foias which we now recall.

Let T be a contractive linear operator on a Hilbert space X. Such an opera-
tor is said to be completely non-unitary if it has no non-trivial reducing subspace
N for which the restriction TIN of T to N is unitary. The prototypical
examples of such an operator are the unilateral shift and (hence also) its
adjoint.

If T: X X is a completely non-unitary contraction, then a result of
Sz.-Nagy and Foias enables us to define a corresponding functional calculus for
functions u H This result is as follows:

THEOREM [7, p. 114]. For a completely non-unitary contraction T on a Hil-
bert space X, the mappin9 u- u(T) ofH into B(X), defined by

(2.1) u(T) lim ’, rkCk Tk for u(ei)
k=O k=O

is a norm-decreasin9 algebra homomorphism ofH into B(X).

Let us now choose a fixed vector b e X and a fixed completely non-unitary
operator T on X. Using the above theorem, we can then define our generalized
Hankel operator on H by setting He u u(T). If we assume that has the
property that there exists a constant C such that

(2.2) Ilu(T)ll Cllull for all u e H,
then, in such a case, we can extend, via continuity, the definition ofHto obtain
an operator, still called Ho, with domain all of H2. More formally, we have the
following:

DEFINITION. Let T: X - X be a completely non-unitary contraction on a
Hilbert space X, and let e X satisfy (2.2). Then we define the corresponding
9eneralized Hankel operator He to be the continuous extension to H2 of the
operator Ho: H - X defined by Hcu u(T)dp, where u(T)is given by (2.1).
For u e H2, we write Hcu u(T).
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It is easy to see that we obtain the classical Hankel operators H0:H2 -- H2by choosing X H2, t--p(ei), and T U*+, the adjoint of the unilateral
shift. Likewise, we obtain the analytic Toeplitz operators To: H2-- H2 by
choosing X H2, t qb(ei), and T U+.

3. Generalized Hankel operators: Boundedness

For the generalized Hankel operator defined above, we wish to obtain a
criterion for boundedness analogous to that given by Nehari’s theorem. To do
so, we shall use the structure theory for unitary dilations of Sz.-Nagy and Foias
[7].

If T is a contraction on a Hilbert space X and W is a unitary operator on a
Hilbert space YX such that T"=PxW"[X for n=l, 2,..., where
Px: Y - X is the orthogonal projection onto X, then W is said to be a unitary
dilation of T. It is proved in [7] that every contraction T has a unitary dilation
W. Moreover, if W is assumed to be minimal in the sense that the smallest
reducing subspace for W containing X is itself, then W is unique up to
isomorphism. In particular, we note that the bilateral shift U on L2 is the
minimal unitary dilation of the unilateral shift U+ on H2.

In obtaining our condition for a generalized Hankel operator to be
bounded, we shall use a result of Sz.-Nagy and Foias [6] which has also been
reformulated, with an alternative proof, in [2]. This result, stated below,
describes, for a contraction T, its commutant {T}’= {A e B(X)IAT TA} in
terms of the commutant of its minimal unitary dilation.

PROPOSITION 3.1 [2, Theorem 6]. Suppose that T is a contraction on a Hil-
bert space X and that W is the unique minimal unitary dilation ofT on the Hilbert
space Y X. Write X M @ N, where M is the smallest invariant subspacefor
W containin9 X, and WN c N. Then the commutant ofT consists ofall operators
of the form PxBIX, where B B(Y) is in the commutant of W and satisfies
BM M and BN c N. Furthermore, irA is in the commutant ofT, then A can be
written as A PxB X, where B has the properties described above and satisfies

Remark. By a result of Sarason, cited in [2], the Hilbert space X always has
a decomposition of the type X M @ N, where M and N are as described in
the above proposition.

If T1 and T2 are operators on Hilbert spaces X and X2, respectively, then we
say than an operator A: Xa X2 is intertwinin9 for T1 and T2 if ATa T2 A.
Using the above proposition, we can state a lemma which relates intertwining
operators A for contractions Ti: X i--. X, i-- 1, 2, to operators B which are
intertwining for their minimal unitary dilations. Though surely well known,
this result does not seem to appear anywhere in the literature, and we therefore
indicate a proof.
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LEMMA 3.2. Suppose that T is a contraction acting on a Hilbert space Xi,for
1, 2. Let Wii be the unique minimal unitary dilation of T acting on the Hilbert

space Yi X i. Let A: X - X2 be intertwining for Tx and T2, i.e., AT T2 A.
Then there exists an operator B: Y--} Y2 intertwining for W and WE, and
satisfying

Then,

Proof.

BW-- W2B, PBIX--A, IIBII- IIAII.
Define operators T and A on the Hilbert space X q X2 by

_<]]X 1[2
__

]Ix2 ]]2 (X1X2 )l]2 for (X1)x2
so T is a contraction on X X2. Also, A Tx T2 A implies that

Now the minimal unitary dilation of is the operator

acting on Y @ Y since. (Px, W].X 0 ) (T 0) ,..Px, .x IX, X2 0 Px Wl X2 0 T
Therefore, by Proposition 3.1 applied to the operator T on the Hilbert space
X X2 with minimal unitary dilation W on Y Y2, there exists an operator

such that

1W1 Z2W2)=== (W1Z1 W1Z2)BW Z3 W2 W2 B W2Z3

Px.x]XX2= and [=
It follows immediately that the operator B has the desired properties, and thus
the proof is complete.
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With the help of the above lemma, we can prove necessary and sufficient
conditions for a generalized Hankel operator to be bounded. Recall that ifH
is a classical Hankel matrix with 4) H2, then Nehari’s theorem states that H
is bounded if and only if there exists a function L such that PH2 q th, in
which case we can choose ff so that the operator JC: L

2 --, L2 defined by
J, u q(e)u(e- ’)(= u(U*)q) satisfies

PH2J,[ H2 He, J, U U*J, and [[Jg,[I ]IH[I,
where U: L2 L2 is the bilateral shift. The following theorem shows that simi-
lar conditions hold for the generalized Hankel operators.

THEOREM 3.3. Let T be a completely non-unitary contraction on a Hilbert
space X. Let W: Y --, Y be the minimal unitary dilation of T. Let 49 X define a
9eneralized bounded Hankel operator H,: H2 X by Hcu u(T)d?. Then there
exists an element Y such that Px and the operator J,: L2 Y defined
by Ju u(W) satisfies

PxJIH2= H, JU= WS aM IIs  ] i}Ho]I

Proof From the definition of Ho, we have that HU + =TH, where U + is
the unilateral shift on H2. Since the bilateral shih U is the minimal unita
dilation of U+, by Lemma 3.1 there exists an operator J: L2 Y such that
PxJIH2, JU= WJ, [[J[[= [[H[[. Let if=J1. Then j(ei")=JUl=
W"J1 W" for all integers n. (For n < 0, we have used a well-known theorem
of Putnam [5, Theorem 1.6.2] which states that if N , Nz are bounded normal
operators and if B is a bounded operator such that BNa NzB then
BN NB.) The trigonometric polynomials are dense in Lz. Therefore, we
have obtained an element ff Y such that Ju u(W) for u Lz. Hence, J is
the operator J, of the theorem, and we have Px PxJl HI . This
completes the proof.

Though we have not made it explicit in the statement of the theorem, it is
clear that, as a converse, an operator H: Hz---, X defined via the formula
H PxJq,[H2 for such an operator J, as above is a generalized bounded
Hankel operator with symbol

Remarks 1. We note that the classical criteria for boundedness discussed
in Section 1 follow as an easy consequence of the above theorem. In the
analytic Toeplitz case (where X H2, T U +), the theorem gives that the
operator J(= J) must satisfy JU UJ, and it is well known that such an
operator must be multiplication by an L function. In the classical Hankel case
(where X H2, T U*+), we have JU U*J,. But then for the operator
R" L2 L2 given by Ru(ei) u(e-iO), we have RJe U RU*J URJq, and,
therefore, RJq, must be multiplication by an L function. It is easy to see that
this function must be (e-i).
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2. A result of Sz.-Nagy and Foias [7, Proposition II.2.2] states that if
T: X - X is a contraction with minimal isometric dilation W+: Y+ Y+ and if
G: Z Z is an isometry, then the solutions K: Z X of the equation
TL KG are precisely those operators of the form K PxL, where L is a
bounded operator on Y+ satisfying W+ L LG.

Since the unilateral shift U+:H2 H2 is an isometry, we can apply this
result in the context of generalized Hankel operators H: H2 X. We then
conclude that for the minimal isometric dilation W+: Y+ Y+ of T there exists
an operator J +: H2 Y+ such that PxJ + H,, J + u u(W+) +, for
q + J + 1 Y+, and J + U + W+ J +. (This, of course, cannot be used to
obtain an analogue of Nehari’s theorem, as is obvious from the case where T is
an isometry, so that T W+, X Y+, and

3. We could alter slightly the definition of generalized Hankel operators so
as to include all of the Toeplitz operators. To do this we would allow the
symbol b to be chosen out of the domain space Y for the minimal unitary
dilation W of T, subject to the condition that [IPxu(W)dllx < Cllu[l for some
constant C and all u H. With routine changes, the conclusion of Theorem
3.3 continues to hold.
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